УДК 550.388.2

М. В. ЛЯШЕНКО, А. В. СИЛАДИ

РЕГИОНАЛЬНАЯ МОДЕЛЬ ИОНОСФЕРЫ СЕRIM ПОN ПО ДАННЫМ ХАРЬКОВСКОГО РАДАРА НЕКОГЕРЕНТНОГО РАССЕЯНИЯ: РАСЧЕТ ТЕМПЕРАТУРЫ ЭЛЕКТРОНОВ И ИОНОВ

Для разработки модельного блока региональной модели ионосферы CERIM IION, предназначенного для расчета температуры электронов и ионов, выполнен анализ экспериментальных данных харьковского радара некогерентного рассеяния в период с 1997 по 2013 гг. На основе экспериментальных данных построены регрессионные зависимости температуры электронов T_e и ионов T_i от индекса солнечной активности $F_{10,7}$ для местного полдня и полуночи на высотах 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 и 750 км. Выполнен анализ полученных зависимостей. Приведены результаты сравнительного анализа экспериментальных высотных зависимостей температуры электронов и ионов с высотными зависимостями, рассчитанными по региональной модели ионосферы CERIM IION и глобальной модели ионосферы IRI-2007 для характерных геофизических периодов – весеннего и осеннего равноденствий, летнего и зимнего солнцестояний для фазы минимума 23-го цикла солнечной активности.

Ключевые слова: региональная модель ионосферы, температура электронов и ионов, индекс солнечной активности

Введение. Моделирование вариаций параметров ионосферы в различных гелиогеофизических условиях является одной из актуальных задач современной геофизики. В настоящее время на практике довольно широко используют ряд современных глобальных моделей ионосферы и атмосферы [1 – 8]. Модельные расчеты используются для прогноза состояния околоземного космического пространства, моделирования каналов распространения радиоволн и других целей специального назначения. Глобальные модели ионосферы строятся на основе большого объёма экспериментальных данных, полученных как наземными. так спутниковыми средствами зондирования дистанционного геокосмического пространства. Однако, наряду с преимуществами использования таких моделей, имеются и серьезные недостатки. Как показывает практика, современные глобальные модели ионосферы не всегда корректно отражают пространственно-временное распределение параметров среды в конкретном регионе при соответствующей гелиогеофизической обстановке. Этот факт обусловлен тем, что для построения глобальных моделей (так сложилось исторически) использовались экспериментальные ланные. полученные в большем объеме в западном полушарии. Как известно, ионосфера Земли не сферически симметричной, вследствие является географических несовпадения положения И геомагнитных полюсов. По этой причине, экспериментальных использование данных, полученных в одном регионе для прогноза состояния ионосферной плазмы другого региона в сходных гелиогеофизических условиях не всегда корректно [9-13]. Выходом из данной ситуации может быть построение локальных (региональных) моделей ионосферы. Региональная модель, имея самостоятельную ценность при решении прикладных задач моделирования состояния околоземного космического пространства И условий распространения радиоволн, также может быть использована для верификации И коррекции результатов расчетов по глобальным моделям ионосферы. В настоящее время, на базе экспериментальных радаров данных сети

некогерентного рассеяния разработаны и успешно используются такие региональные модели ионосферной плазмы [2, 14, 15].

Ранее в Институте ионосферы разработана модель ионосферы по данным региональная харьковского радара некогерентного рассеяния [16 -18]. С помощью разработанной региональной модели можно рассчитать количественные характеристики суточных и сезонных вариаций основных параметров геокосмоса и параметров динамических и тепловых процессов в ионосфере. Эмпирическая часть модели основана на экспериментальных данных, полученных на радаре НР в Харькове в период с 1997 по 2013 гг. Теоретическая часть модели для расчёта параметров среды, динамических и тепловых процессов включает себя известные теоретические соотношения. в Параметры нейтральной атмосферы задаются из термосферной эмпирической модели NRLMSISE-00 [3]. Результатами теоретического моделирования являются значения плотности полного потока частиц и потока частиц за счёт амбиполярной диффузии; величины скоростей эквивалентного нейтрального ветра и меридиональной составляющей нейтрального ветра; плотность потока тепла, переносимого электронами из плазмосферы в ионосферу; величина энергии, подводимой к электронному газу. Также рассчитываются значения продольной составляющей амбиполярной диффузии тензоров и теплопроводности электронного газа, частоты соударений заряженных и нейтральных частиц.

