Запорожский национальный технический университет

ОБУЧЕНИЕ НА РЕККУРЕНТНОЙ НЕЙРОННОЙ СЕТИ МОДЕЛИ СЕРИЕСНОГО ДВИГАТЕЛЯ И ИДЕНТИФИКАЦИЯ ЕГО ВНУТРЕННИХ ПАРАМЕТРОВ

Введение. Наличие в современных электроприводах (ЭП) мощных вычислительных ресурсов дает возможность применить интеллектуальные системы для получения математических моделей ЭП с объектом и оптимальной настройки регуляторов. Поиск градиентными или генетическими алгоритмами оптимальных параметров регуляторов требует сотни и тысячи повторных запусков объекта, что приводит к необходимости получения математической и имитационной моделей ЭП и механизма в реальном времени. Основным элементом тягового ЭП является сериесный двигатель постоянного тока (ДПТПВ), идентификация нелинейных параметров которого в реальном времени, является актуальной и сложной задачей. В работах [1, 2, 3], разработана методика получения моделей нелинейных электромеханических объектов на полиномиальных рекуррентных нейронных сетях (ПРНС), однако отсутствует идентификация с высокой точностью их внутренних нелинейных параметров из полученных моделей на ПРНС.

Цель статьи. Исследовать возможность идентификации нелинейных параметров ДПТПВ из его обученных моделей на ПРНС.

Постановка задачи исследования. Процессы в ДПТПВ с нелинейной зависимостью момента сопротивле-

$$L(I)\frac{dI}{dt} + I \cdot R_d = U - c\Phi(I) \cdot \omega,$$

$$J\frac{d\omega}{dt} = c\Phi(I) \cdot I - M_C(\omega),$$

$$\dot{x} = Ax + Bu$$

$$(2)$$

$$A - \left[-R_d L^{-1}(I) - L^{-1}(I)c\Phi(I) \right]$$

$$A = \begin{bmatrix} A_d D^{-1}(I) & D^{-1}(I) \nabla \Psi(I) \\ J^{-1} c \Phi(I) & 0 \end{bmatrix}$$
(3)

$$B = \begin{bmatrix} L^{-1}(I) & 0 \\ 0 & -J^{-1}M_C(\omega) \end{bmatrix}$$
(4)
 $\dot{x} = CY$ (5)

ния от скорости описываются системой нелинейных уравнений (1) [3]: где R_d - эквивалентное активное сопротивление цепи постоянного тока; L(I) - эквивалентная индуктивность цепи постоянного тока, зависящая от тока якоря двигателя; $c\Phi(I)$ - произведение конструктивной постоянной "с" двигателя на значение магнитного потока Φ , зависящего от тока якоря; J - суммарный момент инерции на валу; $M_C(\omega)$ момент сопротивления, зависящий от скорости двигателя ω .

Для данного объекта вектором состояния является: $x = [I, \omega]^T$; вектором входных сигналов – $u = [U_A, 1]^T$. Второй элемент вектора *и* взят равный единице для обеспечения общности выражений при описании момента сопротивления в виде нелинейного коэффициента $M_C(\omega)$.

С учётом сделанных обозначений система (1) может быть представлена в матричном виде системой (2), где матрицы нелинейных коэффициентов *A* и *B* имеют вид (3) и (4).

Для получения общих выражений расчёта и обучения весовых коэффициентов ПРНС (с использованием которых формируются полиномы имеющихся в объекте нелинейностей) запишем систему уравнений (2) в виде

(5), где $Y = [x_1, x_2, u_1, u_2]^T = [y_1, y_2, y_3, y_4]^T$ – вектор, объединяющий векторы состояния объекта и входных сигналов. Матрица *C* объединяет матрицы *A* и *B*.

Структурная схема модели ДПТПВ на ПРНС с использованием полиномиальных блоков [3] дана на рис.1. Полиномиальные блоки POL формируют произведения (с единичными коэффициентами) полиномиальных членов степени r от сигналов поступающих на входы " г ", на сигнал, поступающий на вход "(1)". Выходы блоков РОL обозначим векторами h_{ij} с такими же индексами, как у элементов векторов весовых коэффициентов w_{ii} и элементов c_{ii} матрицы C. При аппроксимации нелинейностей полиномами второго порядка вектора h_1 и h_2 , для первого и второго нейронов, соответственно, определяются уравнениями (6) и (7). С учётом приведенных выше обозначений систему уравнений (2) можно представить в виде (8) или более компактно в виде (9). Весовые коэффициенты ПРНС, исходя из уравнения (5) (по аналогии с рассуждениями в работах [1, 2, 3] для дискретной системы с тактом счёта Т могут быть вычислены из математической модели ДПТПВ по формуле (10), где $w_{ii} = Pol_r(Tc_{ii});$ Pol_r() – функция, определяющая вектор коэффициентов полинома степени r для выражения, находящегося в скобках.

