Д. Г. АЛЕКСЕЕВСКИЙ, канд. тех. наук, доц. каф. ЭС ЗГИА, Запорожье

ОПРЕДЕЛЕНИЕ ПЕРЕДАТОЧНОЙ ФУНКЦИИ ЗВЕНА АЭРОДИНАМИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ВЭУ С АЭРОДИНАМИЧЕСКИМ МУЛЬТИПЛИЦИРОВАНИЕМ

Введение. Схема с аэродинамическим мультиплицированием, в настоящее время, являются достаточно перспективной, альтернативной по отношению к классической, схемой построения электромеханической системы ВЭУ [1]. Она позволяет избавиться от механического мультипликатора при одновременном использовании генераторов с большими номинальными угловыми скоростями вращения вала, что, в свою очередь, не требует увеличения их массы и габаритов. Увеличение угловой скорости на валу генератора достигается за счет того, что скорость вторичного воздушного потока в несколько раз превышает скорость ветра. Однако свойства данной системы существенно отличаются от свойств классической схемы преобразования мощности в электромеханической системы и предъявляет специфические требования к системе управления ВЭУ.

Анализ последних достижений и литературы. Исследованию свойств системы с аэродинамическим мультиплицированием были посвящены работы [1], [2], [3]. В работе [1] исследовались статические режимы при постоянном значении угловой скорости на валу генератора. Была предложена математическая модель системы и описан эффект автооптимизации, который присутствует в данной системе. Работы [2] и [3] и другие работы этих же авторов были посвящены динамическим свойствам системы с аэродинамическим мультиплицированием.

Цель статьи. Целью данной работы является определения, в результате аналитического исследования, передаточной функции звена аэромеханического преобразования электромеханической системы ВЭУ с аэродинамическим мультиплицированием.

Постановка проблемы. Передаточная функция звена аэродинамического мультиплицирования необходима при процедуре синтеза методами теории авторегулирования системы управления электромеханической системы ВЭУ. Исходная математическая модель данного звена имеет существенные нелинейности, поэтому требует проведение линеаризации с предварительным определением значений координат рабочих точек.

Материалы и результаты исследования.

Модель звена аэродинамического мультиплицирования. При построении исходной модели звена аэродинамического мультиплицирования были приняты следующие допущения.

1. Моменты механических потерь включены в механические характеристики ветротурбин.

- 2. В данном приближении все вращающиеся подсистемы считаются жесткими.
- 3. Вторичная аэромеханическаясистема состоит из трех идентичных подсистем.

4. Потоки мощности равномерно распределяются между тремя элементами вторичной аэромеханической подсистемы.

5. Все зависимости представляются в относительных единицах.

На рисунке 1 изображена блок-схема подсистемы аэродинамического мультиплицирования. Она содержит структурные элементы, которые определяют ее нелинейность: механическая характеристика первичной ветротурбины (NB1), механическая характеристика вторичной ветротурбины (NB2), операция умножения (NB3), операция деления (NB4).

Рис.1 – Исходная блок схема модели звена аэродинамического преобразования.

© Д.Г. Алексеевский, 2015

ISSN 2079-3944. Вісник НТУ «ХПІ». 2015. No 12 (1121) 168

Как видно из схемы, все эти элементы имеют два входа и один выход. Следовательно, в графической интерпретации они представляют собой трехмерную поверхность. Их линеаризующими выражениями являются уравнения плоскостей в трехмерном пространстве касательные к исходным поверхностям в рабочей точке. Общая форма линеаризующего выражения имеет вид:

$$y(x_1, x_2) = a_0 + a_1 x_1 + a_2 x_2, \qquad (1)$$

где: a_0 , a_1 , a_2 - коэффициенты линеаризующего выражения,

 x_1 , x_2 - входные переменные.

Для выполнения условия гомогенности [4] система рассматривается в координатах приращений соответствующих переменных. Нелинейный элемент, в этом случае, описывается соответствующей линейной комбинацией типа:

$$y(x_1, x_2) = a_1 x_1 + a_2 x_2 .$$
⁽²⁾

Полученная таким образом, блок-схема приведена на рисунке 2.

Рис.2 – Блок-схема модели звена аэродинамического преобразования после линеаризации.

Нумерация коэффициентов включает в себя номер нелинейного блока и номер элемента в нелинейном блоке.

