УДК 621.313

В.И. МИЛЫХ, д-р техн. наук, *В.А. БАДОВСКИЙ*, аспирант

ЧИСЛЕННО-ПОЛЕВОЙ АНАЛИЗ ЭФФЕКТИВНОСТИ ВЕКТОРНЫХ ДИАГРАММ ТУРБОГЕНЕРАТОРА

Чисельно-польовими розрахунками магнітного поля у режимі навантаження турбогенератора зроблено порівняльну оцінку, наскільки адекватно відображають його електромагнітний стан у цьому режимі класичні векторні діаграми Блонделя та Пот'є.

Численно полевыми расчетами магнитного поля в режиме нагрузки турбогенератора сделана сравнительная оценка, насколько адекватно отображают его электромагнитное состояние в этом режиме классические векторные диаграммы Блонделя и Пот'е.

При анализе состояния и проектировании турбогенераторов (ТГ) классическими методами является общепринятым и эффективным использование векторных диаграмм (ВД), связывающих электрические и магнитные величины [1, 2]. Разнообразие ВД порождено стремлением адекватного отображения реального электромагнитного состояния ТГ в режиме нагрузки.

Чтобы отдать предпочтение конкретной диаграмме, необходимы критерии достоверности. Ими могли бы стать данные экспериментальных исследований. Однако в условиях производства мощных ТГ полномасштабный эксперимент в режиме нагрузки не представляется возможным. Приходится ограничиваться частными экспериментами в режимах холостого хода (XX) и короткого замыкания (K3). Однако экстраполяция данных этих экспериментов на режим нагрузки, как и сами ВД, сопряжены с целым рядом допущений и, следовательно, имеют ограниченную точность.

С развитием численных методов расчета электромагнитных полей [3] появились программные инструменты, например, [4], позволяющие наиболее точно определить расчетным путем состояние ТГ в режиме нагрузки и, следовательно, оценить различные варианты ВД. Вместе с тем, ВД можно использовать для предварительного задания величин и фазовых параметров токов обмоток ТГ [5]. И здесь также важен правильный выбор ВД с точки зрения минимума затрат на ее подготовку и последующее приближение полевого расчета к точному отображению заданного режима нагрузки ТГ.

Целью данной работы является сравнительная оценка эффективности наиболее распространенных вариантов ВД – ВД Блонделя и Потье [1, 2] посредством численно-полевых расчетов параметров ТГ в режиме нагрузки.

Для выполнения демонстрационных расчетов был выбран уже известный по [6] ТГ мощностью 320 МВт с номинальными фазным напряжением $U_{sN} = 11547$ В и коэффициентом мощности $\cos \varphi_N = 0.85$.

При построении диаграммы Блонделя необходимо знать следующие но-

минальные данные ТГ: номинальный фазный ток статора $I_{sN} = 10868 \text{ A}$, номинальное фазное напряжение статора и коэффициент мощности. Кроме этих данных необходимо иметь синхронное индуктивное сопротивление обмотки статора x_c и ненасы-

щенную характеристику холостого хода (HXXX), которые были рассчитаны с использованием метода конечных элементов, по программе FEMM.

Магнитное поле в поперечном сечении ТГ (рис.1) описывается дифференциальным уравнением

где A_z , J_z – аксиальные составляющие векторного магнитного потенциала (ВМП) и плотности тока; V - удельное магни-

тное сопротивление; \vec{k} - орт. На внешней границе области расчета для ВМП принято условие Дирихле

Рис. 1. Расчетная модель ТГ с картиной магнитного поля в режиме холостого хода

 $A_{7} = 0, \qquad (2)$

которым фактически ограничивается дальнейшее проникновение магнитного поля.

При расчете НХХХ в пазах ротора задали ток $I_f = 1000 \text{ A}$, заведомо во много раз меньше номинального, и произвели расчет. В результате получили распределение векторного магнитного потенциала A_z и по нему программными средствами FEMM нашли магнитное потокосцепление для одной фазы обмотки статора

$$\Psi_A = \frac{w_s l_a}{S_A} \mathbf{\check{o}}_{S_A} A_z dS , \qquad (3)$$

которое получается интегрированием по общей площади поперечного сечения S_A сторон ее секций, $w_s = 10$ число витков на фазу обмотки статора. Эта фазная обмотка должна находиться по отношению к ротору в положении, обеспе-

чивающем максимальное магнитное потокосцепление (МПС) Ψ_{mA} . Далее по формуле

 $E_{Af} = \sqrt{2}\pi \cdot f \cdot \Psi_{mA},$ (4) где частота $f = 50 \Gamma \mu$, определили ЭДС. которая индуктируется МПС при $\Psi_{mA} = 7,5$ Вб, $E_{A f} = 1670$ В. Полученных данных достаточно чтобы построить НХХХ, поскольку она имеет прямолинейный характер и строится из начала координат. На рис. 2 приведена НХХХ в относительных единицах. За базовые значения приняты номинальное напряжение и соответствующий этому напряжению по НХХХ ток возбуждения $I_f = 6935 \,\mathrm{A}$.

