УДК 66: 533.9+004.9 doi:10.20998/2413-4295.2016.12.26

ХАРАКТЕРИСТИКИ КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ КОБАЛЬТА ПОЛУЧЕННЫХ ПЛАЗМОХИМИЧЕСКОЙ ОБРАБОТКОЙ ВОДНЫХ РАСТВОРОВ

O. B. $CEP\Gamma EEBA^{1*}$, A. A. $\Pi UBOBAPOB^2$

- I Кафедра специализированных компьютерных систем, ГВУЗ Украинский химико-технологический университет, г. Днепропетровск, УКРАИНА
- ² Кафедра технологии неорганических веществ и экологии, ГВУЗ Украинский химико-технологический университет, г. Днепропетровск, УКРАИНА

АННОТАЦИЯ В данной работе рассмотрено получение высокодисперсных порошков кислородосодержащих соединений кобальта в водных средах. При использовании метода плазмохимической обработки раствора $Co(OH)_2$ получены осадки размерные характеристики которых лежат в диапазоне от 8 до 110 нм. Из них более чем 80% в диапазоне 10-50 нм. Более крупные частицы представлены в виде агломератов 0,5-5 мкм. Осадки представлены в виде бета-формы гидроксида кобальта (II), CoO, Co_3O_4 , что подтверждают данные рентгеноструктурного анализа. Доказана возможность управления процессом синтеза частиц путем корректировки его параметров.

Ключевые слова: контактная неравновесная плазма, раствор, наноразмерные частицы, кислородсодержащие соединения кобальта

CHARACTERISTICS OF OXYGENATED COBALT COMPOUNDS OBTAINED BY PLASMA CHEMICAL TREATMENT OF AQUEOUS SOLUTIONS

O. V. SERGEEVA1*, A. A. PIVOVAROV2

ABSTRACT. In this paper we consider obtaining superfine powders of oxygen-containing compounds of cobalt in aqueous media. The attractiveness of receipt of the cobalt oxide from aqueous solutions by plasma-chemical treatment is the ability for their preparation, with a minimum of processing steps. As a result of the contact of the non-equilibrium plasma of reduced pressure are transformed from cobalt hydroxide in a mixture of compounds of oxide-hydroxide type. When using by plasma treatment method of solution Co (OH)2 the precipitation dimensional characteristics of the precipitates are obtained which range from 8 to 110 nm. Of these, more than 80% in the range 10-50 nm. Larger particles are shown in the form of agglomerates 0,5-5 mm. The resulting precipitates were compounds which contain hydroxyl groups and water, which makes them promising in use as cathode materials in chemical current sources. X-ray analysis showed that the precipitates are shown in the form of beta-form of cobalt hydroxide (II), CoO, Co₃O₄, and subject to processing parameters and drying the precipitation composition can be easily reproduced. By varying the application and drying conditions can be obtained the precipitates with certain characteristics. Thus, we can manage the process of synthesis of particles by adjusting the process parameters of plasma-chemical processing. The constructive design allows it and along with the ability to use very dilute solutions is advantage of this method. All of the above points to the prospects for the development of these studies.

Keywords: nonequilibrium plasma, solution of water, nanosized particles, oxygen-containing compounds of cobalt

Введение

Интерес к микро- и наноразмерным частицам обусловлен, прежде всего, широким спектром возможностей их практического применения, в которых используются специфические свойства как так и модифицированных ими частиц, материалов. настоящее время наблюдается разработки активность области катодных материалов на основе оксидных соединений. Оксиды известны как катализаторы химических процессов. Оксидные соединения Со в настоящее время широко применяются в технике, производстве керамики и красителей. Из способов их получения известны гидротермальный синтез в

магнитном поле [1], электрохимический синтеза оксидных соединений из водных растворов [2, 3]

