самовизначення потенційних абітурієнтів залежить від сформованості їх ціннісної орієнтації, життєвих ідеалів у професійній сфері.

Висновки. Отже, правильно організована багатоступенева та різнокомпонентна професійна орієнтація потенційних абітурієнтів, у тому числі осіб з особливими потребами, будучи суттєвим етапом психологічної та практичної підготовки особистості до трудової діяльності, дозволить виконати замовлення сучасного суспільства у забезпеченні ринку праці прогресивними фахівцями.

Список літератури: 1. Брайко Н. Проблематика дефіциту спеціалістів на ринку праці України / H. Брайко [Електронний ресурс]. – Режим доступу: http://www.osvita.org.ua/articles/644.html. 2. *Лесько О. Й.* Зайнятість та професійна реабілітація осіб з обмеженими фізичними можливостями (методологія, проблеми, шляхи вирішення) / Автореф. дис... канд. екон. наук: 08.09.01 / О.Й. Лесько; НАН України. Рада по вивч. продукт. сил України. - К., 2003. - 20 с. 3. Садрицька С. В. Мотивація вступу до ВНЗ українських студентів: тенденції останніх років / С.В. Садрицька // Наукове онлайн видання «SOCIOПРОСТІР». - 2010. - № 1. - С. 56-60. **4.** *Фіцула М. М.* Педагогіка: Навчальний посібник / М.М. Фіцула. – К., Альма-матер, 2009. 5. Острова В. Д. Особливості соціально-психологічної адаптації сучасної студентської молоді: потреба у психологічному В.Д. Острова [Електронний супроводі pecypc]. Режим доступу: http://vuzlib.com/content/view/571/94/.

Надійшла до редколегії 03.06.2013

УДК 331.548

Професійна орієнтація, у тому числі осіб з особливими потребами, як провідний фактор формування сучасних прогресивних фахівців/ Шароватова О. П. // Вісник НТУ «ХПІ». Серія: Нові рішення в сучасних технологіях. — Х: НТУ «ХПІ», — 2013. - № 38 (1011). — С.114-119. — Бібліогр.: 5 назв.

Раскрыты проблемные вопросы профессиональной ориентации, в том числе лиц с особенными потребностями, как ключевого фактора в формировании высококвалифицированных специалистов в условиях отечественной современности в соответствии с новыми социальными условиями.

Ключевые слова: современные специалисты, лица с особенными потребностями, абитуриенты, профессиональная ориентация

Revealed the problematic issues of vocational guidance, including those with special needs, as a key factor in the formation of highly qualified specialists in the domestic modernity in accordance with the new social conditions.

Keywords: modern experts, persons with special needs, applicants, career guidance

УДК 004.9:528

А. В. БЕЛЬЧЕВА, ассистент, ХНУРЭ, Харьков

МЕТОД ГЕНЕРАЦИИ ТЕСТОВЫХ НАБОРОВ ДАННЫХ ДЛЯ ФОРМИРОВАНИЯ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ ГИС

В статье предложен метод генерации тестовых наборов данных ГИС, позволяющий повысить интенсивность наполнения информационного обеспечения ГИС-приложения для сокращения времени на разработку и тестирования алгоритмов реализующих функциональных задачи ГИС-приложения.

Ключевые слова: ГИС, информационное обеспечения, тестовые данные, метод.

Введение. На первых этапах проектирования информационное обеспечение ГИС-приложения (далее ИОГИС) еще не сформировано, что приводит к отсрочке разработки алгоритмов, реализующих функциональные задачи и соответственно

временным потерям. Это обусловлено тем, что для проведения практических экспериментов и реализации функциональных задач ГИС нужна представительская выборка и разнообразие в форматах данных. В настоящее время в комплекте с проприетарным программным обеспечением, разработчику может быть предоставлено некоторое, весьма ограниченное число пространственных данных [1], однако их не достаточно для проведения экспериментальных исследований. Выбор тестового материала, задача не менее трудоемкая, нежели наполнение ИОГИС реальными данными, кроме того, чтобы повысить эффективность разрабатываемых алгоритмов целесообразно использовать данные с ловушками, искажениями, зашумленностью.

Цель работы. Целью данной работы является разработать метод генерации тестовых наборов данных для формирования ИОГИС.