Чтобы найти синхронное индуктивное сопротивление обмотки статора, соответствующее рабочему режиму, использовали методику, описанную в [7]. Расчет вели при отсутствии тока в роторе, но при таком значении МПС Ψ_{mA} фазной обмотки, при котором по формуле (4) получается ЭДС, равная U_{sN} .

Для создания указанного МПС Ψ_{mA} было подобрано амплитудное значение тока статора $I_m = 7283, 2 \text{ A}$, и по формулам:

$$\begin{split} i_A &= I_m \cos(\omega t - \beta) \ ; i_B = I_m \cos(\omega t - \frac{2}{3}\pi - \beta) \ ; \\ i_C &= I_m \cos(\omega t + \frac{2}{3}\pi - \beta) \ (5) \end{split}$$

рассчитаны необходимые фазные токи обмоток статора. $\omega = 2\pi f -$ угловая частота; момент времени t = 0; угол сдвига осей намагничивания обмотки ротора и обмотки статора $\beta = 0$. После чего провели расчет индуктивности фазы $L_a = \Psi_{mA}/I_m$ и синхронного индуктивного сопротивления обмотки статора

 $x_c = 2\pi f L_a/Z_{\delta a3}$, где $Z_{\delta a3} = U_{sN}/I_{sN} = 1,064$ Ом. В результате получили $x_c = 2,115$ о.е. Следует отметить, что данный расчет не затрагивает лобовые части, поэтому и в полученное x_c не входит индуктивное сопротивление рассеяния лобовых частей обмотки, которое согласно классической методике не превышает 3% от x_c .

После предварительных расчетов была построена диаграмма Блонделя в относительных единицах, которая приведена на рис. 3. E_f – ЭДС индуктируемая током возбужде-

Рис. 4. Диаграмма Блонделя для ТГ

ния I_f ; I'_{fk} – ток возбуждения соответствующий установившемуся трехфазному короткому замыканию; I_{Σ} – ток возбуждения холостого хода. Из диаграммы были извлечены значение тока возбуждения: I_f =19240A и угла нагрузки Θ = 40,37°, которые должны соответствовать номинальному режиму работы TГ.

Чтобы это проверить, по программе FEMM был рассчитан режим номинальной нагрузки. Для этого был рассчитан угол сдвига осей намагничивания обмотки ротора и обмотки статора [5]:

$$\beta = \varphi + \Theta + 90 = 162,16^{\circ}$$
.

По (5) были рассчитаны мгновенные значения фазных токов для номинального тока статора, т.е. для $I_m = \sqrt{2} \times I_{sN} = 15370$ А. В результате численополевого расчета режима нагрузки ТГ были определены значения напряжения генератора $U_s = 9514$ В, и угла сдвига фаз $\varphi = 30,81^\circ$, которые существенно отличаются от номинальных. Было проведено еще ряд аналогичных расчетов. На каждом шаге постепенно изменяли угол β и ток возбуждения. В итоге при токе возбуждения $I_f = 21350$ А и $\beta = 157,7^\circ$ удалось существенно приблизиться к номинальным напряжению и углу сдвига фаз.

На следующем этапе проводилось построение диаграммы Потье. Для ее построения потребовались те же номинальные данные, что и для диаграммы Блонделя. Кроме этого по программе FEMM была рассчитана характеристика

холостого хода (XXX) [8]. Для этого провели ряд расчетов при отсутствии тока в обмотке статора. Последовательно задавали значения тока возбуждения, программными средствами FEMM находили магнитное потокосцепление (МПС) Ψ_m для одной фазы обмотки статора, расположенной в позиции, обеспечивающей максимальное МПС, и по формуле (4) находили ЭДС. Расчет завершили, когда ЭДС превысила номинальное фазное напряжение в 1,3 раза. На рис. 3 приведена XXX в относительных единицах. За базовые значения приняты номинальное напряжение и соответствующий этому напряжению по XXX ток возбуждения $I_f = 7519,2$ А. Из классического расчета были взяты ток реакции якоря, приведенный к обмотке ротора $I'_a = 2,0611$ о.е., и индуктивное сопротивление рассеяния якоря $x_{\sigma} = 0,1491$ о.е., причем без учета лобового рассеяния, поскольку и при численно-полевом расчете синхронного индуктивного сопротивления обмотки статора индуктивное сопротивление рассеяния якора и статора индуктивное сопротивление рассеяния обмотки статора индуктивное сопротивление рассеяния обмотки статора индуктивное сопротивление обмотки статора индуктивное сопротивление рассеяния обмотки статора не учитывалось.