Результаты моделирования параметров ионосферной плазмы представлены в табличном виде. Каждая из таблиц представляет собой суточные вариации параметров ионосферы на фиксированных высотах для четырёх характерных геофизических периодов – весеннего и осеннего равноденствий, летнего и зимнего солнцестояний. Зависимость параметров ионосферы от солнечной активности определяется фазами цикла СА – минимум, максимум, спад и рост СА.

Целью работы является построение и анализ регрессионных зависимостей температуры электронов

© М. В. Ляшенко, А. В. Силади, 2015

и ионов в ионосфере по данным харьковского радара некогерентного рассеяния от индекса солнечной активности.

Средства и методы. Для решения поставленной задачи использованы экспериментальные данные о температурах электронов и ионов, полученные на харьковском радаре некогерентного рассеяния в 1997 – 2013 гг.

Для выявления зависимости температуры электронов и ионов применялся метод регрессионного анализа.

Постановка задачи. Для построения регрессионных зависимостей температуры электронов T_e и ионов T_i в ионосферной плазме от индекса солнечной активности $F_{10.7}$ использованы экспериментальные данные, полученные в спокойных гелиогеофизических условиях (индекс геомагнитной активности для рассмотренных периодов $K_p \leq 3$) в диапазоне высот 200 – 750 км (шаг по высоте 50 км).

Для анализа были взяты экспериментальные

данные для четырех характерных геофизических периодов – весеннего и осеннего равноденствий, летнего и зимнего солнцестояний в полуденные и полуночные часы.

Регрессионные зависимости температуры электронов и ионов от индекса солнечной активности имеют вид

$$T_e(F_{10.7}) = a_0 + a_1 \cdot F_{10.7},$$

$$T_i(F_{10.7}) = b_0 + b_1 \cdot F_{10.7}.$$

На рис. 1 – 4 представлены примеры регрессионных зависимостей T_e и T_i от индекса $F_{10.7}$, полученные для периода летнего солнцестояния для 00 и 12 EEST. Аналогичные графики строились для периодов зимнего солнцестояния, весеннего и осеннего равноденствий. Полученные коэффициенты регрессий заносились в сводные таблицы 1 - 4.

		7	e	T_i				
<i>Z</i> , КМ	00 EET		12 I	EET	00 H	EET	12 H	EET
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1
200	461,72	1,55	I	I	457,70	1,59	492,19	3,13
250	303,05	3,58	-	-	316,49	3,41	592,67	3,32
300	463,89	2,83	-	-	427,70	3,06	698,82	3,11
350	669,62	1,79	-	-	564,44	2,48	842,47	2,58
400	829,66	1,18	-	-	657,48	2,23	959,77	2,14
450	-	-	-	-	740,50	1,93	1083,93	1,63
500	-	-	-	-	797,23	1,74	1206,92	1,19
550	-	-	-	-	819,52	1,78	1310,46	0,98
600	-	-	2354,53	1,05	707,23	3,20	1208,56	3,10
650	_	I	2433,57	0,71	670,54	3,67	1176,46	4,31
700	_	_	2348,16	1,30	693,79	3,20	_	_
750	_	_	2383,18	1,31	659,28	3,57	_	_

