Запорожский национальный технический университет

ЭНЕРГОЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ СИЛОВОГО АКТИВНОГО ФИЛЬТРА ДЛЯ ТИРИСТОРНОГО ЭЛЕКТРОПРИВОДА С НУЛЕВОЙ СХЕМОЙ ВЫПРЯМИТЕЛЯ

Вследствие наблюдающегося удорожания электроэнергии становится актуальным и остро востребованным практикой внедрение средств энергосбережения в автоматизированном электроприводе. Одним из таких наиболее эффективных технических средств является силовой активный фильтр (САФ), компенсирующий одновременно потребляемые из сети искажающую и реактивную мощности нелинейных и линейных активноиндуктивных нагрузок. Несмотря на то, что в отечественной и зарубежной научно-технической литературе исследованию САФ в последние годы стало уделяться большое внимание [1 - 4], до настоящего времени отсутствуют исследования энергоэффективности применения САФ для тиристорных электроприводов постоянного тока (ТЭПТ) с трехфазной нулевой схемой (THC) управляемого выпрямителя.

Целью статьи является исследование энергоэффективности применения силового активного фильтра для ТЭПТ с ТНС, в том числе: исследование электромагнитных процессов в питающей сети и САФ, электромагнитной совместимости данного электропривода с питающей сетью и снижения сетевых потерь мощности (СПМ), достигнутого за счет использования САФ.

Исследуемая схема ТЭПТ с ТНС и раздельным управлением, показанная на рис.1, выполнена в виде: двух встречно-параллельно соединенных трехфазных тиристорных групп В и Н управляемых выпрямителей; токоограничивающих $L_1 - L_3$ и сглаживающего L_4 реакторов; фильтрующих конденсаторов $C_1 - C_3$; электродвигателя М с обмоткой независимого возбуждения ОВ; систем импульсно-фазового управления СИФУ-В и СИФУ-Н; силового активного фильтра САФ, состоящего из восьми IGBT-транзисторов, шунтированных обратными диодами, конденсатора C_4 и реакторов $L_5 - L_8$ [2]; регуляторов тока РТ и скорости РС; датчиков

тока ДТ и скорости ДС; шунта Ш. Для управления САФ использовалось релейно-векторное управление из [2].

Методом имитационного моделирования выполнено исследование электромеханических процессов в питающей четырехпроводной трехфазной сети переменного напряжения (ТСПН) и рассматриваемом ТЭПТ (для двигателя типа 5ПБ160S мощностью 5,6 кВт и напряжением 220 В) при следующих режимах работы последнего: разгоне до 0,8 от номинальной скорости, набросе и сбросе номинальной нагрузки, торможении до пониженной (равной 0,1 от номинальной) скорости, набросе номинальной нагрузки при указанной пониженной скорости, – которые показаны на рис.2 (где ω и М – скорость и электромагнитный момент двигателя).

Для исследуемых режимов работы ТЭПТ рассчитаны электромагнитные процессы (ЭМП) в рассматриваемом электротехническом комплексе, которые приведены: на рис.3, где: U_A, U_B, U_C и $I_{\Sigma A}, I_{\Sigma B}, I_{\Sigma C}$ – сетевые фазные напряжения и токи соответственно; I_{HA}, I_{HB}, I_{HC} и $I_{\varphi A}, I_{\varphi B}, I_{\varphi C}$ – входные фазные токи соответственно выпрямителя и САФ; I_g и I_L – токи соответственно якоря двигателя и реактора L_8 ; U_d и I_N – напряжения на конденсаторе C_4 и ток в нейтрале сети соответственно. Результаты расчета действующих значений упомянутых токов рассматриваемого электротехнического комплекса для установившихся режимов работы (при скоростях двигателя, равных 0,1 и 0,8 от номинальной) приведены в табл.3.

Через рассчитанные ЭМП определены значения сетевого коэффициента мощности К_М:

Проблемы автоматизированного электропривода

Энергосбережение средствами электропривода

Таблица 1. Значения коэффициента мощности

	Вид режима электропривода			
Сетевой коэффи- циент мощно- сти		Установ ся режи		
	Разгон	минальной на-		Тормо-
		грузкой для ско-		
		poc		
		0,8 от	0,1 от	жение
		номи-	номи-	
		наль-	наль-	
		ной	ной	
для ТЭПТ	0,5882*	0,5785	0,2394	-0,1952*
для ком- плекса	0,9451*	0,9957	0,9665	0,9240*

* – усредненное значение за время разгона или торможения

Таблица 2. Значения коэффициента снижения СПМ (для установившегося режима электропривода при номинальной нагрузке)

Скорость $\omega / \omega_{\!\scriptscriptstyle H}$, о.е.	0,8	0,1
Коэффициент $K_{\mathcal{C}}$, o.e.	0,2439	0,0525

$$K_{M} = \frac{\frac{1}{T} \int_{0}^{T} [U_{A}I_{\Sigma A} + U_{B}I_{\Sigma B} + U_{C}I_{\Sigma C}] \cdot dt}{U_{A\partial}I_{\Sigma A\partial} + U_{B\partial}I_{\Sigma B\partial} + U_{C\partial}I_{\Sigma C\partial}}, \qquad (1)$$

