ратовского университета. Новая серия. – 2010. – Т. 10. – Серия: Математика. Механика. Информатика. – Вып. 2. – С. 66–73. **13**. *Redaelli A*. Course notes; **14**. *Womersley, J.R.* Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. From the Department of Physiology, St Bartholomew's Hospital Medical College, London, E.C. 1; **15**. *J.H. Siggers* and *S.L. Waters*. Unsteady flows in pipes with finite curvature J. Fluid Mech. (2008), vol. 600, pp. 133–165; **16**. *S.A. Berger, L. Talbot, L.-S. Yao*. Flow in curvate pipes. Ann. Rev. Fluid Mech. (2001), vol. 433, pp. 357–382; **18**. *Denis Doorly* and *Spencer Sherwin*. Flow dynamics within model distal arterial bypass grafts. Biomedical flow group, Department of Aeronautics, Imperial College of Science, Technology and Medicine, London, UK; **19**. *J.F. Gulich*. Centrifugal pumps. Second edition ANSYS Help.

Поступила в редколлегию 28.02.2013

УДК 532.522:621.372

Моделирование течения крови в патологически искривлённых сосудах / В. С. Оверко, М. В. Бескровная // Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях. – Харків: НТУ «ХПІ», 2013. – №5 (979). – С. 211-220. Бібліогр.: 19 назв.

Проведено математичне моделювання течії крові у патологічно змінених судинах. Досліджено вплив ступеню викривленості на інтенсивність та особливості вторинної та зворотної течії крові в судинах у різні моменти часу кардіального циклу. Визначені трати тиску для різного ступеня патологічного скривлення судин.

Ключові слова: біогідродинаміка, гемодинаміка, течія в судинах, кардіальний цикл, вихрова структура.

Mathematical simulation of the blood flow in the pathologically curved blood vessels was performed. Influence of degrees of the curvature by the intensity and the features of the secondary and the reverse blood flow in the vessels at different times cardiac cycle was determined. The loss pressure for different level of the pathological curvature was defined.

Key words: biohidrodynamika, hemodynamics, flow in the vessels, cardiac cycle, the vortex structure.

УДК 531.3

В. П. ОЛЬШАНСКИЙ, д-р. физ.-мат. наук, проф., ХНТУСХ, Харьков; *С. В. ОЛЬШАНСКИЙ*, канд. физ.-мат. наук, доц., НТУ «ХПИ»

ФУНКЦИЯ ЛАМБЕРТА В ЗАДАЧЕ БАЛЛИСТИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

Показано, что применение функции Ламберта и её таблиц существенно упрощает расчёт дальности полёта и других параметров траектории при движении материальной точки в газовой среде с линейным сопротивлением.

Ключевые слова: материальная точка, сопротивление среды, дальность полёта, функция Ламберта.

Введение. Задача о движении материальной точки в среде с линейным сопротивлением относится к классическим и её решение традиционно излагают в учебниках по теоретической механике. Уравнение траектории точки в декартовой системе координат *хОу* обычно подают в параметрической форме:

x = x(t); y = y(t), содержащей параметр – t, или записывают в явной форме

[©] В. П. Ольшанский, С. В. Ольшанский 2013

y = y(x). Но для расчёта дальности полёта точки (горизонтальной протяжённости траектории) нужна зависимость x = x(y), которая является двузначной и оказывается связанной со специальной *функцией Ламберта W* ($-\zeta$). Получение этой зависимости является целью данной работы. При традиционном подходе, для расчёта дальности полёта точки *l*, приходится численно решать трансцендентное уравнение $y(l) = y_*$, где y_* – конечное значение ординаты на траектории [1]. В предлагаемом здесь способе расчёта вычисление *l* связанно с вычислением значения $W(-\zeta)$ по таблице этой функции или на компьютере в среде «Maple» [2].

Порядок расчёта. Согласно [1, 3, 4], явное выражение траектории полёта материальной точки в вертикальной плоскости *xOy* под действием силы гравитации и силы сопротивления среды, пропорциональной первой степени скорости движения, имеет вид:

$$y = y(x) = \frac{g + \alpha v_2}{\alpha v_1} x + \frac{g}{\alpha^2} \ln\left(1 - \frac{\alpha x}{v_1}\right).$$
(1)

В (1) $\upsilon_1 = \upsilon_0 \cos \theta_0$; $\upsilon_2 = \upsilon_0 \sin \theta_0$; g – ускорение свободного падения; α – коэффициент линейного сопротивления воздуха; υ_1, υ_2 – проекции вектора начальной скорости точки $\vec{\upsilon}_0$ на оси *Ox* и *Oy* соответственно (см. рис. 1).

Рис. 1 – Расчётная схема.

К выражению (1) приводят решения задачи Коши:

$$x = \frac{\nu_1}{\alpha} \left(1 - e^{-\alpha t} \right); \quad y = \frac{1}{\alpha} \left(\nu_2 + \frac{g}{\alpha} \right) \left(1 - e^{-\alpha t} \right) - \frac{gt}{\alpha}, \tag{2}$$

после исключения времени t во втором уравнении с помощью первого уравнения в (2).