Нейронные сети, фаззи-логика и генетические алгоритмы в электромеханике

$$h_{1n} = [I_{n-1}, I_{n-1}I_{n-1}, I_{n-1}I_{n-1}^{2}, \omega_{n-1}, \omega_{n-1}I_{n-1}, \omega_{n-1}I_{n-1}, \omega_{n-1}I_{n-1}, \omega_{n-1}I_{n-1}^{2}, U_{n}, U_{n}I_{n-1}, U_{n}I_{n-1}^{2}]^{T}.$$
(6)

$$h_{2n} = [I_{n-1}, I_{n-1}I_{n-1}, I_{n-1}I_{n-1}^2, 1, \omega_{n-1}, \omega_{n-1}^2]^T, \qquad (7)$$

$$x_{in} = x_{in-1} + w_{i1}h_{i1n} + w_{i2}h_{i2n} + \dots + w_{iK}h_{iKn}, \ i = 1, 2,$$
(8)

$$w_i h_{in} = \Delta x_{in}, \quad i = 1, 2$$
, (9)

$$W = \begin{bmatrix} w_{11} & w_{12} & w_{13} & 0 \\ w_{21} & 0 & 0 & w_{24} \end{bmatrix} = Pol_r(TC).$$
(10)

Обучение ПРНС выполняться отдельно для каждого нейрона с использованием алгоритмов пакетного обучения одиночного нейрона [4], так как известны вектора h_i и вектор состояния в каждом такте счёта. Цель процесса обучения – минимизация суммарных среднеквадратичных ошибок E_i (i – номер нейрона) между элементами вектора состояния объекта и выходными сигналами ПРНС (уравнения (11) и (12)) при одинаковой последовательности входных сигналов, где e_{in} – ошибка выхода i -го нейрона в n ом такте счёта; N_V – объём обучающей выборки;

 $\Delta g_{in} = g_{in} - g_{in-1}$ – разность в *n*-ом такте между текущим g_{in} и предыдущим g_{in-1} значениями *i*-го элемента выходного вектора ПРНС.

 $E_{i} = \frac{1}{2} \sum_{n=1}^{N_{v}} e_{in}^{2}$ (11) Коррекция весовых коэффициентов *i* -го нейрона ПРНС (вектор *w_i*) производится на основе градиентного метода обучения, согласно уравнениям (13) – (15), где *h_{ikn}* – значения *k* -го элемента вектора *h_i* для данных *n* -ого такта Δw_{ikn} – приращение веса *k* -го элемента вектора *w_i* для $\Delta w_{ikn} = -\sum_{n=1}^{\infty} \eta \partial E_{i_n} / \partial w_{ikn}$ (14) Весовые коэффициенты модели на ПРНС могут быть вычислены, со-

(14) Весовые коэффициенты модели на ПРНС могут быть вычислены, согласно уравнениям (10), из известной математической модели по уравнениям системы (16): Если найдены весовые коэффициенты ПРНС методом расчёта или обучения из данных режима работы двигателя, то из них могут быть идентифицированы $M_c(\omega)$ и L(I), согласно уравнениям (17)-(18). Произведение $c\Phi$ коэффициента "с" на магнитный поток может быть вычислено делением полинома из второго уравнения системы (16) на полином из третьего уравнения. Сопротивление R_d находится делением полиномов первого уравнения системы (16) на полином третьего уравнения. Суммарный момент инерции на валу ДПТПВ находится делением полинома $c\Phi$ на полином $w_{2,1}$.

Результаты измерений и моделирования. Обучение модели на ПРНС и идентификация нелинейных пара-

$$M_{c0} = -T^{-1} \cdot w_{1,4,0}, \quad M_{c1} = -T^{-1} \cdot w_{1,4,1}, \dots, \quad M_{cr} = -T^{-1} \cdot w_{1,4,r}, \quad (17)$$
$$L^{-1}_{0} = T^{-1} \cdot w_{1,3,0}, \quad L^{-1}_{1} = T^{-1} \cdot w_{1,3,1}, \dots, \quad L^{-1}_{r} = T^{-1} \cdot w_{1,3,r}, \quad (18)$$

метров выполнялось для математической модели ДПТПВ типа МП-62, имеющего следующие параметры: $U_{H} = 220 B$; $I_{H} = 260 A$; $\omega_{H} = 53,4 \text{ c}^{-1}$; c = 78,5; номинальное значение магнит-

ного потока $\Phi_{\mu} = 0,048$ Вб; момент инерции приведенный к валу двигателя $J_{\mathcal{A}} = 1,36$ кг·м². Измерялись: напряжение, подаваемое на двигатель, ток и скорость двигателя. Моделирование выполнялось с шагом T = 0,0001 с. Приращение Δx_{in} вычислялось, как среднее значение на предыдущем и последующем шагах.