Методика экспериментов. Структура информационного обеспечения ГИС должна полностью соответствовать информационным потребностям конкретного проекта. Концептуальная модель ИО включает описание форматов представления, требований к качеству и видов взаимодействия. Для эффективной работы с ИО необходимо учесть формат представления, способы реализации пространственных и логических запросов, возможность обновления данных. Определение основных требований к ИО ГИС-приложения основано на анализе:

- -приоритетов функциональных задач (определить, какие параметры в задачах принятия решений являются наиболее важными: скорость, объективность, уменьшение затрат на получение услуг и т.д.);
- -нагрузок на ИО (нагрузка на блок обработки информационных ресурсов связанна с частотой обращения пользователей к системе, сложностью обрабатываемых запросов, объемами данных и т.д.);
- -требования к полноте ИО (определить, какой объем данных является достаточным для реализации функциональных задач и стабильной работы системы).

Для реализации данных требований используются внешние и внутренние программные модули. В качестве внешних подключают коммерческие СУБД (ORACLE, INFORMIX, SQLServer, Access и д.р.), а возможности внутренних обусловлены форматом представления и вариантом хранения атрибутивной информации. После выбора структуры ИО, разработчик постепенно наполняет

© **А. В. БЕЛЬЧЕВА**, 2013

данными ГИС-приложение.

Остановимся более подробно на требованиях к полноте ИО. Формирование информационной базы проекта достаточно трудоемкий процесс, включающий несколько этапов, от выбора логической модели до определения критериев качества и требований к преобразованию пространственных данных. Когда уровень полноты ИО не соответствует требуемому, разработчик в качестве информационных ресурсов может использовать тестовые наборы данных.

Массовый доступ в интернет способствует открытости данных о спутниковом позиционировании, аэрофотосъемки, глобальных моделей рельефа и других картографических материалов. Например, спутниковые фотоснимки планеты Landsat могут открыто использоваться в научных исследованиях в области геологии, картографии лесного и сельского хозяйства; топографические карты OpenStreetMap, Google maps, Microsoft Bing на основе данных ДДЗ с возможностью онлайн редактирования. Однако источники геоданных могут сопровождаться

лицензированным соглашением, с ограничениями в использовании конкретного набора. Например, данные ДДЗ IRS могут использоваться только в рамках проекта OpenStreetMap, X-band SRTM и ASTER GDEM нельзя распространять с оригинальным разрешением, а данные с сервисов Wikimapia и Google Mapmaker не допускают коммерческого использования. Несомненно, открытость подобных ресурсов способствует росту научных работ, появлению новых сервисов и продуктов, тем не менее, подобные тестовые наборы данных обладают рядом недостатков:

- неупорядоченность, разрозненность, отсутствие четкой структуры открытых ресурсов;
 - -ограничения лицензированным соглашением;
 - -разнообразие форматов представления;
- -малая выборка однородных данных для проведения научных исследований и проверки работы алгоритмов;
 - -привязка к определенной тематической области;
 - -ограничения, связанные с качеством и актуальностью информации;
 - -сложность прогнозирования срока получения данных;
- -наличие ошибок определенного рода для проверки робастности методов и алгоритмов пространственного анализа.

Исходя из изложенного можно прийти к выводу, что на сегодняшний день не существует однородного, открытого, четко структурированного тестового набора пространственных данных. Назрела необходимость в создании программного модуля с библиотекой тестовых наборов.

Тестовый набор данных представляет собой совокупность геометрических объектов, которые определены в одной системе координат, посредством которого, можно получить наборы объектов определенного класса или разнородные коллекции данных. Структура тестового набора — базовые геометрические объекты от нулевой до второй размерности. Каждый объект характеризуется определенной координатой на плоскости, которая служит точкой привязки и основой для реализации пространственного анализа. Рассмотрим основные этапы метода:

Этап 1 Выбор базовых геометрических объектов;

Этап 2 Определение входных параметров вычислительных процедур тестового набора данных;

Этап 4 Определение параметров искажений;

Этап 3 Обработка параметров в библиотеки функций;

Этап 5 Формирование тестового набора данных;

Этап 6 Интеграция тестового набора в программное обеспечение ГИС.

Обсуждение результатов. Структура тестового информационного обеспечения представлена на языке UML, где базовый класс состоит из подклассов: точка, линия, поверхность, коллекция примитивов (рис.)

$$T = \langle D, L, P, S \rangle$$
,

где T – Точка (Dot); L – Линия (Line); P – Полигон (Polygon); S – Поверхность (Surface).

Точка (Dot). Геометрический объект нулевой размерности, представлен на плоскости единой позицией с координатами x, y, z. Координаты точки задаются методами распределения случайной величины.