Определение координат рабочей точки. Первым этапом определения коэффициентов является определение координат рабочей точки. Значения переменных в рабочей точке соответствуют установившемуся режиму при фиксированных значениях входных переменных всей подсистемы. Он характеризуется нулевыми значениями входов интеграторов (см. рис.1).

Исходя из данного свойства, могут быть получены следующие выражения:

$$M_{WT1}^{*0} = M_T^{*0}, (3)$$

$$M_{WT2}^{*0} = M_g^{*0}, (4)$$

где: M_{wT1}^{*0} - момент первичной ветротурбины в установившемся режиме,

 M_{T}^{*0} - момент торможения первичной аэромеханической подсистемы в установившемся режиме,

 $M_{\scriptscriptstyle WT2}^{^{*0}}\,$ - момент вторичной ветротурбины в установившемся режиме,

 $M_a^{*0}\,$ - момент на валу генератора в установившемся режиме.

Кроме того, следует, при составлении системы уравнений, учесть зависимость: $V_2^{*0} = R_Z^* \cdot \omega_1^{*0}$,

где: R_{Z}^{*} - радиус закрепления вторичной ветротурбины,

 $\varpi_1^{*_0}$ - угловая скорость вращения первичной ветротурбины в рабочей точке,

 V_2^{*0} - скорость вторичного воздушного потока в рабочей точке.

Для проведения линеаризации нелинейных блоков необходимо определить значения следующего набора параметров рабочей точки звена аэродинамического преобразования: ω_1^{*0} , ω_2^{*0} , M_T^{*0} , P_{WT2}^{*0} , V_2^{*0} , M_{WT1}^{*0} , M_{WT2}^{*0} , где: ω_2^{*0} - угловая скорость вращения первичной ветротурбины в рабочей точке, P_{WT2}^{*0} - мощность вторичной ветротурбины.

Значения первых четырех из них могут быть определены в результате решения следующей системы трансцендентных уравнений:

$$\begin{cases}
f_{WT1}(\omega_{1}^{*0}, V_{1}^{*0}) - M_{T}^{*0} = 0 \\
f_{WT2}(\omega_{2}^{*0}, V_{2}^{*0})|_{V_{2}^{*0} = R_{2}^{*} \cdot \omega_{1}^{*0}} - M_{g}^{*0} = 0 \\
P_{WT2}^{*0} - \omega_{2}^{*0} \cdot M_{g}^{*0} = 0 \\
M_{T}^{*0} \frac{-3 \cdot P_{WT2}^{*0}}{\omega_{1}^{*0}} = 0
\end{cases}$$
(6)

Остальные три могут быть определены с помощью выражений (3), (4), (5).

В системе уравнений функции f_{WT1} и f_{WT2} представляют собой выражения семейства механических характеристик первичной и вторичной ветротурбин соответственно, и определяются следующими выражениями (используя [5]):

$$f_{WT1}(\omega_1^{*0}, V_1^{*0}) = \frac{(V_1^{*0})^3}{\omega_1^{*0}} \cdot Cp_1^{*0},$$
⁽⁷⁾

$$f_{WT2}(\omega_2^{*0}, V_2^{*0}) = \left(\frac{R_2^*}{R_1^*}\right)^2 \cdot \frac{(V_2^{*0})^3}{\omega_2^{*0}} \cdot Cp_2^{*0},$$
(8)

Значения коэффициентов мощности Cp_1^{*0} и Cp_2^{*0} определяются из выражений:

$$Cp_{1}^{*0}(Z_{1}^{*0}) = \begin{cases} Cp_{1}^{*max} \cdot \left(\frac{Z_{1}^{*0}}{Z_{1}^{*pot}}\right)^{b_{1}} \left[-2 \cdot \left(\frac{Z_{1}^{*0}}{Z_{1}^{*opt}}\right)^{b_{2}} + 3\right] & npu \quad 0 < Z_{1}^{*0} \le Z_{1}^{*opt} \\ Cp_{1}^{*max} - \frac{Cp_{1}^{*max}}{\left(Z_{1}^{*xx} - Z_{1}^{*opt}\right)^{b_{3}}} \cdot \left(Z_{1}^{*0} - Z_{1}^{*opt}\right)^{b_{4}} & npu \quad Z_{1}^{*opt} < Z_{1}^{*0} < Z_{1}^{*xx} \\ Cp_{1}^{*max} - \frac{Cp_{1}^{*max}}{\left(Z_{1}^{*xx} - Z_{1}^{*opt}\right)^{b_{5}}} \cdot \left(Z_{1}^{*0} - Z_{1}^{*opt}\right)^{b_{6}} & npu \quad Z_{1}^{*xx} \le Z_{1}^{*0} < +\infty \end{cases}$$
(9)

