Корпорация «ХЭЗ-Элетекс-С»

РАСЧЕТ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОПРИВОДОВ ПО СХЕМЕ АСИНХРОННО-ТИРИСТОРНОГО КАСКАДА (АТК)

1. Введение. Электроприводы АТК (АВК), выпускаемые корпорацией «ХЭЗ-Элетекс-С», успешно эксплуатируются на предприятиях горнодобывающей промышленности (шахты, ГОКи), обеспечивая экономию электроэнергии, улучшение технологического процесса и увеличение межремонтного периода эксплуатации оборудования.

В современных экономических условиях внедрению оборудования должен предшествовать расчет экономической эффективности и срока окупаемости затрат на приобретение оборудования и его внедрение. В статье приводятся соотношения, достаточные для расчета энергетических характеристик рассматриваемого типа электропривода в сопоставлении с традиционными методами управления режимами работы механизмов.

2. Схема АТК (рис.1).

Базовыми исходными данными для расчета процессов являются приведенные в таблице 1 паспортные данные асинхронного двигателя с фазным ротором.

3. Параметры двигателя.

Ниже переменные режима работы двигателя выражаются в относительных единицах (o.e.). Базовые значения следующие:

$$\begin{split} U_{\delta_{1}} &= \frac{U_{1_{H}}}{\sqrt{3}}, \qquad I_{\delta_{1}} = I_{1_{H}}, \\ Z_{\delta_{1}} &= \frac{U_{\delta_{1}}}{I_{\delta_{1}}}, \qquad \omega_{\delta} = 2\pi f_{H}, \\ P_{\delta(\kappa Bm)_{1}} &= 3U_{\delta}I_{\delta}(U_{\delta} \ \mathbf{B} \ \mathbf{\kappa} \mathbf{B}) \end{split}$$

Параметры двигателя (индуктивные и активные сопротивления) также выражаются в о.е. В расчетах используются переменные и параметры ротора, приведенного к статору. Формулы для расчета параметров двигателя по каталожным данным приведены в таблице 2.

Рисунок 1

No	Обозна-	Размер-	Подснение	
J 12	чение	ность	Пояснение	
1	P _H	кВт	Номинальная мощность на валу	
2	U _{1н}	В (кВ)	Номинальное напряжение статора	
3	I _{1H}	а	Номинальный ток статора	
4	$cos\phi_{\rm H}$		Номинальный соѕф статора	
	η _н		Номинальный к.п.д. двигателя, в	
5			диапазоне 1,2> (P/P_{H}) >0,2,	
			к.п.д. близок (принимаем равным) _{¶н}	
6	U _{2н}	В (кВ)	Табличное значение напряжения ротора	
7	I _{2н}	а	Номинальный ток ротора	
0	m _{max}		Отношение максимального момента	
0			двигателя к номинальному	
0	$n_{\rm H}(S_{\rm H})$	об/мин	Номинальная скорость (скольжение)	
9			двигателя	

Та	Таблица 2			
N⁰	Обозначение Формула		Пояснение	
1	<i>X</i> ₁ '	$X_{1}' = A - \sqrt{A^{2} - \frac{1}{1 + m_{\max} \sin 2\varphi_{H}}}$ $A = \frac{m_{\max} \cos \varphi_{H} + \sin \varphi_{H}}{1 + m_{\max} \sin 2\varphi_{H}}$	X ₁ ' – индуктивное сопротивление идеального короткого замыкания (S=∞) S – скольжение	
2	X_1	$X_{1} = \frac{1 - \sin \varphi_{H} X_{1}'}{\sin \varphi_{H} - X_{1}'}$	Индуктивное сопротивление идеального холостого хода (S=0)	
3	X_0	$X_0 = \sqrt{X_1(X_1 - X_1')}$	Индуктивное сопротивление взаимоиндукции статора и ротора	
4	<i>U</i> ₂ (<i>o.e.</i>)	$U_2 = X_0 / X_1$	Табличное напряжение ротора, приведенного к статору, в о.е.	
5	I _{2н} (о.е.)	$I_{2\mu} = \frac{X_1}{X_0} \sqrt{\cos \varphi_{\mu}^2 + \left(\sin \varphi_{\mu} - \frac{1}{X_1}\right)^2}$	Номинальный ток ротора, приведенного к статору, в о.е.	
6	<i>Ф</i> _{2н}	$\varphi_{2\mu} = \operatorname{arctg} \frac{\sin \varphi_{\mu} - \frac{1}{X_1}}{\cos \varphi_{\mu}}$	φ_2 - угол сдвига вектора приведенного тока ротора относительно вектора $-\overline{U_1}$	

Расчетные соотношения получены для идеализированного двигателя, параметры которого не зависят от режима работы, и потери в котором равны нулю. К.п.д. двигателя будет учитываться в итоговых энергетических соотношениях.