а также коэффициента *К*_с снижения СПМ от применения САФ из зависимости:

$$K_{c} = \frac{I_{\Sigma A\partial}^{2} + I_{\Sigma B\partial}^{2} + I_{\Sigma C\partial}^{2} + \xi I_{\Sigma N\partial}^{2}}{I_{{\rm H}A\partial}^{2} + I_{{\rm H}B\partial}^{2} + I_{{\rm H}C\partial}^{2} + \xi I_{{\rm H}N\partial}^{2}}.$$
(2)

В указанных зависимостях используются следующие обозначения: $U_{A\partial}, U_{B\partial}, U_{C\partial}$ – действующие значения сетевых фазных напряжений; $I_{\Sigma A\partial}, I_{\Sigma B\partial}, I_{\Sigma C\partial}$ и $I_{\Sigma N\partial}$ – действующие значения фазных токов и тока нейтрали сети; $I_{HA\partial}, I_{HB\partial}, I_{HC\partial}$ и $I_{HN\partial}$ – действующие значения входных фазных токов и тока нейтрали выпрямителя; T – период сетевого напряжения; ξ – отношение активных сопротивлений нейтрали R_N и фазы R_d питающей сети:

$$\xi = R_N / R_{\phi} \tag{3}$$

(в расчетах принималось значение $\xi = 0,33$).

Таблица 3. Действующие значения токов и значения THD

Скорость	Сетевые токи и ТНD				Токи и THD выпрямителя					
ω / ω_{μ}	$I_{\Sigma A \partial}$	$I_{\Sigma B\partial}$	$I_{\Sigma C\partial}$	$I_{\Sigma N\partial}$	THD	$I_{\mathrm{H}A\partial}$	$I_{\mathrm{HB}\partial}$	I _{HC∂}	I _{HN∂}	THD
o.e.	А	А	А	А	%	Α	А	А	Α	%
0,8	11,90	11,97	11,77	0,5037	3,49	16,10	18,18	15,95	29,18	56,26
0,1	3,113	3,294	3,298	0,5018	11,83	11,55	14,36	10,54	21,29	64,02

Выводы.

1. За счет применения САФ для ТЭПТ с ТНС достигается улучшение электромагнитной совместимости данного электропривода с питающей сетью, которая характеризуется следующими показателями:

- высокими значениями сетевого коэффициента мощности (не ниже 0,966 – 0,99 в стационарных режимах);

- общим коэффициентом гармоник (THD) сетевого тока не более 12 % (в установившихся режимах в рабочем диапазоне изменения скоростей при номинальной нагрузке электропривода);

- близким к нулю действующим значением тока в нейтрали сети (не превышающим 4,3 % от номинального сетевого фазного тока электропривода);

- малой относительной асимметрией сетевых фазных токов (менее 1,5 % для номинального режима).

2. Посредством применения САФ обеспечивается значительное снижение СПМ для четырехпроводной ТСПН: примерно в 4 раза – при скорости, равной 0,8 от номинальной, или в 20 раз – при скорости ТЭПТ, равной 0,1 от номинальной.

3. За счет использования САФ (для компенсации реактивной и искажающей мощностей, компенсации тока в нейтрале сети и симметрирования СФТ) обеспечивается равномерная токовая загрузка разных фаз силового трансформатора и подводящих кабелей, уменьшаются масса, габариты и стоимость силового трансформатора и его нагрев, а также – становится возможным снижение сечения нейтрального провода сети.

ЛИТЕРАТУРА

1. Жемеров Г.Г. Энергоэффективность коррекции фазы тока и компенсации пульсаций активной и реактивной мощности в трехфазной системе электроснабжения / Г.Г. Жемеров, И.Ф. Домнин, О.А. Ильина, Д.В. Тугай // Технічна електродинаміка. – 2007. – № 1. – С. 52 – 57.

2. Волков А.В. Энергосберегающая система электропитания на основе активного фильтра для автоматизированных электроприводов/ А.В. Волков, В.П. Метельский, В.А. Волков // Тем. вип. Проблеми автоматизованого електропривода. Теорія і практика. – Львів: Електроінформ. – 2009. – С. 153 – 154.

3. Quinn C.A. Active filtering of harmonic currents in three-phase four-wire systems with three-phase and single-phase non-linear loads / C.A. Quinn, N. Mohan // Proc. APEC 92. - 1992. - P. 829 - 836.

4. Bor-Ben L. Three-phase quality compensator under the unbalanced source and non-linear loads / L. Bor-Ben, L. Yung-Chuan // IEEE Transactions on industrial electronics. – 2004. – Vol. 51. – N 5. – P. 1009 – 1017.