$$Cp_{2}^{*0}(Z_{2}^{*0}) = \begin{cases} Cp_{2}^{*max} \cdot \left(\frac{Z_{2}^{*0}}{Z_{2}^{*pot}}\right)^{b^{7}} \cdot \left[-2 \cdot \left(\frac{Z_{2}^{*0}}{Z_{2}^{*opt}}\right)^{b^{8}} + 3\right] & npu \quad 0 < Z_{2}^{*0} \le Z_{2}^{*opt} \\ Cp_{2}^{*max} - \frac{Cp_{2}^{*max}}{\left(Z_{2}^{*xx} - Z_{2}^{*opt}\right)^{b^{9}}} \cdot \left(Z_{2}^{*0} - Z_{2}^{*opt}\right)^{b^{10}} & npu \quad Z_{2}^{*opt} < Z_{2}^{*0} < Z_{2}^{*xx} , \end{cases}$$
(10)
$$Cp_{2}^{*max} - \frac{Cp_{2}^{*max}}{\left(Z_{2}^{*xx} - Z_{2}^{*opt}\right)^{b^{11}}} \cdot \left(Z_{2}^{*0} - Z_{2}^{*opt}\right)^{b^{12}} & npu \quad Z_{2}^{*xx} \le Z_{2}^{*0} < +\infty \end{cases}$$

где: C_1^{*max} , C_2^{*max} - максимальные значения коэффициентов мощности в относительных единицах первичной и вторичной ветротурбин соответственно,

 Z_1^{*opt} , Z_2^{*opt} - оптимальные значения быстроходности в системе относительных единиц первичной и вторичной ветротурбин соответственно,

 Z_1^{*xx} , Z_2^{*xx} - значения быстроходности при холостом ходе в системе относительных единиц первичной и вторичной ветротурбин соответственно,

 Z_1^{*0} , Z_2^{*0} - значения быстроходности для установившегося режима в системе относительных единиц первичной и вторичной ветротурбин соответственно,

 b_1 ,..., b_{12} - коэффициенты аппроксимации.

С учетом (5) система (6) может быть записана в виде:

$$\begin{cases} f_{WT1}(\omega_1^{*0}, V_1^{*0}) - M_T^{*0} = 0 \\ f_{WT2}(\omega_1^{*0}, \omega_2^{*0}) - M_g^{*0} = 0 \\ P_{WT2}^{*0} - \omega_2^{*0} \cdot M_g^{*0} = 0 \\ M_T^{*0} - \frac{3 \cdot P_{WT2}^{*0}}{\omega_1^{*0}} = 0 \end{cases}$$

$$(11)$$

Значения быстроходности первичной и вторичной ветротурбин определяются с помощью следующих выражений:

$$Z_1^{*0} = \frac{\omega_1^{*0} \cdot R_1^*}{V_2^{*0}}, \qquad (12)$$

$$Z_{2}^{*0} = \frac{\omega_{2}^{*0} \cdot R_{2}^{*}}{\omega_{1}^{*0} \cdot R_{Z}^{*}} .$$
(13)

где: R_1^* , R_2^* - значения радиусов первичной и вторичной ветротурбин в относительных единицах.

Определение коэффициентов линеаризации. Коэффициенты $a_{1,1}$ и $a_{1,2}$ определяются из выражения:

$$\begin{pmatrix} a_{1.1} \\ a_{1.2} \end{pmatrix} = \nabla_{X_{NB1}} f_{WT1} (X_{NB1})$$

$$(14)$$

где
$$X_{NB1} = \begin{pmatrix} \omega_1^{*0} \\ V_1^{*0} \end{pmatrix}$$
 и $f_{NB1}(X_{NB1}) = f_{WT1}(\omega_1^*, V_1^*)$

Коэффициенты $a_{2,1}$ и $a_{2,2}$ определяются их выражения:

$$\binom{a_{2.1}}{a_{2.2}} = \nabla_{X_{NB2}} f_{WT2}(X_{NB2})$$
(15)