4. Расчет активной и реактивной мощности асинхронного двигателя.

Традиционным способом регулирования скорости двигателя с фазным ротором является включение активного сопротивления в роторную цепь двигателя. Формулы для расчета активной и реактивной мощностей двигателя приведены в таблице 3. Исходным параметром является момент на валу двигателя М (кГм).

	1		Таолица 3
N⁰	Обозначение	Формула	Пояснение
1	т	$M = M / M_{\scriptscriptstyle H}$	Отношение момента на валу к номинальному моменту двигателя
2	$\sin 2\varphi_2$	$\sin 2\varphi_2 = \frac{m}{m_{\max}}$	Угол φ_2 см. таблицу 2
3	<i>I</i> _{1<i>a</i>_{0.e.}}	$I_{1a} = \frac{X_1 - X_1'}{2X_1 X_1'} \frac{m}{m_{\text{max}}}$	Активный ток статора без учета η двиг.
4	<i>I</i> _{1<i>p</i>_{0.e.}}	$I_{1p} = \frac{1}{X_1} + \frac{X_1 - X_1'}{2X_1 X_1'} (1 - \cos 2\varphi_2)$	Реактивный ток статора
5	$P_{a(\kappa Bm)}$	$P_a = P_{\delta} \frac{I_{1a}(o.e.)}{\eta_{\partial 6.}}$	Активная мощность, потребляемая из сети, $\eta_{\text{двиг.}}$ учитывает потери в двигателе
6	$Q(\kappa Ba)$	$Q = P_{\delta} \cdot I_{1p}(o.e.)$	Реактивная мощность, потребляемая из сети

5. Формулы для расчета энергетических характеристик электропривода АТК.

Для расчета процессов в роторной цепи принимается, что статор и ротор двигателя симметричны.

$$X_{2o.e.} = X_{1o.e.}, X'_{2o.e.} = X'_{1o.e.}$$

Расчетная схема замещения цепи ротора, приведенного к статору, показана на рис.2. К.п.д. двигателя $\eta_{\text{двиг.}}$ в выражении \overline{U} эмпирически учитывает влияние потерь в двигателе на электромагнитные процессы в роторе.

Рисунок 2

На схеме различаем роторный и сетевой преобразователи. Напряжение высоковольтной обмотки сетевого согласующего трансформатора равно $U_{1mp} = 1o.e.$, низковольтной с учетом приведения ротора двигателя к статору равно

$$U_{2mp} = (X_0 / X_1) \cdot K_T o.e.$$

где К_т соотношение между напряжениями вторичной обмотки трансформатора и табличным значением напряжения ротора.

Расчет процессов выполняется для заданного момента на валу двигателя *m*_{о.е.} (таблица 3).

В таблице 4 приведены расчетные соотношения для токов каскада (все величины в относительных единицах). Итоговые данные, характеризующие энергетику АТК, приведены в таблице 5.

Сопоставление результатов цифрового моделирования электропривода АТК с результатами предлагаемого аналитическог метода показало высшую точность аналитического метода.

Расчеты и результаты промышленного внедрения электроприводов АТК дают следующие результаты:

– энергопотребление при исользовании АТК в электроприводе шахтных подъемных машин снижается в среднем на 30%, а для вентиляторов главного проветривания шахт от 25% до 55%,

– электроприводы АТК поставки Корпорации «ХЭЗ-Элетекс-С» наряду с экономией электроэнергии обеспечивают полную автоматизацию технологического процесса, компьютерную визуализацию работы всего комплекса оборудования, диагностику неисправностей и архивирование данных.