Введём обозначения:

$$A = 1 + \frac{\alpha v_2}{g}; \quad \xi = A \left(1 - \frac{\alpha x}{v_1} \right); \quad \eta = -\frac{y\alpha^2}{g} + A - \ln A, \tag{3}$$

и преобразуем выражение (1) к виду:

ISSN 2222-0631. Вісник НТУ «ХПІ». 2013. №5 (979)

$$\ln \xi - \xi = -\eta. \tag{4}$$

Уравнение (4) имеет два решения:

$$\xi = -W_1 \left(-\exp(-\eta) \right) \quad \mathbf{H} \quad \xi = -W_2 \left(-\exp(-\eta) \right), \tag{5}$$

в которых $W_1(-\zeta)$ и $W_2(-\zeta)$ – соответственно, первая (основная) и вторая (дополнительная) вещественные ветви функции Ламберта на промежутке $\zeta \in [-1/e; 0]$. Свойства этой функции и формулы для вычисления её значений опубликованы в [5, 6].

Поскольку [5]:

$$W_1(-\exp(-1)) = W_2(-\exp(-1)) = -1$$
,

то две ветви имеют общую точку: $\xi = 1$; $\eta = 1$. На траектории полёта ей соответствует точка экстремума с координатами: $x = x_e$; $y = y_e$. Действительно, для указанных значений ξ и η имеем:

$$\xi = A \left(1 - \frac{\alpha x}{\nu_1} \right) = 1 \implies x = \frac{\nu_1 \cdot \nu_2}{g + \alpha \nu_2} = x_e;$$

$$\eta = 1 \implies y = \frac{\nu_2}{\alpha} - \frac{g}{\alpha^2} \ln \left(1 + \frac{\alpha \nu_2}{g} \right) = y_e.$$

Записанные выражения x_e и y_e другим путём найдены в [1].

Учитывая (3) и (5), получаем следующее решение поставленной задачи. На восходящем участке траектории $x \in [0; x_e]$ зависимость x(y) имеет вид:

$$x = \frac{\nu_1}{\alpha} \left[1 + \frac{1}{A} W_2 \left(-\exp(-\eta) \right) \right]$$

На нисходящем участке $x > x_e$ траектория точки описывается выражением:

$$x = \frac{\upsilon_1}{\alpha} \left[1 + \frac{1}{A} W_1 \left(-\exp(-\eta) \right) \right].$$
(6)

При $l > x_e$, из (6) следует формула для расчёта дальности полёта материальной точки:

$$l = \frac{\upsilon_1}{\alpha} \left[1 + \frac{1}{A} W_1 \left(-\exp\left(-\eta_*\right) \right) \right],\tag{7}$$

в которой $\eta_* = -\frac{y_* \alpha^2}{g} + A - \ln A.$

С целью упрощения вычисления *l*, приводим таблицу значений для первой ветви функции Ламберта.

Таблица функции $W_2(-\zeta)$ опубликована в [7, 8] и её здесь не приводим.

Результаты моделирования. Рассмотрим примеры применения формулы (7) к вычислению дальности полёта материальной точки.

Пример 1. Три частицы последовательно вылетают с начальной скоро-

стью $\upsilon_0 = 15$ м/с под углом $\theta_0 = 30^0$ к горизонту и опускаются в ходе полёта на расстояние h = 1 м, $(y_* = -h)$, как показано на рис. 1. Коэффициенты вязкого сопротивления α у частиц разные и соответственно равны: 0,2; 0,3; 0,4 с⁻¹. Выясним, как будут различаться дальности их полёта. Результаты вычислений представлены в табл. 2. Значения функции $W(-\zeta)$ определяли интерполированием данных в табл. 1.

Ширина полосы по разностям *l* оказалась приблизительно равной 2,7 м.

В хорошей точности расчёта легко убедиться подстановкой в (1) значения x = l из табл. 2. Эти l также удовлетворяют неравенству

$$l < \max x = \frac{v_1}{\alpha},$$

которое следует из первого уравнения в (2).

			(-)	1 (•) 、 •	· · · ·	
$10^{3}\zeta$	$F(\zeta)$	$10^{3}\zeta$	$F(\zeta)$	$10^{3}\zeta$	$F(\zeta)$	$10^{3}\zeta$	$F(\zeta)$
$10^{3} / e$	10000	345	6831	225	3053	105	1182
367,5	9553	340	6537	220	2957	100	1118
367	9324	335	6273	215	2863	95	1056
366	9022	330	6033	210	2770	90	994
365	8798	325	5811	205	2680	85	933
364	8664	320	5605	200	2592	80	873
363	8454	315	5412	195	2505	75	814
362	8311	310	5230	190	2420	70	755
361	8181	305	5058	185	2337	65	697
360	8061	300	4894	180	2255	60	640
359	7949	295	4738	175	2175	55	583
358	7845	290	4589	170	2097	50	527
357	7746	285	4445	165	2019	45	472
356	7652	280	4308	160	1943	40	417
355	7562	275	4175	155	1868	35	363
354	7477	270	4047	150	1795	30	309
353	7395	265	3923	145	1723	25	256
352	7316	260	3803	140	1651	20	204
351	7240	255	3687	135	1581	15	152
350	7166	250	3574	130	1512	10	101
349	7095	245	3464	125	1444	5	50
348	7026	240	3358	120	1377	0	0
347	6959	235	3254	115	1311		
346	6894	230	3152	110	1246		

