ГВУЗ «Донецкий национальный технический университет»

РАСЧЁТ РЕЖИМОВ ПУСКА АСИНХРОННОГО ЭЛЕКТРОПРИВОДА С УЧЁТОМ ВЫТЕСНЕНИЯ ТОКА И ТЕМПЕРАТУРЫ НАГРЕВА РОТОРА

Асинхронные электродвигатели (АЭД) с глубокопазным короткозамкнутым ротором (КЗР) широко применяются в настоящее время в промышленности в качестве электропривода. Методам расчёта характеристик АЭД с учётом вытеснения тока в роторе посвящены работы [1,2]. Влияние температуры нагрева стержней ротора на вытеснение тока рассмотрено в работах [3,4]. Однако совместный учёт вытеснения тока и температуры нагрева на динамические характеристики рассмотрен в литературе в недостаточной мере.

Целью данной работы является учёт влияния на динамические пусковые характеристики глубокопазных АЭД вытеснения тока и температуры нагрева ротора.

Эквивалентную схему замещения (ЭСЗ) АЭД с КЗР (рис. 1) представим как состоящую из активного сопротивления статора, зависящего от температуры нагрева $R_{S}(V)$, индуктивного сопротивления рассеяния статора $X_{\sigma S}$, сопротивления взаимной индуктивности между статором и ротором X_{μ} , активного сопротивления контура потерь в стали статора, зависящего от температуры нагрева $R_{FE}(V)$, и индуктивного сопротивления рассеяния этого контура $X_{\sigma FE}$, активного сопротивления рассеяния этого контура $X_{\sigma FE}$, активного и индуктивного сопротивления рассеяния этого контура $X_{\sigma FE}$, активного и индуктивного сопротивления рассеяния этого контура $V_{\sigma FE}$, активного и индуктивного сопротивления рассеяния ротора $R_{R}(s,V)$, $X_{\sigma S}(s,V)$, зависящих от

Рис.1 Эквивалентная схема замещения АЭД с КЗР.

ления рассеяния ротора $R_R(s,V)$, $X_{\sigma S}(s,V)$, зависящих от частоты (скольжения s) тока в роторе и температуры нагрева V [5].

Для крупных АЭД можно принять, что при номинальном скольжении сопротивление пазовой части составляет 80 %, а лобовой 20% от общего сопротивления обмотки ротора [2,4]. Тогда выражения для определения сопротивлений ротора с учётом эффектов вытеснения тока и температуры нагрева будут иметь вид:

$$\begin{split} R_{R}(s,t) &= R_{R0} \cdot \left[0,2+0,8 \cdot kr(s,V)\right] \cdot \rho(V), \qquad X_{\sigma R}(s,V) = X_{\sigma R0} \cdot \left[0,2+0,8 \cdot kx(s,V)\right], \end{split} \tag{1}$$

$$kr(s,V) &= \zeta(s,V) \frac{sh2\zeta(s,V) + sin 2\zeta(s,V)}{ch2\zeta(s,V) - cos 2\zeta(s,V)}, \qquad kx(s,V) = \frac{3}{2\zeta(s,V)} \cdot \frac{sh2\zeta(s,V) - sin 2\zeta(s,V)}{ch2\zeta(s,V) - cos 2\zeta(s,V)}, \end{aligned}$$

$$\zeta(s,V) &= h \cdot \sqrt{\frac{b}{a} \cdot \frac{\mu_{0} \cdot \pi}{\rho(V)} \cdot f_{1} \cdot s}, \qquad \rho(V) = \rho_{0} \cdot K_{V}, \qquad K_{V} = (1 + \alpha \cdot V) / (1 + \alpha \cdot V_{HAY}), \end{split}$$

где kr(s,V), kx(s,V) – коэффициенты, учитывающие изменение роторных сопротивлений прямоугольного сечения из-за вытеснения тока в роторе при скольжении *s* и температуре нагрева V; R_{R0} и $X_{\sigma R0}$ – соответственно активное и индуктивное сопротивления при *s* \approx 0; K_V – коэффициент коррекции активных сопротивлений обмоток АЭД от текущего значения температуры V; α – температурный коэффициент проводника обмотки, $1/{}^{0}$ C, V_{HA4} – температура холодного (начального) состояния машины, 0 C.; ζ (s,V) – приведенная высота стержня ротора, $\mu_0 = 4\pi \cdot 10^{-7}$ – удельная магнитная проницаемость воздуха, Гн/м; а – ширина паза ротора, м; b – ширина стержня в пазу ротора, м; h – высота проводника, м; f₁ – частота питающей сети, Гц; ρ – удельное сопротивление проводника от температуры, Ом·м;. ρ_0 – удельное сопротивление проводника при начальной температуре, Ом·м. Для меди ρ_0 составляет 0,0175·10⁻⁶ Ом·м при температуре 75⁰C, а коэффициент α равен 0,004 1/ 0 C соответственно.

