N. Gricyna. "Ispol'zovanie impul'snyh struj zhidkosti visokoj skorosti dlja tushenija gazovyh fakelov." *Bulletin of Donetsk National University: Ser. A. Natural Sciences.* Vol. 1. 2011. 160–167. Print. **26.** Semko, A. N., at al. "Perspektivy primenenija impul'snyh struj zhidkosti dlja tushenija gazovyh fakelov." *Visnyk Nacional'nogo tehnichnogo universytetu «KhPI». Zbirnyk naukovyh prac'. Ser.: Matematychne modeljuvannja v tehnici ta tehnologijah.* Vol. 5 (979). 2013. 225–231. Print.

Поступила (received) 11.05.2015

УДК 621.833

В.Н. ТКАЧЕНКО, канд. техн. наук, НТУ «ХПИ»

ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В ГИБКОМ КОЛЕСЕ ВОЛНОВОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

Для проверки гибкого колеса волновой зубчатой передачи на изгибную прочность и выносливость предложена методика определения напряжений от изгиба колеса генератором волны упругой деформации с применением теории упругих тонких оболочек. Вычисленные напряжения корректируются с учётом переменной изгибной жесткости в области зубчатого венца и наличия эффекта концентрации напряжений во впадинах между зубьями. Предлагается определить напряжения в двух опасных сечениях – во впадинах между зубьями венца и в области перехода от зубчатого венца к гибкому колесу. При этом для второго сечения расчёт напряжений проводится с учётом передаваемого вращающего момента. Из приведенного примера расчётов видна целесообразность предлагаемого подхода к оценке прочности и выносливости гибкого колеса волновой зубчатой передачи.

Ключевые слова: волновая передача, напряжения, гибкое колесо, теория оболочек.

Введение и постановка задачи. Одним из основных факторов, определяющих ресурс волновой зубчатой передачи – ВЗП, является прочность и выносливость зубчатого гибкого колеса цилиндрической оболочки, закрученной передаваемым вращающим моментом и изогнутой со стороны зубчатого венца генератором волн упругой деформации. Наличие на поверхности оболочки выступов в виде зубьев является фактором, модулирующим изгибную жесткость в области зубчатого венца в окружном направлении и приводящим к росту напряжений изгиба во впадинах между зубьями. У основания зубьев, в местах перехода к гибкому колесу, наблюдается концентрация напряжений. Методика учета переменной изгибной жесткости и концентрации напряжений рассматривалась в работе [1].

Экспериментально установлено, что при недостаточной выносливости усталостные трещины зарождаются во впадинах зубьев, с внутреннего края зубчатого венца в сечении I рис. 1, в местах перехода от зубчатого венца к оболочке.

В вершине волны упругой деформации генератор волн полностью вводит зубья гибкого колеса (ГК) в зацепление с зубьями жесткого, так что грани зубьев ГК располагаются здесь параллельно оси ГК. Это приводит к дополнительной угловой деформации в рассматриваемом сечении, возрастанию изгибающего момента, как это наблюдается в области жесткой заделки консольных балок. При испытаниях ВЗП на выносливость наблюдались поломки гибкого колеса, связанные с образованием трещин не только во впадинах

© В. Н. Ткаченко, 2015

зубьев, но и в окружном направлении, в местах перехода от зубчатого венца к гибкому колесу (сеч. I).

Рис. 1 – Расчётная схема ВЗП.

Модель для оценки прочности и выносливости. Для определения напряжений от изгиба, вызванного защемлением зубчатого венца ГК между генератором волн и жестким зубчатым колесом, рассмотрим деформацию ГК – цилиндрической оболочки, на одном из торцов которой расположен зубчатый венец, а противоположный торец соединен с выходным валом.

Возможны несколько способов соединения. Оболочка выполняется заодно с днищем – круглой пластиной. Оболочка соединяется с помощью сварки с пластиной. Возможно также применение шлицевого соединения. Отметим, что способ соединения оболочки с валом несущественно влияет на напряженное состояние в области зубчатого венца.

Недопустимо только ограничивать перемещение точек рассматриваемого торца в осевом направлении, поэтому толщина пластины днища не должна превышать толщину ГК.

Решение задачи. Для вычисления напряжений изгиба в сечении применим *техническую моментную теорию цилиндрических оболочек* [2].

Введем следующие обозначения: \hat{R} и \hat{L} – радиус и длина оболочки; E и ν – модуль упругости и коэффициент Пуассона; θ и $\xi = L/R$ – угловая и относительная осевая координаты. Поскольку по поверхности оболочки не действуют внешние нагрузки, а напряжения изгиба являются следствием радиальных перемещений на ее торце, то их вычисление можно свести к решению однородной системы дифференциальных уравнений в частных производных восьмого порядка при неоднородных граничных условиях на обоих торцах.