			Таблица 4
№	Обозна- чение	Формула	Пояснение
1	<i>I</i> _{2<i>a</i>_{0.<i>e</i>.}}	$I_{2a} = I_{2\mu} \cos \varphi_{2\mu} \cdot m$	Активный ток ротора, приведенного к статору, соs ϕ_{2H} – см. табл.2
2	I _{20.e.}	$I_{2} = \frac{3\cos\alpha_{p}}{\pi X_{1}'} - \sqrt{\left(\frac{3\cos\alpha_{p}}{\pi X_{1}'}\right)^{2} - \frac{6}{\pi X_{1}'}I_{2a}}$	Полный ток ротора, α_p – угол запаздывания роторного преобразователя: двигательный режиме $\left(0 \div \frac{\pi}{2}\right)$, тормозной $\left(\frac{\pi}{2} \div \alpha_{\max}\right)$
3	$\cos \varphi_2$	$\cos\varphi_2 = I_{2a}/I_2$	Коэффициент сдвига роторной цепи
4	I _{do.e.}	$I_d = \frac{\pi}{\sqrt{6}} I_2$	Величина постоянного тока
5	γ_2	$\gamma_2 = 2I_d X_1' / \sqrt{6} \frac{X_0}{X_1} \sin \varphi_2$	γ ₂ – расчетный угол прямолинейной коммутации ротор- ного преобразователя
6	$I_{2\kappa_{o.e.}}$ $\kappa \neq 1$	$I_{2\kappa} = I_2 \left \frac{1}{K} \frac{\sin \frac{K\gamma_2}{2}}{\frac{K\gamma_2}{2}} \right , K = 6n + 1, n = -\infty \div \infty$	Величина высших гармоник порядка К, частота высших гармоник тока ротора равна К ₂ = K·S
7	$\cos \varphi_2$	$\cos\varphi_c = -S\eta_{\partial\theta}\cos\varphi_2 \frac{1}{K_T}$	Коэффициент сдвига сетевого преобразователя
8	γ_c	$\gamma_c = \frac{2I_d X'_{Tp}}{\sqrt{6}\sin\varphi_c} \cdot \frac{X_1}{X_0 K_T}$	$\gamma_{\rm c}$ – расчетный угол прямолинейной коммутации сетевого преобразователя, X'_{mp} - сопротивление к.з. трансформатора
9	$I_{T\kappa_{o.e.}}$ $\kappa \neq 1$	$I_{\mathrm{TK}} = I_2 \left \frac{1}{K} \frac{\sin \frac{K\gamma_{\mathrm{c}}}{2}}{\frac{K\gamma_{\mathrm{c}}}{2}} \right \frac{X_0 K_T}{X_1},$ $K = 6n + 1, n = -\infty \div \infty$	Величина высших гармоник тока сетевого преобразова- теля порядка К, частота высших гармоник К _с =К
10	I _{Ta_{o.e.}}	$I_{\mathrm{Ta}} = I_{2\mathrm{a}} \frac{X_0}{X_1} K_T$	Активный ток трансформатора
11	I _{Tpo.e.}	$I_{\rm Tp} = I_2 \cdot \sin \varphi_{c2} \frac{X_0}{X_1} K_T$	Реактивный ток трансформатора
12	<i>I</i> _{1<i>a</i>_{<i>o.e.</i>}}	$I_{1a} = I_{2a} \frac{X_0}{X_1} \frac{1}{\eta_{\partial \theta}}$	Активный ток статора двигателя
13	$I_{1p_{o.e.}}$	$I_{1p} = I_2 \cdot \sin \varphi_2 \frac{X_0}{X_1} + \frac{1}{X_1}$	Реактивный ток статора двигателя
14	$I_{1\kappa_{o.e.}}$ $\kappa \neq 1$	$I_{1\kappa} = I_{2\kappa} \frac{X_0}{X_1}$	Высшие гармоники тока статора, порядок гармоник $K_1 = 1 + (K - 1) \cdot S$

Таблица 5

N⁰	Обозначение	Формула	Пояснение
1	Р _{АТК(кВт)} активная мощность сети	$P_{ATK(\kappa Bm)} = P_{\delta(\kappa Bm)}(I_{1a} - I_{Ta}) + \Delta P_{ATK(\kappa Bm)}$	Δ <i>P_{ATK}</i> – потери в преобразовательном каскаде
2	$Q_{ATK(\kappa Ba)}$	$Q_{ATK} = P_{\delta}(I_{1p} + I_{Tp})$	
3	$I_{K1(A)}$	$I_{K1(A)} = I_{\delta(a)} \cdot I_{1\kappa(o.e.)}$	Порядок гармоник $K_1 = 1 + (K - 1)S$ $K = 6n + 1, n = -\infty \div \infty n \neq 0$
4	$I_{KT(A)}$	$I_{KT(A)} = I_{\delta(a)} \cdot I_{TK(o.e.)}$	Порядок гармоник K_T – канонический