Диаграмма Потье для ТГ приведена на рис. 4. E_{δ} – Э.Д.С в фазе обмотки якоря от результирующего потока в зазоре, с учетом реакции якоря; I_{δ} – ток возбуждения необходимый для создания E_{δ} . Из диаграммы были извлечены значение тока возбуждения I_f = 20820 A и угла нагрузки Θ = 39,2°, которые должны соответствовать номинальному режиму работы. Чтобы это проверить, по программе FEMM был рассчитан режим номинальной нагрузки. Для этого был рассчитан угол сдвига осей намагничивания обмотки ротора и обмотки статора [5]: $\beta = \varphi + \Theta + 90 = 160,99^\circ$.

По (5) были рассчитаны мгновенные значения фазных токов для номинального тока статора т.е. для $I_m = \sqrt{2} \times I_{sN} = 15370 \text{ A}. \text{ B pe-}$

зультате были определены значения напряжения генератора $U_s = 10790 B$, и угла сдвига фаз $\varphi = 36,12^\circ$, которые существенно отличаются от номинальных.

Таблица 1 – Сравнение расчетных параметров турбогенератора

 Θ , градус $U_{\rm c}$, B I_f , A φ, градус P. MBT Вариант расчета 40.37 По ВЛ Блонлеля 19240 9514 30.81 266 39.2 10790 284 По ВЛ Потье 20820 36,12 Полевой расчет 35.91 21350 11547 31.8 320

Вывод. Классические векторные диаграммы Блонделя и Потье наглядно отображают соотношения между электрическими и магнитными величинами в электрической машине. Однако представленные расчеты показали, что, если для численно-полевого расчета режима номинальной нагрузки ТГ принимать ток возбуждения и угол Θ , полученные из диаграмм Блонделя или Потье, то найденные напряжение, угол ϕ и мощность ТГ существенно отличаются от ожидаемых номинальных. Как видно из табл.1, параметры ТГ полученные на основе данных диаграммы Потье, ближе к номинальным, активная мощность ТГ получилась меньше номинальной на 11,3 %, а при расчете по диаграмме Блонделя на 16,9 %. Это объясняется тем, что при построении последней использовалась НХХХ. Поэтому в подобных расчетах целесообразно использовать диаграмму Потье.

Список литературы: 1. Вольдек А.И. Электрические машины. – Л.: Энергия, – 1978. – 832 с. 2. Титов В.В., Хторецкий Г.М. и др. Турбогенераторы. – Л.: Энергия, 1967. – 895 с. 3. Милых В.И., Полякова Н.В. Определение электромагнитных параметров электрических машин на основе численных расчетов магнитных полей // Електротехніка і електромеханіка. – Харків: НТУ "ХПІ". – 2006. – №2. – С.40-46. 4. Meeker D. Finite Element Method Magnetics. Version 4.0. User's Manual, January 26, 2004 // http://femm.berlios.de, 2003. 5. Милых В.И., Полякова Н.В. Анализ фазовых соотношений электромагнитных величин в турбогенераторе на основе численных расчетов магнитных полей // Електротехніка і електромеханіка. – Харків: НТУ "ХПІ". – 2003. – №4. – С.59-64. 6. Милых В.И., Бадовский В.А. Сравнительный анализ магнитного поля в турбогенераторе мощностью 320 MBr. // Вестник НТУ "ХПИ". Сб. науч. трудов. Тематический выпуск. Проблемы совершенствования электрических машин и аппаратов. – Харьков: НТУ "ХПИ". – 2006. – №35. – С. 74-78. 7. Милых В.И., .Полякова Н.В. Численно-полевой анализ индуктивных сопротивлений рассеяния турбогенератора. // Вестник НТУ "ХПИ". Сб. науч. трудов. Тематический выпуск. Электроэнергетика и преобразовательная техника. – Харьков: НТУ "ХПИ". – 2005. – №36. – С.39-46. 8. Милых В.И., Майстренко А.М., Бадовский В.А. Численно-полевой анализ режимов холостого хода и короткого замыкания турбогенератора. // Вестник НТУ "ХПИ". Сб. науч. ітрудов. Тематический выпуск. Электроэнергетика и преобразовательная техника. – Харьков: НТУ "ХПИ". - 2005. - №35. - С.113-116.

Поступила в редколлегию 31.04.08

Рис. 5. Диаграмма Потье для ТГ