Совокупность объектов *«Точка»* формирует класс *«Множество точек»* и представляет собой массив данных, координаты которых — случайные величины, распределенные по нормальному закону с математическим ожиданием 0 и среднеквадратическим отклонением 1

$$F_{M_1}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
,

или случайные величины, распределенные по равномерному закону в интервале [a,b]

$$F_{M_2}(x) = \begin{cases} 0 & x \le a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x \le b \end{cases}$$

Линия (Line). Топологическая размерность равна единице. Его структура, представляет собой две опорные точки с определенным типом интерполяции между ними

$$\begin{aligned} u_i \left[x_i \ y_i \ z_i \right] \forall \, i = \overline{0,n} \ , \\ \begin{cases} p_i \left(t \right) = \left[1t \ t^2 \, t^3 \right] S_i \\ \forall \, t \left[0, d_i \right], i = \overline{1,n} \end{cases} \ , \text{ где} \, S_i = \begin{bmatrix} S_{0xi} & S_{0yi} & S_{0zi} \\ S_{1xi} & S_{1yi} & S_{1zi} \\ S_{2xi} & S_{2yi} & S_{2zi} \\ S_{3xi} & S_{3yi} & S_{3zi} \end{bmatrix} \end{aligned}$$

Метод интерполяции кривой между двумя заданными точками зависит от поставленной задачи и определяет тип аппроксимирующей функции. Кусочнолинейная интерполяция отрезками прямых линий, имеет изломы в узловых точках — несовпадение вторых производных. В кусочной интерполяции гладкими сплайнами в качестве аппроксимирующей функции используются полиномы низкой степени. Для обеспечения непрерывности в узловых точках форма сплайна определена кубическим полиномом. Физический аналог кубического сплайна — гибкий стержень, закрепленный в заданных узловых точках с минимальной потенциальной энергией в местах перегиба, пропорционально интегральной кривизне

Полигон (Polygon). Двумерный геометрический объект, представляющий собой ограниченную область плоскости.

Задается полигон произвольным набором объектов *Point*, образующих границу из комплекса

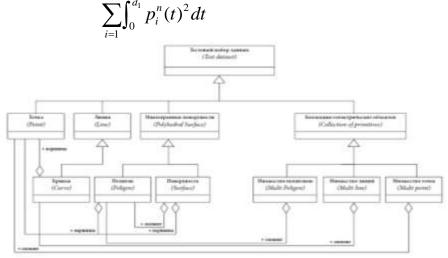


Рис. - Структурная модель тестового набора данных

объектов Line. Из точки T — центральной точки объекта, под углами $0^0 \le \varphi \le 360^0$ к оси x, расчитывается произвольное количество лучей путем приращения значения

угла $\varphi_1 = 0^0$, на случайную величину $\Box \varphi_n$. Значение $\Box \varphi_n$ выбирается с таким расчетом, чтобы минимальное количество лучей (сторон плигона) было равно трем $120^0 \lhd \varphi_n \leq 180^0$. Вдоль лучей откладываются отрезки произвольной длинны, которые определяют вершины полигона

$$r_n = a + rnd(b-a),$$

где r_n – длина произвольного отрезка, rnd(b-a) – генератор равномерно распределенных чисел.

$$p_n = T + r_n \left[\cos(\varphi_n) \sin(\varphi_n) \right], n = 1, 2, \dots,$$

где p_n – вершины полигона.

Поверхность (Surface). Геометрический объект с размерностью два. Представляет собой простую плоскую поверхность образованную границами полигонов – фрагментами.

$$u_{ij} = \left[x_{ij} \ y_{ij} \ z_{ij} \right] \forall i = \overline{0, n}, j = \overline{0, m},$$

где u_{ii} — узлы интерполяции каркаса сплайновой поверхности.

$$\begin{cases} p_{ij}(t,\tau) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} S_{ij} \begin{bmatrix} 1 \\ \tau \\ \tau^2 \\ \tau^3 \end{bmatrix} mR^3 \\ \forall t \in [0,d_i], \tau \in [0,\delta_j], i = \overline{1,n}, j = \overline{1,m}, \end{cases}$$

с трехслойными матрицами коэффициентов. Условия фиксации поверхности в узловых точках [2]

$$p_{ij}(0,0) = u_{i-1,j-1}, p_{ij}(0,\delta_j) = u_{i-1,j}, p_{ij}(d_j,0) = u_{i,j-1}, p_{ij}(d_j,\delta_j) = u_{ij}.$$

Вычислительные процедуры формирования объектов базовых классов, настройка дополнительные параметры имитирующих ошибки оцифровки: разрывы, пересечения, недоводы и перехлесты, и их программная реализация рассмотрены в работах [3-5].