где $X_{NB2} = \begin{pmatrix} \omega_2^{*0} \\ V_2^{*0} \end{pmatrix}$ и $f_{NB2}(X_{NB2}) = f_{WT2}(\omega_2^*, V_2^*)$

Коэффициенты $a_{3,1}$ и $a_{3,2}$ определяются их выражения:

$$\binom{a_{3.1}}{a_{3.2}} = \nabla_{X_{NB3}} f_{NB3}(X_{NB3}),$$
 (16)

где

 $X_{NB3} = \begin{pmatrix} \omega_2^{*0} \\ M_{WT2}^{*0} \end{pmatrix}$ и $f_{NB3}(X_{NB3}) = \omega_2^{*} \cdot M_{WT2}^{*}$. Коэффициенты $a_{4,1}$ и $a_{4,2}$ определяются их выражения:

$$\begin{pmatrix} a_{4,1} \\ a_{4,2} \end{pmatrix} = \nabla_{X_{NB4}} f_{NB4} (X_{NB4}) ,$$

$$X_{NB4} = \begin{pmatrix} \omega_1^{*0} \\ 3 \cdot P_{WT2}^{*0} \end{pmatrix} \quad \bowtie f_{NB4} (X_{NB4}) = \frac{3 \cdot P_{WT2}^{*}}{\omega_1^{*}} .$$

$$(17)$$

где

Определение передаточной функции звена аэродинамического мультиплицирования. На основании линеаризованной модели звена аэродинамического мультиплицирования (см. рис.2) может быть составлена модель в переменных состояния в матричной форме (проходная матрица отсутствует) [6]:

$$\begin{pmatrix}
\dot{x} = A \cdot x + B \cdot u \\
y = C \cdot x
\end{cases}$$
(18)

Системе (18) соответствуют следующие матрицы:

$$A = \begin{pmatrix} \frac{a_{1.1} - a_{4.1} - 3 \cdot a_{4.2} \cdot a_{3.2} \cdot a_{2.2} \cdot R_Z^*}{J_1^*} & \frac{-3 \cdot a_{4.2} \cdot (a_{3.1} + a_{3.2} \cdot a_{2.1})}{J_1^*} \\ \frac{a_{2.2} \cdot R_Z^*}{J_2^*} & \frac{a_{2.1}}{J_2^*} \\ B = \begin{pmatrix} 0 \\ -\frac{1}{J_2^*} \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 \end{pmatrix}, \ x = \begin{pmatrix} \omega_1^* \\ \omega_2^* \end{pmatrix},$$
(19)

где: J_1^* , J_2^* - моменты инерции первичной и вторичной аэромеханических подсистем в относительных единицах.

Передаточная функция определяется с помощью матричного выражения [6]:

$$W(p) = C \cdot (p \cdot I - A)^{-1} \cdot B$$
,
(20)

где *I* - единичная матрица.

После соответствующих преобразований получаем передаточную функцию звена:

$$W(p) = \frac{Ky}{T^2 \cdot p^2 + 2 \cdot \xi \cdot T + 1},$$
(21)

где:

ISSN 2079-3944. Вісник НТУ «ХПІ». 2015. No 12 (1121) 171

$$Ky = \frac{\left(a_{3.1} \cdot a_{4.4} + a_{2.1} \cdot a_{3.2} \cdot a_{4.4}\right)}{\left(\frac{1}{3} \cdot a_{1.1} \cdot a_{2.1} - \frac{1}{3} \cdot a_{2.1} \cdot a_{4.1} + R_z^* \cdot a_{2.2} \cdot a_{3.1} \cdot a_{4.4}\right)},$$
(22)

$$T = \sqrt{\frac{\left(\frac{1}{3} \cdot J_{1}^{*} \cdot J_{2}^{*}\right)}{\left(\frac{1}{3} \cdot a_{1.1} \cdot a_{2.1} - \frac{1}{3} \cdot a_{2.1} \cdot a_{4.1} + R_{2}^{*} \cdot a_{2.2} \cdot a_{3.1} \cdot a_{4.4}\right)}},$$
(23)

$$\xi = \frac{\left(\frac{1}{3} \cdot J_{2}^{*} \cdot a_{1.1} - \frac{1}{3} \cdot J_{2}^{*} \cdot a_{2.1} + \frac{1}{3} \cdot J_{2}^{*} \cdot a_{4.1} + J_{2}^{*} \cdot R_{Z}^{*} \cdot a_{2.2} \cdot a_{3.2} \cdot a_{4.2}\right)}{2 \cdot T \cdot \left(\frac{1}{3} \cdot a_{1.1} \cdot a_{2.1} - \frac{1}{3} \cdot a_{2.1} \cdot a_{4.1} + R_{Z}^{*} \cdot a_{2.2} \cdot a_{3.1} \cdot a_{4.4}\right)}$$
(24)

Выводы

1. В результате линеаризации нелинейной модели звена аэродинамического преобразования была получена передаточная функция данного звена и предложена методика расчета ее параметров.