Характер зависимостей коэффициентов kr и kx от скольжения s и температуры V представлен на рис. 2, из которых следует, что с ростом температуры эффект вытеснения тока ослабляется. Для анализа 2 динамических пусковых характеристик используем математическую модель электропредставленную двигателя. дифференциальными уравнениями (ДУ), записанными в неподвижной относительно статора системе координат α , β (2).

$$\begin{cases} p\psi_{S,\alpha} = U_{S,\alpha} - R_{S}(V) \cdot i_{S,\alpha}, & p\psi_{S,\beta} = U_{S,\beta} - R_{S}(V) \cdot i_{S,\beta}, \\ p\psi_{R,\alpha} = -R_{R}(s,V) \cdot i_{R,\alpha} + \omega \cdot \psi_{R,\beta}, & p\psi_{R,\beta} = -R_{R}(s,V) \cdot i_{R,\beta} - \omega \cdot \psi_{R,\alpha}, \\ p\psi_{FE,\alpha} = -R_{FE}(V) \cdot i_{FE,\alpha}, & p\psi_{FE,\beta} = -R_{FE}(V) \cdot i_{FE,\beta}, \\ p\omega = J^{-1} \cdot (m(t) - M_{c}(\omega, k_{3})), & pV = \frac{2}{P_{HOM} \cdot J} \cdot (m(t) \cdot s - m_{HOM} \cdot s_{HOM}). \end{cases}$$
(2)

$$rge \ i_{S,\alpha} = \frac{\psi_{S,\alpha} - \psi_{\mu,\alpha}}{X_{\sigma S}}, \ i_{R,\alpha} = \frac{\psi_{R,\alpha} - \psi_{\mu,\alpha}}{X_{\sigma R}(s,V)}, \ i_{FE,\alpha} = \frac{\psi_{FE,\alpha} - \psi_{\mu,\alpha}}{X_{\sigma FE}}, \ i_{\mu,\alpha} = i_{S,\alpha} + i_{R,\alpha} + i_{FE,\alpha}, \quad s = 1 - \omega,$$

$$\begin{split} \mathbf{i}_{S\beta} &= \frac{\Psi_{S\beta} - \Psi_{\mu\beta}}{X_{\sigma S}}, \ \mathbf{i}_{R,\beta} = \frac{\Psi_{R,\beta} - \Psi_{\mu\beta}}{X_{\sigma R}(s, \mathbf{V})}, \ \mathbf{i}_{FE,\beta} = \frac{\Psi_{FE,\beta} - \Psi_{\mu\beta}}{X_{\sigma FE}}, \ \mathbf{i}_{\mu\beta} = \mathbf{i}_{S\beta} + \mathbf{i}_{R,\beta} + \mathbf{i}_{FE,\beta}, \ \mathbf{a}_{S} = \frac{X_{SR}}{X_{\sigma S}}, \ \mathbf{a}_{R} = \frac{X_{SR}}{X_{\sigma R}(s, \mathbf{V})}, \\ \Psi_{\mu,\alpha} &= \mathbf{a}_{S} \cdot \Psi_{S,\alpha} + \mathbf{a}_{R} \cdot \Psi_{R,\alpha} + \mathbf{a}_{FE} \cdot \Psi_{FE,\alpha}, \ \Psi_{\mu\beta} = \mathbf{a}_{S} \cdot \Psi_{S,\beta} + \mathbf{a}_{R1} \cdot \Psi_{R,\beta} + \mathbf{a}_{FE} \cdot \Psi_{FE,\beta}, \ \mathbf{m}(t) = (\Psi_{S,\beta} \cdot \Psi_{\mu,\alpha} - \Psi_{S,\alpha} \cdot \Psi_{\mu\beta}) / X_{\sigma S}, \end{split}$$

$$a_{FE} = \frac{X_{SR}}{X_{\sigma FE}}, \ X_{SR} = \left[X_{\mu}^{-1} + X_{\sigma S}^{-1} + (X_{\sigma R}(s, V))^{-1} + X_{\sigma FE}^{-1}\right]^{-1}, \ \Delta P = \left|\dot{i}_{S}\right|^{2} \cdot R_{S}(V) + \left|\dot{i}_{R}\right|^{2} \cdot R_{R}(s, V) + \left|\dot{i}_{FE}\right|^{2} \cdot R_{FE}(V).$$