Таблица 1 – Выборка коэффициентов регрессий для периода весеннего равноденствия

Таблица 2 – Выборка коэффициентов регрессий для периода летнего солнцестояния

		1	C _e			Ĺ	T_i	
<i>z</i> , км	00 EEST		12 E	EST	00 E	EST	12 E	EEST
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1
200	454,31	1,94	1777,83	0,99	464,28	1,65	633,11	2,14
250	410,991	2,95	1778,71	2,32	442,01	2,37	765,31	2,00
300	530,991	2,65	1906,00	1,87	542,08	2,27	937,24	1,78
350	658,49	2,22	2083,57	1,19	636,24	2,10	1094,85	1,35
400	750,49	2,06	2207,85	0,96	685,13	2,26	1213,25	1,11
450	837,28	1,90	2284,43	1,08	704,20	2,58	1328,60	0,96
500	925,02	1,72	2336,53	1,30	708,42	2,95	1439,10	0,93
550	1014,05	1,51	2373,43	1,54	706,65	3,29	1525,71	1,14
600	1101,71	1,27	2388,81	1,89	696,46	3,62	1577,68	1,63
650	1182,81	1,06	2385,48	2,33	678,87	3,95	1594,22	2,31
700	1238,70	1,36	2338,50	2,73	740,52	3,84	1490,85	3,21
750	1279,19	1,37	2310,26	3,20	749,00	3,93	1412,59	4,23

		1	Г _е			1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
<i>z</i> , км	00 E	EST	12 E	EEST	00 E	EST	12 E	EEST	
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1	
200	368,57	2,45	1668,72	0,13	367,87	2,45	603,18	1,98	
250	422,40	2,47	1751,43	0,65	449,89	2,09	706,99	2,42	
300	536,91	2,35	1911,30	0,26	548,28	2,05	846,49	2,25	
350	675,10	1,96	-	-	648,19	1,90	964,25	1,85	
400	820,30	1,49	_	-	748,68	1,54	1059,08	1,44	
450	939,96	1,21	-	-	810,87	1,49	1143,14	1,28	
500	1059,17	0,93	-	-	831,74	1,80	1217,39	1,48	
550	-	-	2248,54	2,83	793,82	2,64	1344,51	1,33	
600	1127,88	2,81	2385,76	2,31	773,21	3,21	1221,18	4,27	
650	1117,93	3,17	2481,26	0,22	774,89	3,48	1264,37	4,40	
700	_	_	-	-	_	_	_	_	
750	_	_	_	_	_	_	_	_	

Таблица 3 – Выборка коэффициентов регрессий для периода осеннего равноденствия

Таблица 4 – Выборка коэффициентов регрессий для периода зимнего солнцестояния

		7	l'e			1	$\begin{array}{r} 121\\ b_0\\ 661,46\\ 767,61\\ 832,54\\ 938,09\\ 1005,52\\ 1055,68\\ \end{array}$	
<i>z</i> , км	00 1	EET	12 I	EET	00]	EET	12 1	EET
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1
200	492,13	0,74	-	-	490,98	0,74	661,46	1,11
250	468,08	1,39	-	-	465,40	1,42	767,61	1,72
300	524,89	1,57	1958,74	0,71	491,12	1,80	832,54	2,08
350	649,28	1,26	2008,47	2,06	542,95	2,02	938,09	1,70
400	757,65	1,05	2001,10	3,48	563,12	2,43	1005,52	1,46
450	825,13	1,22	1969,61	4,68	555,01	2,97	1055,68	1,48
500	863,78	1,68	-	-	542,97	3,43	1092,51	1,81
550	872,38	2,41	-	-	533,89	3,75	1093,17	2,58
600	915,28	2,83	-	-	563,92	3,73	1063,10	3,64
650	948,73	3,29	-	-	605,04	3,62	-	-
700	911,95	4,02	2154,99	3,88	560,01	4,48	-	-
750	_	_	2114,37	4,20	586,79	4,51	_	_