Выводы. Разработан метод генерации тестовых наборов данных, на основе методов компьютерной геометрии и алгоритмов машинной графики, что позволит усовершенствовать проверку эффективности и надежности работы алгоритмов пространственно-атрибутивного анализа, а также повысить интенсивность наполнения информационного обеспечения ГИС. Предложена структура тестового набора данных. Введены базовые классы и подклассы объектов. Определены спецификации на объекты базовых классов.

Список литературы: 1. Дубинин, М. Ю. Открытые данные ДЗЗ – двигатель прогресса в области геоинформатики [Текст] / М. Ю. Дубинин // Земля из космоса. – 2012. – № 11 – С.9-14. 2. Никулин, Е. А. Компьютерная геометрия и алгоритмы машинной графики [Текст] / Е. А. Никулин // СПб: БХВ-Петербург, 2003. - С. 560. 3. Бельчева, А. В., Манакова, Н. О. Модель минимизации временных затрат реализации ГИС-проекта с учетом полноты информационного обеспечения [Текст] / А. В. Бельчева, Н. О. Манакова // Вестник национального технического университета «ХПИ». - 2013. - № 11(985). - С.85. 4. Бельчева, А. В., Манакова, Н. О. Алгоритм создания тестовых наборов векторных и растровых данных [Текст] / А. В. Бельчева, А. В. Метод создания тестовых наборов векторных и растровых данных [Текст] / А. В. Бельчева // Advanced Information Systems and Technologies, AIST 2012 – 15-18 мая 2012.

УДК 004.9:528

Метод генерации тестового информационного обеспечения ГИС/ Бельчева А. В. // Вісник НТУ «ХПІ». Серія: Нові рішення в сучасних технологіях. — Х: НТУ «ХПІ», — 2013. - № 38 (1011). — С.120-124. — Бібліогр.: 5назв.

Розроблено метод генерації тестових наборів даних ГІС, що дозволить проводити перевірку ефективності та надійності роботи алгоритмів просторово-атрибутивного аналізу, а також підвищити інтенсивність формування інформаційного забезпечення ГІС.

Ключевые слова: ГІС, інформаційне забезпечення, тестові данні, метод.

The method of GIS test data sets generating has been developed that will allow to check the effectiveness and reliability of the spatial-attributive analysis algorithms work and increase the intensity of the GIS informational support.

Keywords: GIS, informational support, test data, the method.

УДК 616.89:501+314.44

- **Е. В. ВЫСОЦКАЯ**, канд. техн. наук, проф., ХНУРЭ, Харьков;
- **В. И. КОРОСТИЙ**, д-р мед. наук, проф., Харьковский национальный медицинский университет;
- **Е. Н. ЗИНЧЕНКО**, канд. мед. наук, н. с., НИИ неврологии, психиатрии и наркологии АМН Украины, Харьков;
- **А. П. ПОРВАН**, канд. техн. наук, с.н.с., ХНУРЭ, Харьков;
- А. Н. СТРАШНЕНКО, аспирант, ХНУРЭ, Харьков

ПРОГНОЗИРОВАНИЕ ЗАБОЛЕВАЕМОСТИ РАССТРОЙСТВАМИ ПСИХИКИ НЕПСИХОТИЧЕСКОГО ХАРАКТЕРА СРЕДИ СЕЛЬСКОГО НАСЕЛЕНИЯ УКРАИНЫ

В статье рассматривается вопрос прогнозирования заболеваемости расстройствами психики и поведения непсихотического характера среди сельского населения с использованием адаптивных математических моделей, на основе которых может проводиться планирование ресурсов и объемов медицинской помощи, а также дальнейшее усовершенствование психиатрической службы.

Ключевые слова: прогнозирование заболеваемости, психические расстройства, АРМА.

© Е. В. ВЫСОЦКАЯ, В. И. КОРОСТИЙ, Е. Н. ЗИНЧЕНКО, А. П. ПОРВАН, А. Н. СТРАШНЕНКО, 2013

Введение. Из-за социально-экономического кризиса претерпевают быстрые, резкие изменения условия существования людей. Растёт безработица, меняется общественный менталитет, образ жизни, характер питания. Качество жизни и социальное функционирование становятся одним из важнейших показателей психического здоровья. Термин «психическое здоровье», введенный Всемирной организацией здравоохранения, обозначает успешное выполнение психических функций, имеющих результатом продуктивную деятельность, установление отношений с другими людьми и способность адаптироваться к изменениям и справляться с неприятностями. Психическое здоровье — это в первую очередь отсутствие психических расстройств и форм инвалидности. От психических расстройств страдает более 450 миллионов человек. У многих других людей имеются психические проблемы [1, 2].