Таблица 1. Значения $F(-\zeta) = -10^4 W_1(-\zeta)$ (первая ветвь)

ISSN 2222-0631. Вісник НТУ «ХПІ». 2013. №5 (979)

α , c ⁻¹	A	ξ	$\exp(-\xi)$	$-W_1\left(-e^{-\xi}\right)$	<i>l</i> , м
0,2	1,1529	1,0147	0,3625	0,8383	17,723
0,3	1,2294	1,0320	0,3563	0,7680	16,251
0,4	1,3058	1,0553	0,3481	0,7033	14,984

Таблица 2. Значения *l* для разных α

Пример 2. Четыре частицы вылетают с одинаковой начальной скоростью $v_0 = 10$ м/с, но под разными углами к горизонту. Определим различия в дальностях их полёта, когда $\alpha = 0,3$ с⁻¹; h = 1 м. Результаты расчёта записаны в табл. 3.

$ heta_0$, град	A	Ę	$\exp(-\xi)$	$-W_1\left(-e^{-\xi}\right)$	<i>l</i> , м
20	1,1046	1,0143	0,3627	0,8411	7,472
30	1,1529	1,0198	0,3607	0,8145	8,473
40	1,1966	1,0263	0,3583	0,7876	8,728
45	1,2162	1,0297	0,3571	0,7756	8,539

Таблица 3. Значения l для разных θ_0

Вычисления подтверждают известный факт о том, что вследствие действия силы сопротивления среды, максимальная дальность полёта частицы имеет место не при $\theta_0 = 45^0$, а при меньших значениях этого угла.

Выводы. При наличии таблицы функции Ламберта изложенный способ расчёта существенно упрощает определение дальности полёта частицы в газообразной среде с линейным сопротивлением движению.

Список литературы: 1. Ольшанский В.П. Вопросы внешней баллистики огнетушацих веществ / В.П. Ольшанский, О.А. Дубовик. – Х.: "Митець", 2005. – 236 с. 2. Дьяконов В.П. Марle 8 в математике, физике и образовании / В.П. Дьяконов. – М.: Солон-Пресс, 2003. – 656 с. 3. Жуковский Н. Е. Теоретическая механика. – М.-Л.: Гостехиздат, 1950. – 811 с. 4. Кучеренко С.І. Теорегична механіка. Навчальний посібник / С.І. Кучеренко, В.В. Бурлка, Л.М. Тіщенко та ін. – Х.: XHTУСГ, 2012. – 568 с. 5. Corless R.M. On the Lambert W Function / R.M. Corless, G.H. Gonnet, D.E.G. Hare and ather // Advances in Computational Math. v.5., 1996, р. 329-359. 6. Fariel Shafee. Lambert function and new-extensive form of entropy / Shafee Farial // IMA Journal of Applied Mathematics. v.72, 2007, р. 785-800. 7. Кучеренко С.І. Балістика крапель, які випаровуються при польоті / С.І. Кучеренко, В.П. Ольшанський, С.В. Ольшанський, Л.М. Тіщенко. – Х.: ХНТСГ, 2007. – 304 с. 8. Бакум М.В. Дослідження руху часток в квазігоризонтальному плоскому каналі пневматичних сепараторів / М.В. Бакум, В.П. Ольшанський, М.М. Крекот // Конструювання, виробництво та експлуатація сільськогосподарських машин. – Кіровоград: КНТУ, 2009. – Вип. 39. – С. 216-222.

Поступила в редколлегию 29.01.2013

УДК 531.3

Функція Ламберта в задачі балістики матеріальної точки / В. П. Ольшанський, С. В. Ольшанський // Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях. – Харків: НТУ «ХПІ», 2013. – №5 (979). – С. 220-224. Бібліогр.: 8 назв.

Показано, що використання функції Ламберта та її таблиць суттєво спрощує розрахунок дальності польоту та інших параметрів траєкторії при русі матеріальної точки в газовому середовищі з лінійним опором.

Ключові слова: матеріальна точка, опір середовища, дальність польоту, функція Ламберта.

It is shown that the use of the Lambert function and tables greatly simplifies the calculation of range and other parameters of the trajectory of the motion of a particle in a gas medium with a linear resistance.

Key words: material point, the resistance of the medium, range, Lambert function.