Колотило В.И., Касторный П.М.

Национальный технический университет «Харьковский политехнический институт»

Хоменко В.И., Сивоконь Л.Н.

ГП «Харьковский приборостроительный завод» им. Т.Г. Шевченко

ИЗ ОПЫТА ВНЕДРЕНИЯ ЭНЕРГОРЕСУРСОСБЕРЕГАЮЩЕГО ЭЛЕКТРОПРИВОДА

Кафедрой «Автоматизированные электромеханические системы» НТУ «ХПИ» с совместно с харьковским приборостроительным заводом им. Т.Г. Шевченко в 2008 г. была внедрена в серийное производство разработка преобразователей частоты типа ПЧРТ мощностью до 22 кВт, для использование его в качестве регулируемого энергоресурсосберегающего электропривода механизмов общепромышленного назначении в различных отраслях промышленности, коммунального и сельского хозяйства.

Внешний вид ПЧРТ-03

Данные электропривода с ПЧРТ прошли сертификационные испытания в специализированной лаборатории, а также опытно-промышленную эксплуатацию на объектах жилищно-коммунального хозяйства городов Харькова и Киева.

Данные электропривода с ПЧРТ предназначены для управления трехфазными асинхронными электродвигателями класса напряжения 0,4 кВ, мощностью от 0,25 до 22 кВт. Выполнены они на базе автономного инвертора напряжения с использованием в качестве силовых ключей современных силовых приборов (ІСВТ-транзисторы) и микропроцессорного управления с применением высокопроизводительных микроконтроллеров фирмы ATMEL.

Электропривод с ПЧРТ обеспечивает

- Плавный пуск и разгон электродвигателя до установленной скорости с заданным темпом;
- интенсивное торможение двигателя с заданным темпом;
- работа с установившейся частотой вращения при изменении момента сопротивления от нуля до номинального;
- автоматическое повторное включение преобразователя при исчезновении напряжения питающей сети с регулируемой задержкой 1...99 с;
- реверс;
- пропорционально-интегральное регулирование технологического параметра;

- параметрическое управление выходным напряжением преобразователя в функции частоты;
- ограничения тока на заданном уровне;
- дистанционное управление:
 - от выносного пульта управления (до 1200 м);
 - от внешней АСУ или ПК по интерфейсу RS485 или RS232;
 - от внешнего АСУ аналоговыми и дискретными сигналами.
- поддержка стандартного протокола Modbus;
- диагностика технического состояния и режимов работы ПЧ, регистрация аварийных режимов.

Возможны следующие режимы работы:

- разомкнутый (ручное управление);
- замкнутый (автоматическое управление технологического параметра);
- разомкнутый многоскоростной с 4-мя фиксированными частотами.

По результатам опытно-промышленной эксплуатации составлены соответствующие акты, из которых следует:

На насосной станции по ул. Октябрьской революции, 170, октябрьского филиала коммунального предприятия «Харьковские тепловые сети» были проведены замеры расхода электроэнергии которыми установлено, что суммарное потребление электроэнергии за период с 20.12.07 г. по 15.01.08 г. с ПЧРТ составило 974 кВт/ч. Для сравнения взят аналогичный промежуток времени в период с 22.11.07 г. по 18.12.07 г., когда потребление составило 3496 кВт/ч без ПЧРТ.

Таким образом, экономия электроэнергии за 26 суток составляет 252.2 кВт/ч. Среднесуточная экономия — 97,0 кВт/ч. Срок окупаемости ПЧРТ ~ 6 месяцев. Помимо этого установка частотного преобразователя на насос полачи волы:

- стабилизирует давление воды у потребителя на заданном уровне с точностью $\pm 5\%$;
- продлевает срок службы оборудования насосной станции за счет более низкой скорости вращения (от 20 до 38 Гц).

Проведение опытной эксплуатации преобразователя частоты ПЧРТ-03-22 на насосной станции г. Киев, ул. Верховинца 10 за период с 18.04.08 по 7.05.08 показало:

- показания счетчика реактивной электроэнергии с момента ввода в эксплуатацию ПЧРТ не изменились;
- исключает гидроудары в системе;
- поддерживает давление в системе с высокой точностью при изменении входного давления и расхода;
- продлевает срок службы оборудования насосной станции и потребителей;

Проведение опытной эксплуатации электроприводов с ПЧРТ-03-22 на насосной станции п.г.т. Солоницевка:

Суммарное потребление электроэнергии за период с 24.03.08 по 04.04.08 с ПЧРТ составило 2496 кВт/ч. Для сравнения взят аналогичный промежуток времени в период с 04.02.08 по 15.02.08, где потребление составило 3720 кВт·ч.

Таким образом экономия электроэнергии составляет 1224 кВт*ч, среднесуточная экономия – 102 кВт/ч

Помимо прямой экономим установка частотного преобразователя на насос подачи воды:

- стабилизирует давление воды у потребителя на заданном уровне с точностью $\pm 5\%$;
- продлевает срок службы оборудования насосной станции за счет более низкой скорости вращения насосного агрегата (от 15 Гц до 38 Гц);
 - отсутствуют гидроудары в системе;
 - исключаются ручные операции с задвижками.

Таким образом, по результатам испытаний можно сделать вывод что срок окупаемости данного преобразователя составит не более 6-8 ми месяцев.

Серийное производство, освоенное государственным предприятием им. Т.Г.«Шевченко» с применением современных технологий производства печатных плат, монтажа и проверки позволяет выпускать данную продукцию завода в порядке 10000 шт. в год.

При этом производство ПЧРТ не несет вредного воздействия на экологию. Помимо этого внедрение их как энергоресурсосберегающих электроприводов обеспечит экономию электроэнергии 30-80% на турбо механизмах потребляющих до 25% всей вырабатываемой электроэнергии. Снижение нагрузки на ТЭЦ за счет экономии электроэнергии приведет к снижению вредных выбросов в окружающую среду на 8-10%.