способов получения Среди микронаночастиц большие группы образуют методы химического [4], электрохимического [2, 3, 5], электроимпульсного [6] и плазмохимического [7, 8] синтеза, основанные на восстановлении ионов растворах, благоприятствующих последующей агрегации атомов и ионов с образованием наночастиц. Каждая из этих групп имеет свои достоинства и недостатки, но использование плазмоэлектрохимического метода (в частности метода с использованием обработки водных сред контактной низкотемпературной

© О. В. СЕРГЕЕВА, А. А. ПИВОВАРОВ, 2016

^{*}email: ov.sergeeva@mail.ru

¹ Department of inorganic matter technology and ecology, Ukrainian State University of Chemical Technology, Dnepropetrovsk, UKRAINE

² Department of specialized computer systems, Ukrainian State University of Chemical Technology, Dnepropetrovsk, UKRAINE

(ННТП) неравновесной плазмой пониженного давления) позволяет использовать преимущества Привлекательность каждой ИЗ групп [10]. плазмохимического получения использования оксидных соединений кобальта из водных растворов в возможности ИХ получения, минимальном количестве стадий обработки раствора и позволяющее исключить введение дополнительных лигандов [2, 3]. При этом возникает необходимость в дополнительных данных, характеризующих частицы, полученные вышеназванным способом.

Цель работы

кислородсодержащими соединениями кобальта подразумевают в первую очередь оксиды и гидроксиды кобальта (II, III): CoO, Co₃O₄, CoO(OH), 11]. В данном $Co(OH)_2$ [1, исследовании рассматривался процесс получения частиц, полученных при плазмохимической обработке Со(ОН)2 в дистиллированной воде. Целью данной работы являлось изучение процесса получения кислородсодержащими результате частиц В плазмохимической обработки жидкой среды определение их характеристик. Для достижения поставленной цели изучался процесс получения осадка, образующегося в жидкости, проводилась оценка получившегося осадка, а также определялся состав и размеры полученных частиц.

Результаты исследований процесса получения и характеристик осадка

Исследования проводились с помощью плазмохимического реактора с водяным охлаждением. Электроды располагались следующим образом: анод – в газовой фазе, катод – заглублен в жидкость. Расстояние от поверхности до анода составляло от 4 до 7 мм. В качестве реагентов использовались: дистиллированная вода, КОН, CoSO₄ · 7 H₂O.

B реактор помещался $Co(OH)_2$ в дистиллированной воде.

Получение $Co(OH)_2$ проводилось по реакции (1) при обычной температуре и при осаждении небольшим избытком раствора KOH.

$$2KOH + CoSO_4 \rightarrow Co(OH)_2 + K_2SO_4$$
 (1)

Далее с помощью центрифугирования отделялся $Co(OH)_2$ и промывался дистиллированной водой.

Обработке подвергали как свежий раствор синего цвета (α - форма), так и отстоявшийся – розового (β -форма) (рис.1).

Рис. 1 – Co(OH)2 в воде. Синий цвет (α-форма) Розовый (β-форма).

При обработке в реакторе в результате контактной неравновесной действия пониженного давления происходит превращение двухвалентного гидрооксида в смесь соединений оксидно-гидроксидного типа, что проявляется в изменении цвета от светлого к темно-коричневому. При добавлении небольшого количества перекиси водорода в раствор а- форма практически сразу переходит в β-форму, а при плазмохимической происходит появление обработке коричневого оттенка уже через 15 с обработки. Таким образом, гидроокись кобальта окисляется с изменением цвета окраски из розового в коричневый. Окисление ускоряется добавлением перекиси водорода.

При этом, как обычно, процесс начинается с катодного пятна на разделе границы фаз газ — жидкость. Без добавления перекисных соединений раствор последовательно меняет окраску с синей на зеленую с последующим переходом к темнокоричневой и черной. Данное изменение окраски изображено на рис. 2.

Рис. 2 – Изменение окраски при обработке жидкой фазы ННТП. Продолжительность обработки 1-90c; 2-120c; 3-150c; 4-180c; 5-210c; 6 – 240c; 7-300; 8-360; 9-900c.