2. Значения параметров передаточной функции зависят от положения рабочей точки на статической траектории регулирования. В соответствии с этим их значения являются функциями скорости первичного воздушного потока.

3. Параметры регулятора, определяемые с помощью полученной передаточной функции, могут корректироваться в зависимости от информации от датчика скорости первичного воздушного потока в соответствии с заданной рабочей точкой.

Список литературы: 1. Голубенко Н.С. Моделированиеэлектромеханической системы ВЭУ с аэродинамическим мультипликатором в режиместабилизациискоростиветровых турбин / Н.С.Голубенко, П.Д.Андриенко, И.Ю.Немудрый, Д.Г.Алексеевский // Эл.техника и эл.энергетика. – 2011. – № 1.– С.70-73. 2. Миргород В. Ф. Управление ветроэнергетической установкой большой мощности по запасам аэродинамической устойчивости / В. Ф. Миргород // Вестник двигателестроения. – 2009. – № 3. – С. 67–70. 3. Алексеевский Д.Г. Динамика ветроэлектрической установки с аэродинамической мультипликацией / Д.Г.Алексеевский, В.П.Метельский, И.Ю.Немудрый // Електротехніка та комп'ютерні системи. -2011. – №3 (79), – С. 253 – 254. 4. Дорф Р. Современные системы управления/ Р. Дорф, Р. Бишол. Пер. с англ. Б.И. Копылова. - М.: Лаборатория Базовых Знаний, 2002.- 832с.:ил. 5. Кривцов В.С. Неисчерпаемая энергия. Кн. 1. Ветроэлектрогенераторы / В.С. Кривцов, А.М. Олейников, А.И. Яковлев. - Учебник. - Харьков: Нац. аэрокосм. ун-т "Харьк.авиац. ин-т", Севастополь:Севаст.нац. тех. ун-т,2003.- 400 с. 6. Филлипс Ч. Системы управления с обратной связью / Ч. Филлипс, Р. Харбрр. Пер. с англ. Б.И. Копылова. - М.: Лаборатория Базовых Знаний, 2001. - 616с.:ил.

Bibliography (transliterated): 1. Golubenko, N. S., et al. "Modelirovanie elektromehanicheskoj sistemy vetroenergeticheskoj ustanovki s aerodinamicheskim multiplikatorom v rezhyme stabilizacii skorosti vetrovyh turbin." *El.tekhnika i el.energetika* 1(2011): 70-73. Print. 2. Mirgorod, V. F. "Upravleniye vetroenergeticheskoy ustanovkoy bolshoy moshchnosti po zapasam aerodinamicheskoyustoychivosti."*Vestnik dvigatelestroyeniya*3(2009): 67–70. Print. 3. Alekseevskiy, D. G., V. P. Metelsky, and I. Yu. Nemudry. "Dinamika vetroelektricheskoy ustanovki s aerodinamicheskoy multiplikatsiyey." *Yelektrotekhnika ta komp'yuterni sistemi*3.79(2011): 253–254. Print. 4. Dorf, R., and R. Bishop. *Sovremennye sistemy upravleniya*. Per. s angl. B.I. Kopylova. Moscow: Laboratoriya Bazovykh Znany, 2002. Print. 5. Krivtsov, V.S.,A. M. Oleynikov, and A. I. Yakovlev. *Neischerpayemaya energiya*. *Vetroelektrogeneratory*.Vol. 1. Kharkov: Nats. aerokosm.un-t "Khark.aviats. in-t"; Sevastopol:Sevast.nats. tekh. un-t,2003. Print.6. Fillips, Ch., endR. Kharbrr. *Sistemy upravleniya s obratnoy svyazyu*. Per. s angl. B.I. Kopylova. Moscow: Laboratoriya Bazovykh Znany, 2001. Print.

Поступила (received)