Таблица 1.									
	Значения весовых коэфф.×10 ⁻⁶								
<i>w</i> ₁₁	-349,8	4,914	-0,0292						
w ₁₂	-442,47	-32,15	-0,4156						
w ₁₃	2369,7	-8,507	0,158						
w ₂₁	-28, 71	2,826	-0,0076						
w ₂₄	194,44	-1,475	0,0197						

 $w_{ikn} = w_{ikm-1} + \Delta w_{ikn}$

 $w_{11} = TPol(-R_d L^{-1}(I))$,

 $w_{1,3} = TPol(L^{-1}(I))$,

 $w_{2,1} = TPol(J^{-1}c\Phi(I)) ,$

 $w_{2.4}=TPol(-J^{-1}M_C(\omega))\;.$

 $w_{1,2} = TPol(-L^{-1}(I)c\Phi(I))$

Обучение выполнялось в течение одной – двух эпох для данных первых трёх секунд после подачи напряжения на двигатель. Значения весовых коэффициентов ПРНС второй степени представлены в табл. 1. Каждый из векторов *w*₁₁, *w*₁₂, *w*₁₃,

*w*₂₁, *w*₂₄ состоит из трёх весовых коэффициентов.

На рис. 2, а показан фрагмент напряжения на ДПТПВ, на рис. 2, б зависимость $M_C(\omega)$, на рис. 2, в и рис. 2, г – соответственно, даны сигналы отработки тока и скорости модели ДПТПВ (сплошной линией) и обученной ПРНС (штриховой линией).

После обучения ПРНС одни нелинейные коэффициенты матриц *А* и *В* идентифицируются с высокой точностью, для других имеются ошибки. Не точная идентификация происходит для коэффициентов, у

которых имеется нелинейность от значений выхода этого же нейрона. Так в первом нейроне этим коэффициентом является $R_d L^{-1}(I)$, во втором нейроне – $M_c(\omega)$.

На рис. 3 показаны заданные значения нелинейных коэффициентов ДПТПВ и значения, идентифицируемые полиномами, построенными из весовых коэффициентов ПРНС. Идентифицируемое значение момента инерции составляло 1,4 кгм² заданное 1,36 кгм².

Для сравнения точности модели на ПРНС и результатов идентификации нелинейных коэффициентов из внутренних параметров в табл. 2 приведены значения максимальных ошибок отработки координат и идентификации.

Таблица 2.										
Максимальные ошибки в %										
Ι	ω	A_{12}	A ₂₁	B_{II}	$c \mathbf{\Phi}(I)$	J	L(I)			
3	5	5	10	7	3	3	7			

Выводы 1. Выполнено обучение модели ДПТПВ на ПРНС и идентификация внутренних нелинейных параметров двигателя. Установлено, что в уравнении для \dot{x}_i предложенным методом не удаётся идентифицировать нелинейные коэффициенты, у которых имеется нелинейность от переменной x_i .

2. Проверка моделей на ПРНС на данных, используемых для обучения, показала высокую точность моделей (максимальная относительная ошибка по току и скорости не превышала 5%). Ошибки идентификации L(I), $c\Phi(I)$ и J не превышают 7%.

ЛИТЕРАТУРА

1. Орловский И.А. Расчёт моделей нелинейных электромеханических объектов на полиномиальных рекуррентных нейронных сетях из их известных математических моделей / И.А. Орловский // Технічна електродинаміка. – 2009. – №1. – С. 20–31.

2. Орловский И.А., Расчёт и обучение моделей нелинейных электромеханических объектов на полиномиальных рекуррентных нейронных сетях / И.А. Орловский, А.А. Синявский. // Искусственный интеллект. – 2008. – №3. – С. 579–590.

3. Орловский И.А.. Разработка моделей на нейронных сетях сериесного двигателя постоянного тока по экспериментальным данным / И.А. Орловский, И.В. Блохин, А.С. Смирнов //Вісник Кременчуцького політехнічного університету. – Кременчук. – 2010. – Вип.3 (62), част. 1. – С. 153-156.

4. .Бодянский Е..В. Искусственные нейронные сети: архитектуры, обучение, применения / Е.В. Бодянский, О.Г. Руденко //– Харьков, ТЕЛЕТЕХ, 2004. – 372 с.