Примерный механизм процесса можно описать в виде реакций (2 - 5):

$$Co(OH)_2 \rightarrow CoOOH + H+ (2)$$

$$3\text{CoOOH} \rightarrow \text{Co}_3\text{O}_4 + \text{OH}^- + \text{H}_2\text{O}$$
 (3)

$$Co_3O_4 \rightarrow 3CoO + O_2^-$$
 (4)

$$Co(OH)_2 + H_2O_2 \rightarrow CoOOH + H_2O + OH^- (5)$$

Полученный осадок, после окончания обработки отделяли от жидкости центрифугированием и затем сушили при комнатной температуре.

Осадки имели диапазон окраски от серозеленого до бурого и черного, в зависимости от времени обработки и введения добавок, что позволяет предположить наличие различных оксидных соединений кобальта (рис. 2). Например, Co₃O₄, CoO.

Рис. 3 - Внешний вид сухих осадков.

Наличие ОН-группы указывает на возможное присутствие гидроксидов. Это подтверждают результаты рентгеноструктурного анализа, выполненного на установке ДРОН-3, показавшие наличие бета-формы гидрооксида кобальта (II), СоО, Со₃О₄. На рис. 4 приведены характеристики одного из осадков, полученного после обработки Со(ОН)₂ в дистиллированной воде в течение 180с.

Количество оксидных соединении растет при увеличении продолжительности обработки.

Содержание кобальта в исследуемом осадке определяли рентгенофлуоресцентным анализом. Термогравиметрический анализ был выполнен на оборудовании "Дериватограф — C". Навеска составляла 40 мг, скорость нагрева 5 °C·мин $^{-1}$, общее количество воды и OH-групп оценивали, с помощью

термогравиметрических исследований исходя из потери веса в температурном интервале 20-600 °C.

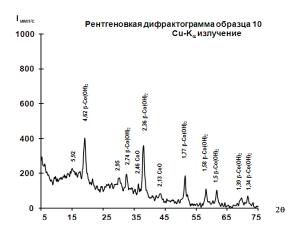


Рис. 4 – Рентгеновская дифрактограмма. Продолжительность обработки образца 180с.

Результаты анализа приведены в таблице. Показано, что исследуемые осадки являются соединениями, в которых содержится вода и гидроксильные группы, что делает их перспективными использовании В В качестве катодных материалов в химических источниках тока. Рентгеноструктурный анализ показал, что соблюдении параметров обработки и сушки состав осадков легко воспроизводится. Также очевидно, что полученные результаты близки к полученным авторами работ [2 - 3], но при этом не требуют введения в раствор лиганда NH₄F.

Таблица. Состав кислородсодержащих соединений кобальта в зависимости от условий его получения

Состав после сушки, % масс				Длительность обработки раст-	Добавки	Цвет раствора перед	Цвет осадка	
Co	О	OH-	H ₂ O	вора ННТП ,с		обработкой	До сушки	После сушки
72.1	16	3	8,8	300	H ₂ O ₂ , 3%- 15мл/л	синий (α-форма Co(OH) ₂)	темно- коричневый	темно- коричневый
71.9	17	5	6,1	900	H ₂ O ₂ , 3%- 15мл/л	- //-	черный	черный
67,2	17	6,8	9,0	180	-	розовый (β- форма Co(OH) ₂)	светло- коричневый	светло- коричневый
67,1	16	7,1	9,5	120	-	- //-	светло- коричневый	светло- коричневый
68,6	16	7,3	8,1	300	-	- //-	светло- коричневый	светло- коричневый
48,1	22,9	12	16	150	-	синий (α-форма Co(OH) ₂)	зеленый	серо-зеленый
47,2	26,8	12	14	100	-	- //-	зелено- коричневый	коричнево- серым
47,9	24,1	13	15	120	-	- //	зелено- коричневый	коричневый
48,4	26,6	12	12	240	-	- //-	коричневый	коричневый

Снимки частиц осадка, представлены на рис. 5

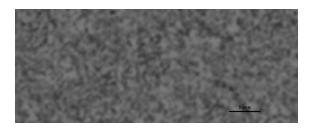


Рис. 5 - Частицы полученного осадка

Обсуждение результатов

Анализ результатов исследования литературных источников позволяют выделить как наиболее перспективный для получения обводненные соединения, в которых содержится вода и гидроксильные группы, а также CoO, Co₃O₄. При заданных давлении и силе тока процесса, в реакторе образуются частицы, представленные на рис. 2 - 6.