Введём такие обозначения: U, V и W – перемещения точек срединной поверхности оболочки в окружном, осевом и радиальном направлениях; γ – угол поворота образующей оболочки; T, M_{θ}, M_{ξ} – усилие вдоль образующей и моменты в двух плоскостях (перпендикулярной и содержащей ось

оболочки).

Однородная система дифференциальных уравнений имеет вид:

$$\begin{cases} L_{11}U + L_{12}V + L_{13}W = 0; \\ L_{21}U + L_{22}V + L_{23}W = 0; \\ L_{31}U + L_{32}V + L_{33}W = 0, \end{cases}$$

где L_{ii} (*i*, *j* = 1, 2, 3) – дифференциальные операторы [2].

Перемещения, усилия и изгибающие моменты в рассматриваемой задаче являются периодическими функциями угла θ , поэтому решение ищем *методом разделения переменных* с наложением условия периодичности по углу θ .

При формировании граничных условий функцию радиальных перемещений на среформированном генератором торце задаем в виде тригонометрического ряда. Для генераторов принудительной деформации эта функция определяется заданным конструктивно профилем генератора.

Причем в процессе закручивания ГК она не изменяется (в отличие от дисковых генераторов полупринудительной деформации). После вычисления перемещений, усилия и изгибающие моменты вычисляются по зависимостям из [2], например:

$$M_{\xi} = \frac{EH^3}{12R^2(1-\nu^2)} \left(\frac{\partial^2 W}{\partial \xi^2} + \nu \frac{\partial^2 W}{\partial \theta^2} + \nu \frac{\partial V}{\partial \theta} \right).$$

Напряжения изгиба вычислялись в оболочке радиусом R = 80 мм, толщиной H = 2,5 мм для случая двухволновой передачи с $W = W_0 \cdot \cos 2\theta$, где $W_0 = 1$ мм.

	L/R	 	 	
	0.8 L/R			
-50	0.7 L/R	100	250	б _⋛ МПА

Рис. 2 – Распределение напряжений σ_{ε} по образующей.

В вершине волны деформации напряжения составили: $\sigma_{\theta} = 171 \text{ MIA}$ и $\sigma_{\varepsilon} = 332 \text{ MIA}.$

На рис. 2 приведен график зависимости σ_{ξ} по длине ГК. Указанные напряжения σ_{ξ} вычислены в сечении I (рис. 1).

Для вычисления касательных напряжений от закручивания ГК передаваемым вращающим моментом *T* воспользуемся зависимостью из [3]:

$$\tau_{\kappa p} = T / \kappa \cdot 2\pi R^2 H,$$

к – коэффициент, учитывающий неравномерность распределения напряже-

ний в окружном направлении. В волновой передаче с диаметром гибкого колеса d = 160 мм передаваемый вращающий момент T равен 890 кH·мм, так что $\tau_{\kappa p} = 59$ МПА.

Расчетные напряжения, вычисленные в сечении I по энергетической теории прочности, составили $\sigma = 357$ МПА, причем напряжения $\sigma_{\theta} = 171$ МПа были получены без учета влияния зубчатого венца. Наличие на венце выступов в виде зубьев приводит к тому, что изгибная жесткость в окружном направлении становится переменной. В результате чего напряжения σ_{θ} также периодически изменяются в окружном направлении, причём в области минимальной жесткости – во впадинах между зубьями, они увеличиваются по сравнению с напряжениями, которые возникают в гладком кольце той же толщины, что и во впадинах.

Увеличение напряжений во впадинах обусловлено не только переменной изгибной жесткостью зубчатого венца, но и концентрацией напряжений, зависящей от геометрии выкружки в основании зуба и минимальной толщины венца H.

На основании анализа результатов усталостных испытаний 300 гибких колес, часть которых выполнены без зубчатого венца, было получено отношение пределов выносливости гладких колес к аналогичным, но с зубчатым венцом [4]. Если ввести коэффициент жесткости K_{xe} , показывающий влияние переменной изгибной жесткости на напряжения σ_{θ} и эффективный коэффициент концентрации напряжений K_{σ} , то, очевидно, снижение предела выносливости гибких колес с зубчатым венцом, по сравнению с колесами без венца, пропорционально произведению указанных коэффициентов.

Результаты теоретических и экспериментальных исследований [4] позволяют рекомендовать для вычислений следующие зависимости:

$$K_{\mathcal{H}} = 1 + 0.8 \frac{m}{H_0}, \quad K_{\sigma} = 1.25 \left(\frac{H_0}{m}\right)^{0.27},$$

где *т* – модуль зуба.

Если учесть влияние переменной изгибной жесткости и концентрации напряжений по методике [4], то во впадинах между зубьями $\sigma_{\theta 1} = 361 \text{ MTa}$.

