УДК 621.313.13

М.В. ГУЛЫЙ, инженер

г. Одесса

ОСОБЕННОСТИ РАБОТЫ ВЕНТИЛЬНО-РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ С СИЛОВЫМ МОСТОМ МИЛЛЕРА

Розглянуто роботу чотирьохфазного вентильно-реактивного двигуна на природній механічній характеристиці у складі електронного комутатора Міллера. Досліджено причини появи додаткових імпульсів струму та їх вплив на характеристики вентильно-реактивного двигуна.

Рассмотрена работа четырехфазного вентильно-реактивного двигателя на естественной механической характеристике в составе электронного коммутатора Миллера. Исследованы причины появления дополнительных импульсов тока и их влияние на характеристики вентильно-реактивного двигателя.

Введение. Вентильно-реактивный двигатель (ВРД) состоит из электромеханического преобразователя (ЭМП) и электронного коммутатора (ЭК). Наличие ЭК позволяет использовать ВРД в системах с регулированием скорости в широких пределах – от сверхнизкой до высокой скорости, ограниченной естественной механической характеристикой. В последнем случае за период коммутации к фазе прикладывается полное напряжение источника питания, а регулирование тока с помощью ЭК не производится.

Цель работы – анализ причин и условий, при которых возникают дополнительные импульсы тока при работе вентильно-реактивного двигателя с электронным коммутатором Миллера.

Анализ схем вентильно-реактивных двигателей. Обычно для коммутации тока фазы ЭМП применяется полумостовая схема включения, для которой необходимо 2 силовых транзистора VT1, VT2 и 2 обратных силовых диода VD1, VD2 (рис. 1).

Для четырехфазного ЭМП необходимо четыре таких комплекта полумостовых схем. На практике для четырехфазного ЭМП применяются схемы ЭК Миллера с меньшим количеством силовых элементов [1, 2] (рис. 2,а). В ЭК Миллера за счет объединения фаз четырехфазного ЭМП в группы используется 6 силовых транзисторов и 6 силовых диодов, что по сложности соответствует ЭК для трехфазного ЭМП.

Рис. 1. Полумостовая схема включения фазы ЭМП.

Рис. 2. Схема ЭК Миллера (а) и поперечный разрез четырехфазного ЭМП (б).

В группы с одним общим верхним транзистором объединяются фазы ЭМП, одновременная работа которых исключается. Для ЭМП на рис. 2,6, такими фазами будут "a" – "c" под общим транзистором VT ac и "b" – "d" под общим транзистором VT bd.

Напряжение питания, В	24
Количество полюсов статора	8
Количество полюсов ротора	6
Номинальный вращающий момент, Нм	0,05
Внешний диаметр статора, мм	53
Активная длина статора, мм	28
Воздушный зазор, мм	0,15
Число витков фазы	60

Таблица 1 – Основные технические данные исследуемого ВРД

Для исследуемого четырехфазного ВРД, технические данные которого приведены в табл. 1, экспериментально получены осциллограммы напряжения u_{ϕ} и тока фазы i_{ϕ} (рис. 3) при его работе на естественной механической характеристике с номинальной нагрузкой для двух схем – ЭК с полным числом транзисторов и с ЭК Миллера. Исследование ВРД проводилось при углах включения и выключения фаз, которые составили 22,5 и 7,5 механических градусов соответственно. За начало отсчета принято согласованное положение полюсов статора и ротора.

Рис. 3. Осциллограммы напряжения и тока фазы ЭМП при работе исследуемого ВРД в составе полумостовой схемы с полным числом транзисторов (а) и с ЭК Миллера (б) при U_d=24В и номинальном вращающем моменте.

На участке 1 (рис. 3,а,б) на фазу "а" подается напряжение источника питания U_d и происходит нарастание тока фазы i_{ϕ} . Спадание тока фазы "а" (участок 2 на рис. 3,а,б) происходит на источник питания через обратные диоды ЭК, при этом ЭДС самоиндукции фазы принимает отрицательное значение и по величине превышает напряжение источника питания на величину падения напряжения на обратных диодах. На осциллограмме напряжения фазы "а" (рис. 3,а) наблюдается всплеск ЭДС e_{ϕ} . А при работе ВРД с ЭК Миллера (рис. 3,б) – на осциллограмме тока (участок 3) присутствует дополнительный импульс тока i_{ϕ}^* . Спадание тока i_{ϕ}^* на источник питания происходит быстро и сопровождается наличием отрицательной ЭДС самоиндукции e^* .

Как видно из осциллограммы (рис. 3,б), дополнительный импульс то-

ка i_{ϕ}^{*} в фазе "а" возникает между ее рабочими периодами в момент времени, когда возбужденной оказывается соседняя по группе фаза "с" (рис. 2,6). Учитывая, что при одновременном возбуждении и указанном направлении вращения ротора ВРД фазы "а" и "с" создают разные по знаку электромагнитные моменты – ток i_{ϕ}^{*} приводит к возникновению кратковременного генераторного (тормозного) режима работы фазы. В результате уменьшается электромагнитный момент ЭМП.

Рис. 4. Протекание импульса тока i_{ϕ}^* в фазе "с" при работе ВРД в составе ЭК Миллера.