На рис. 6 представлены размерные характеристики частиц, полученные при обработке данных рентгеноструктурного анализа. Можно отметить, что более чем 80% частиц лежат в диапазоне 10 - 50 нм. Однако, учитывая снимки частиц (рис. 5) можно говорить о размерах частиц большей частью входящих в более крупные агломераты, размерность которых 0,5 - 5 мкм.

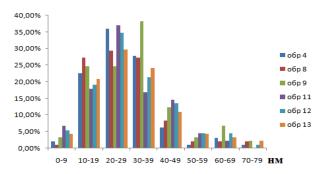


Рис. 6 – Размерные характеристики частиц, осадков, полученных при обработке раствора содержащего Со(OH)₂ контактной ННТП

Выводы

Плазмохимическим методом синтезированы обводненные соединения, в которых содержится вода и гидроксильные группы, а также CoO, Co₃O₄.

На основании проведенных исследований можно отметить, что величина полученных частиц осадка может изменяться в достаточно широких пределах. Варьируя параметры процесса плазмохимической обработки можно управлять получением каждого продукта. Изменяя условия сушки можно получать осадки с определенными характеристиками. Все вышеперечисленное указывает на перспективность данных исследований для

разработок, включающих В себя разработку тока Таким источников химических образом, возможно управление процессом синтеза частиц корректировки путем параметров процесса плазмохимической обработки, что благодаря его конструктивному оформлению вызывает затруднений и является преимуществом данного метола.

Список литературы

- Rahman, M. M. Hydrothermal synthesis of nanostructured Co₃O₄ materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery / M. M. Rahman, J. Wang, X. Deng, Y. Li, H. Liu // Electrochimica Acta. 2009. Vol. 55. № 2. P. 504-510. –doi:10.1016/j.electacta. 2009.08.068.
- 2. **Иванова, Н.** Д. Электрохимический синтез наноструктурных оксидов Сг, Мо, Со и их свойства / **Н.** Д. **Иванова, Е. И. Болдырев, О. А. Стадник** и др. // Доповіді НАН України. 2009. № 2. С. 131-134.
- 3. Стадник, О. А. Фотоэлектрохимические и электрокаталитические свойства нанодисперсных соединений на основе оксидов кобальта, синтезированных электрохимическим методом / О. А. Стадник, В. С. Воробец, Г. Я. Колбасов // Украинский химический журнал. 2008. т. 74, № 3. С. 61-63.
- 4. **Ершов, Б. Г.** Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства / **Б. Г. Ершов** // Российский химический журнал. 2001. Т. XLV, № 3. С. 20-30.
- Tronel, Fr. Study of the electro-oxidation of CoO and Co(OH)₂ at 90 °C in alkaline medium / Fr. Tronel, L. Guerlou-Demourgues, L. Goubault, P. Bernard, Cl. Delmas // Journal of Power Sources. 2008. Vol. 179. P.837-847. doi:10.1016/j.jpowsour.2008.01.005.
- Lee, W. M. Metal/Water chemical reaction coupled pulsed electrical discharge / W. M. Lee // Journal of Applied Physics. – 1991. – Vol. 69, № 10. – P. 6945-6951. – doi:10.1063/1.348931.
- 7. **Рутберг, Ф.** Г. Исследование физико-химических свойств наночастиц, полученных с помощью импульсных электрических разрядов в воде / **Ф.** Г. **Рутберг, В. В. Гусаров, В. А. Коликов** и др. // Журнал технической физики. 2012. Т. 82, № 12. С. 33-36.
- 8. **Лепешев, А. А.** Плазмохимический синтез нанодисперсных порошков и полимерных нанокомпозитов / **А. А. Лепешев**, **А. В. Ушаков**, **И. В. Карпов** // Красноярск: Сибирский федеральний університет. 2012. 328 с.
- Samukawa, S. The 2012 Plasma Roadmap / S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen // Journal of Physics D: Applied Physics. – 2012. – Vol. 45, № 25. – P. 253001. – doi:10.1088/0022-3727/45/25/253001.
- 10. **Сергеева, О. В.** Получение микро- и наноразмерных соединений меди путем плазмохимической обработки растворов / **О. В. Сергеева** // *Технологический аудит и резервы производства.* 2014. № 5/3 (19). С. 19-22. doi:10.15587/2312-8372.2014.27943.
- 11. Tang, C. W. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS / C. W. Tang, C. B.