Приведенные результаты хорошо подтверждаются экспериментальными исследованиями, а именно тем, что усталостная трещина начинается не на свободном торце зубчатого венца, а в местах перехода от зубчатого венца к оболочке ГК.

Выводы. Сравнение расчетных напряжений от совместного изгиба и кручения гибкого колеса с напряжениями от одного изгиба, во впадинах между зубьями, показало, что последние незначительно, до 5% превосходят расчетные. Вследствие этого при проверке прочности и выносливости рекомендуется проводить расчеты в двух сечениях – во впадинах между зубьями и в месте перехода от зубчатого венца к оболочке.

Список литературы: 1. *Ткаченко В.Н.* Определение напряжений в зубчатом гибком колесе волновой передачи // Сборник трудов ХГПУ. Выпуск 7. – Харьков: ХГПУ. – 1999. С. 214 – 217. 2. *Гольденвейзер А.И.* Теория упругих тонких оболочек. – Москва: Гостехиздат, – 1963. 483 с. 3. Волновые механические передачи // Под ред. *Шувалова С.А.* и др. – Москва: НИИ информации

по машиностроению, – 1976. 81 с. **4.** *Ткаченко В.Н.* Определение оптимальной толщины зубчатого венца гибкого колеса волновой передачи // Збірник наукових праць НТУ «ХПІ». Високі технології в машинобудуванні. – Харків: НТУ «ХПІ». – 2006. С. 477 – 481.

Bibliography (transliterated): 1. Tkachenko, V. N. "Opredelenie naprjzhenij v zubchatom gibkom kolese volnovoj peredachi." Sbornik trudov KhGPU. Vol. 7. Kharkov: KhGPU, 1999. 214–217. Print. 2. Gol'denvejzer, A. I. Teorija uprugih tonkih obolochek. Moscow: Gostehizdat, 1963. Print. 3. Volnovye mehanicheskie peredachi. Ed. Shuvalov, S. A., et al. Moscow: NII informacii po mashinostroeniju, 1976. Print. 4. Tkachenko, V. N. "Opredelenie optimal'noj tolshhiny zubchatogo venca gibkogo kolesa volnovoj peredachi." Zbirnyk naukovyh prac' NTU «KhPI». Vysoki tehnologii' v mashynobuduvanni. No. 1. Kharkov: NTU «KhPI», 2006. 477–481. Print.

Поступила (received) 22.05.2015

УДК 621.646.45: 621.05: 621.454.2

С.А. ШЕВЧЕНКО, аспирант, ведущий инж.-констр., ГП «КБ «Южное», Днепропетровск; *А.Л. ГРИГОРЬЕВ*, д-р техн. наук, проф., НТУ «ХПИ»; *М.С. СТЕПАНОВ*, д-р техн. наук, проф., НТУ «ХПИ»

ТЕРМОДИНАМИЧЕСКИЙ РАСЧЁТ ПНЕВМОСИСТЕМЫ ЗАПУСКА РАКЕТНОГО ДВИГАТЕЛЯ

Выполнен анализ процессов нестационарного теплообмена газа со стенками полостей пневмосистемы запуска ракетного двигателя многократного включения. Получены формулы для расчёта коэффициентов теплоотдачи от газа к стенке с учётом формы полости. Для определения температуры внутренней поверхности стенки выведено интегро-дифференциальное уравнение и разработан новый метод его решения, использующий аппроксимацию регулярной части ядра сверточного интеграла в виде суммы нескольких экспонент. Показано, что при расчёте непроточных полостей пневмосистемы изменение температуры стенок можно не учитывать. Аналогичный метод использован для расчёта нагрева уплотнительных манжет пневмосистемы.

Ключевые слова: пневмосистема запуска ЖРД; нестационарный теплообмен; коэффициенты теплоотдачи газа; интегро-дифференциальное уравнение; экспоненциальная аппроксимация ядра.

Введение и задачи исследования. В ГП «Конструкторское бюро «Южное» для жидкостных ракетных двигателей (ЖРД) многократного включения, устанавливаемых на верхних ступенях ракет-носителей, разрабатываются новые пневмосистемы раскрутки турбонасосного агрегата сжатым газом (напр., гелием или азотом). Исследования их опытных образцов проходят на пневматических стендах, где в качестве рабочего тела используется сжатый воздух, а также во время огневых испытаний двигателя. На стадии опытно - конструкторских работ и доводочных испытаний применяются методы математического моделирования. Отдельные элементы используемых математических моделей описаны в статьях [1 - 3] и докладывались на научной конференции [4].

Определённое представление о сложности этих моделей можно получить, анализируя рис. 1, где представлена расчётная схема одного из устройств указанного типа, установленного на пневматический стенд; жиклер 6

© С. А. Шевченко, А. Л. Григорьев, М. С. Степанов, 2015