При протекании рабочего тока фазы "с" (на рис. 4 рабочий тока фазы указан пунктирной линией с одной стрелкой) транзистор VT ас включен в течение всего периода работы фазы. При этом под действием наведенной ЭДС e_{ϕ} в фазе "а" (на рис. 4 показана стрелкой) возникает ток через обратный диод VD а и включенный транзистор VT ас. Путь замыкания дополнительного тока i_{ϕ}^* на рис. 4 показан пунктирной линией с двумя стрелками. Так как при этом фаза "а" с током i_{ϕ}^* находится на участке спадания магнитной проводимости, то создаются условия для самовозбуждения с лавинообразным нарастанием тока. Таким образом, при работе ВРД на естественной механической характеристике, т.е. при полном под-

веденном напряжении источника питания U_d к фазе за цикл ее работы, существует путь для протекания и нарастания дополнительного тока i_d^* .

При работе ВРД с регулированием тока, силовой транзистор "VT ас" за период работы как фазы "а", так и фазы "с" постоянно переключается с частотой ШИМ. За период включенного состояния силового транзистора "VT ас" не успевает сформироваться лавинообразный процесс возбуждения, и ток i^*_{ϕ} отсутствует, что подтверждается проведенными экспериментальными исследованиями.

Величина тока i_{ϕ}^* зависит от частоты вращения ротора ВРД. На рис. 5 приведены осциллограммы тока и напряжения фазы ЭМП при его работе с ЭК Миллера и двумя частотами вращения: 3500 об/мин (рис. 5,а) и 2500 об/мин (рис. 5,б).

Рис. 5. Влияние частоты вращения вала ЭМП на величину тока i^*_{ϕ} при работе ВРД с ЭК Миллера.

Изменение частоты вращения вала ВРД производилось с помощью регулирования напряжения питания ЭК. При практически одинаковой амплитуде рабочего тока в фазе $i_d = 6$ А, амплитуда тока i_d^* при частоте

вращения 3500 об/мин составляет 1А, а при частоте вращения 2500 об/мин – 0,5А. В процентном соотношении амплитуда дополнительного импульса тока по отношению к рабочему составила 16,7 % и 8,3 % соответственно.

Оценка влияния импульсов тока. Протекание импульса тока i_{ϕ}^{*} под действием наведенной ЭДС в фазе "с" при работе фазы "а" возможно при выполнении условий:

1. Наведенная ЭДС должна иметь такую полярность, чтобы ток i_{ϕ}^{*} мог замкнуться через силовой обратный диод "VD a" (рис. 4).

2. Величина наведенной ЭДС в фазе должна превысить величину падения напряжения на силовом диоде "VD a" в прямом направлении, т.е. быть больше, чем 0,6 В.

Результаты полевых расчетов показывают, что при определенных условиях магнитный поток, сцепленный с невозбужденными фазами достаточен для того, чтобы наведенная ЭДС превысила прямое падение напряжения на силовом диоде и вызвала начальное значение тока i_{d}^{*} .

Проведенные экспериментальные исследования позволяют оценить влияние возникающего дополнительного импульса тока i_{ϕ}^{*} на характеристики исследуемого четырехфазного ВРД при его работе на естественной механической характеристике. Как видно из рис. 3, при переходе ВРД из работы с полумостовым ЭК к работе с ЭК Миллера, амплитуда рабочего тока фазы практически не изменилась и составила 6,3 А. Результаты измерений показателей ВРД при проведении эксперимента занесены в табл. 2. Появление дополнительных импульсов тока i_{ϕ}^{*} при работе ВРД с номинальной нагрузкой в составе ЭК Миллера приводит к падению КПД ВРД на 1,4 %. Скорость вращения вала ЭМП при этом упала менее чем на 1%, а средний ток источника питания $I_{ИЛ}$ вырос на 2%.

ruosingu 2 - rooyinsturisi okenepitikenruisinere neenegobunitik Brig							
Силовая схема	Мн, Нм	Iun, A	Ud, B	<i>п</i> , об/мин	КПД [*] , %	<i>P</i> ₂ , Вт	
Полумостовая схема	0,05	2,27	24	4318	41,5	22,6	
Схема Миллера	0,05	2,33	24	4280	40,1	22,4	

Таблица 2 – Результаты экспериментального исследования ВРД

Выводы:

1. Установлено, что при работе четырехфазного ВРД с ЭК Миллера на естественной механической характеристике возникают дополнительные импульсы тока i_{d}^* в неактивной фазе. Возникновение дополнитель-

ных импульсов тока i_{ϕ}^* происходит по причине наличия взаимной магнитной связи между обмотками ЭМП и специфики алгоритма коммутации силовых транзисторов ЭК Миллера.

2. Определены условия возникновения дополнительных импульсов тока i_{ϕ}^{*} в неактивной фазе ЭМП. Подтверждено, что при регулировании тока фазы ЭМП с помощью ШИМ возникновение дополнительных импульсов тока i_{ϕ}^{*} не происходит.

3. Проведенный анализ работы исследуемого ВРД показал, что наличие дополнительных импульсов тока i^*_{ϕ} не привело к заметному ухудшению характеристик двигателя. Это позволяет рекомендовать его использование совместно с ЭК Миллера.

Список литературы: 1. Krishnan R. Switched Reluctance Motor Drives. Modeling, Simulation, Analysis, Design and Applications. – CRC Press, 2001. – 398 p. 2. Miller T.J.E. Switched Reluctance Motors and their Control. – Magna Physics publishing and Clarendon Oxford Press, 1993. – 203 p. 3. Ткачук В. Електромеханотроніка: Підручник. – Львів: Видавництво Національного університету "Львівська політехніка", 2006. – 440 с.

Поступила в редколлегию 04.09.08