Wang, S. H. Chien // Thermochimica Acta. - 2008. - Vol. 473. - P. 68 - 73. - doi:10.1016/j.tca.2008.04.015

Bibliography (transliterated)

- Rahman, M. M., Wang, J., Deng, X., Li, Y., Liu, H. (2009). Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. *Electrochimica Acta*, 2009, 55(2), 504-510, doi:10.1016/j.electacta.2009.08.068.
- Ivanova, N. D., Boldyrev, E.I., Stadnik, O. A. Elektrokhimicheskiy sintez nano-strukturnykh oksidov Cr, Mo, Co i ikh svoystva [Electrochemical synthesis of nanostructured oxides of Cr, Mo, Co and their properties]. Dopovidi NAN Ukraïni [Extras. National Academy of Sciences of Ukraine], 2009, 2, 131-134.
- 3. **Stadnik, O. A., Vorobets, V. S., Kolbasov, G. Y.** Fotoelektrokhimicheskie i elektrokataliticheskie svoystva nanodispersnykh soedineniy na osnove oksidov kobal'ta, sintezirovannykh elektrokhimicheskim metodom [Photoelectrochemical and electrocatalytic properties of nano-dispersed compounds based on cobalt oxide synthesized by electrochemical method]. *Ukrainskiy khimicheskiy zhurnal [Ukr. Chem]*. 2008, **74**(3), 61-63.
- Ershov, B. G. Nanochastitsy metallov v vodnyh rastvorah: elektronnye, opticheskie i kataliticheskie svoistva. *Rossiiskii himicheskii zhurnal*, XLV, 2001, 3, 20-30.
- Tronel, Fr., Guerlou-Demourgues, L., Goubault, L., Bernard P., Delmas, Cl. Study of the electro-oxidation of CoO and Co(OH)2 at 90 °C in alkaline medium. *Journal of*

- *Power Sources.* 2008, **179**, 837-847, doi:10.1016/j.jpowsour.2008.01.005.
- Lee, W. M. Metal/Water chemical reaction coupled pulsed electrical discharge. *Journal of Applied Physics*, 1991, 69(10), 6945-6951, doi:10.1063/1.348931.
- 7. **Rutberg, F. G., Gusarov, V. V., Kolikov, V. A.** et al. Issledovanie fiziko-himicheskih svoistv nanochastits, poluchennyh s pomoshch'iu impul'snyh elektricheskih razriadov v vode [Study of physico-chemical properties of the nanoparticles produced by pulsed electrical discharge in water]. *Zhurnal tehnicheskoi fiziki [Technical Physics]*, 2012, **82**(12), 33-36.
- 8. **Lepeshev, A. A., Ushakov, A. V., Karpov, I. V.** Plazmohimicheskii sintez nanodispersnyh poroshkov i polimernyh nanokompozitov [Plasma chemical synthesis of nanopowders and polymer nanocomposites]. *Krasnoyarsk: Sibirskiy federal'niy universitet*, 2012, 328 p.
- Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G. et al. (2012, June 7). The 2012 Plasma Roadmap. *Journal of Physics D: Applied Physics*, 2012, 45(25), 253001, doi:10.1088/0022-3727/45/25/253001.
- Sergeyeva, O. V. Obtaining of micro- and nanoscale copper compounds by plasma-chemical treatment of solutions. *Technology Audit And Production Reserves*, 2014, 5(3(19)), 19-22, doi:10.15587/2312-8372.2014.27943.
- Tang, C. W., Wang, C. B., Chien, S. H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. *Thermochimica Acta*. 2008, 473, 68 73, doi:10.1016/j.tca.2008.04.015.