где $\psi_{S,\alpha}, \psi_{R,\alpha}, \psi_{FE,\alpha}, \psi_{S,\beta}, \psi_{R,\beta}, \psi_{FE,\beta}$, $i_{S,\alpha}, i_{R,\alpha}, i_{FE,\alpha}, i_{S,\beta}, i_{R,\beta}, i_{FE,\beta}$ – мгновенные значения потокосцеплений и токов по осям α и β статора, контура ротора и контура потерь в стали; $\psi_{\mu,\alpha}, \psi_{\mu,\beta}, i_{\mu,\alpha}, i_{\mu,\beta}$, – мгновенные значения рабочего потокосцепления (потокосцепление воздушного зазора) и тока намагничивания по осям α и β ; a_S , a_R , a_{FE} – коэффициенты распределения потокосцеплений статора, контура ротора и контура потерь в стали; X_{SR} – суммарная входная проводимость двигателя; ω – мгновенное значение угловой частоты вращения ротора АЭД; m(t) – текущее расчетное значение электромагнитного момента на валу; M_C , J, k_3 – момент сопротивления, суммарный момент инерции привода и коэффициент загрузки механизма; $U_{S,\alpha}$, $U_{S,\beta}$ – мгновенные значения напряжения статора по осям α и β ; ΔP – потери мощности в асинхронной машине.

В качестве примера был промоделирован режим двух пусков, следующих подряд, для АЭД с КЗР типа ДАЗО-450Х-6У1 (P_{HOM} = 500 κBτ; U_{HOM} = 6 κB; I_{HOM} = 60 A; η_{HOM} = 0,944 o.e; $s_{HOM} = 0,015$ o.e.; $\cos \varphi_{HOM} = 0,85$; $M_{\Pi}/M_{HOM} = 1,2$ o.e.; $M_{MAKC}/M_{HOM} = 2,5$ o.e.; $I_{\Pi}/I_{HOM} = 5$ o.e.). Параметры ЭСЗ для начальной температуры 25° C (R_s = 0,016 o.e; X_{σ S} = 0,1 o.e; $X_{\mu} = 2,89$ o.e; $R_{FE} = 10,656$ o.e; $X_{\sigma FE} =$ 24,799 o.e; R_{R0} = 0,042 o.e; $X_{\sigma R0}$ = 0,042 o.e), рассчитанные по методике [5]. Зависимости тока статора, температуры нагрева, угловой частоты вращения ротора и потерь мощности от времени показана на рис.3., из которого следует, что продолжительность пуска АЭД из горячего состояния меньше, чем из холодного. Однако скольжение и потери в установившемся режиме превосходят таковые для менее нагретой машины.

ис. 5 - зависимости тока статора (фаза А), температуры нагрева, угловой частоты вращения ротора и потерь мощности от времени.

Вывод. Предложен метод расчёта динамических пусковых характеристик асинхронного электропривода с учётом влияния эффекта вытеснения и температуры нагрева.

ЛИТЕРАТУРА

1. Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей / Под ред. Л.Г. Мамиконянца. – М.: Энергоатомиздат, 1984. – 240 с.

2. Ойрех Я.А. Режимы самозапуска асинхронных двигателей / Я.А. Ойрех, В.Ф. Сивокобыленко – М.: Энергия, 1974. – 96 с.

3. Богуславский И.З. Метод расчёта поверхностного эффекта в стержне клетки ротора с учётом изменения в нём температуры при пуске / И.З. Богуславский, М.В. Кришьянис // Научно-технический журнал «Электротехника». – 2008. – № 3. – С. 24 – 31.

4. Сивокобыленко В.Ф. Влияние температуры нагрева ротора на рабочие и пусковые характеристики глубокопазного асинхронного двигателя / В.Ф. Сивокобыленко, С.Н. Ткаченко // Вісник Кременчуцького державного політехнічного університету імені М. Остроградського. – Вип. 3(44). – частина 2. – Кременчук, 2007. – С. 8 – 11.

5. Сивокобыленко В.Ф. Математическое моделирование характеристик асинхронных электродвигателей с короткозамкнутым ротором с учётом потерь в стали / В.Ф. Сивокобыленко, С.Н. Ткаченко // Збірник наукових праць ДВНЗ «Донецький національний технічний університет». Серія «Електротехніка і енергетика». – випуск 7 (128). – Донецьк, 2007. – С. 126 – 131.