Сведения об авторах (About authors)

Сергеева Ольга Вячеславовна – кандидат технических наук, доцент, Украинский государственный химикотехнологический университет, доцент кафедры специализированных компьютерных систем, г. Днепропетровск, Украина; e-mail: ov.sergeeva@mail.ru

Sergeyeva Olga – Candidate of Technical Sciences (Ph. D.), Docent, Associate Professor, Affiliation, Department of specialized computer systems, Ukrainian State University of Chemical Technology, Dnepropetrovsk, Ukraine, ov.sergeeva@mail.ru

Пивоваров Александр Андреевич – доктор технических наук, профессор, Украинский государственный химикотехнологический университет, кафедра технологии неорганических веществ и экологии, г. Днепропетровск, Украина; e-mail: apivo@ua.fm

Pivovarov Alexander – Doctor of Technical Sciences, Professor, Department of inorganic matter technology and ecology, Ukrainian State University of Chemical Technology, Dnepropetrovsk, Ukraine; e-mail: apivo@ua.fm.

Пожалуйста ссылайтесь на эту статью следующим образом:

Сергеева, О. В. Характеристики кислородсодержащих соединений кобальта полученных плазмохимической обработкой водных растворов / О. В. Сергеева, А. А. Пивоваров // Вестник НТУ «ХПИ», Серия: Новые решения в современных технологиях. — Харьков: НТУ «ХПИ». — 2016. — № 12 (1184). — С. 176-180. — doi:10.20998/2413-4295.2016.12.26.

Please cite this article as:

Sergeyeva, O., Pivovarov, A. Characteristics of oxygenated cobalt compounds obtained by plasma chemical treatment of aqueous solutions. *Bulletin of NTU "KhPI". Series: New solutions in modern technologies.* – Kharkiv: NTU "KhPI", 2016, **12** (1184), 176-180, doi:10.20998/2413-4295.2016.12.26.

Будь ласка посилайтесь на цю статтю наступним чином:

Сергєєва О. В. Характеристики кисень вмисних з'єднань кобальту які отримано плазмохімічною обробкою водних розчинив / **О. В. Сергєєва, О. А. Півоваров** // *Вісник НТУ «ХПІ», Серія: Нові рішення в сучасних технологіях.* — Харків: НТУ «ХПІ». — 2016. — № 12 (1184). — С. 176-180. — doi:10.20998/2413-4295.2016.12.26.

АНОТАЦІЯ У даній роботі розглянуто отримання високодисперсних порошків кисеньвмисних з'єднань кобальту в водних середовищах. При використанні методу плазмохімічної обробки розчину Со(ОН)2 отримані осади розмірні характеристики яких лежать в межах від 8 до 110 нм. З них більш ніж 80% в межах 10-50 нм. Більші частинки представлені у вигляді агломератів 0,5-5 мкм. Осади представлено у вигляді бета-форми гідроксиду кобальту (ІІ), СоО, СозО4, що підтверджують результати рентгеноструктурного аналізу. Доведена можливість керування процесом синтезу частинок шляхом коригування його параметрів.

Ключові слова: контактна нерівноважна плазма, розчин, нанорозмірні частинки, кисеньвмисні з'єднання кобальту

Надійшла (received) 15.03.2016