Как показал регрессионный анализ, для некоторых высот невозможно получить соответствующие коэффициенты регрессий. Этот факт связан с тем, что экспериментальные данные неравномерно распределены по уровню солнечной активности. Подобная ситуация имела место при построении регрессионных зависимостей концентрации электронов в максимуме области F2 ионосферы N_m от индекса $F_{10,7}$ [19, 20]. Получено, что наибольшее количество данных имеется для фаз минимума и максимума солнечной активности, наименьшее _ для фазы спада И роста. Продолжительность фазы минимума и максимума солнечной активности в среднем примерно 3 - 3,5 года, тогда как продолжительность фазы роста и спада активности Солнца – примерно 2 – 2,5 года. Такая же ситуация обстоит и с экстремальными значениями $F_{10.7} > 250.$

Далее, используя полученные коэффициенты регрессий, восстанавливались высотные профили температуры электронов и ионов для трех уровней солнечной активности: низкой ($F_{10,7} = 70$), средней ($F_{10,7} = 120$) и высокой ($F_{10,7} = 190$). Результаты восстановления высотного хода температуры электронов и ионов представлены на рис. 5 – 8. Для высотных зависимостей также были получены соответствующие коэффициенты регрессий для трех уровней солнечной активности, полдня и полуночи и характерных геофизических периодов – весна, осень, зима, лето (см. табл. 5).

Полученные коэффициенты регрессий далее использовались для восполнения "пробелов" в табл. 1-4 на высотах, для которых не удалось построить регрессионную зависимость T_e и T_i от индекса $F_{10.7}$.

Рис. 1 – Регрессионные зависимости температуры электронов от индекса солнечной активности для летнего солнцестояния для 00 EEST

Рис. 2 – Регрессионные зависимости температуры электронов от индекса солнечной активности для летнего солнцестояния для 12 EEST

Рис. 3 – Регрессионные зависимости температуры ионов от индекса солнечной активности для летнего солнцестояния для 00 EEST

Рис. 4 – Регрессионные зависимости температуры ионов от индекса солнечной активности для летнего солнцестояния для 12 EEST

Рис. 5 – Высотные зависимости температуры электронов и ионов для периода весеннего равноденствия. Здесь и далее на рисунках: *a*, *z*) $F_{10.7} = 70$; *б*, *d*) $F_{10.7} = 120$; *в*, *e*) $F_{10.7} = 190$

Рис. 6 - Высотные зависимости температуры электронов и ионов для периода летнего солнцестояния

Рис. 7 – Высотные зависимости температуры электронов и ионов для периода осеннего равноденствия

Рис. 8 – Высотные зависимости температуры электронов и ионов для периода зимнего солнцестояния

		1	T_e			T_i			
$F_{10,7}$	00	LT	12	LT	00	LT	12	LT	
	d_0	d_1	d_0	d_1	e_0	e_1	e_0	e_1	
			Bece	ннее равноде	нствие				
70	-107,88	0,52	-2029,62	1,10	-402,79	1,08	-223,45	0,57	
120	-247,62	0,61	-4748,37	2,14	-569,18	1,11	-308,38	0,58	
190	-289,79	0,56	-4120,61	1,85	-603,54	0,95	-323,39	0,52	
			Лет	нее солнцесто	яние				
70	-183,19	0,66	-1098,38	0,68	-502,99	1,15	-240,17	0,52	
120	-315,66	0,73	-1100,66	0,66	-469,27	0,95	-271,52	0,50	
190	-535,86	0,83	-1035,95	0,60	-420,19	0,75	-273,16	0,46	
			Ocer	ннее равноден	ствие				
70	-71,03	0,52	-647,00	0,50	-279,46	0,85	-231,08	0,55	
120	-116,38	0,51	-566,34	0,44	-338,47	0,81	-216,61	0,49	
190	-149,58	0,47	-439,91	0,36	-351,63	0,70	-160,48	0,40	
			Зим	нее солнцесто	ояние				
70	-158,62	0,69	-1945,33	1,08	-623,12	1,47	-371,39	0,71	
120	-121,22	0,58	-1213,39	0,71	-404,25	0,99	-334,75	0,62	
190	-74,94	0,47	-725,37	0,46	-259,75	0,67	-273,41	0,51	

Таблица 5 – Регрессионные коэффициенты восстановленных высотных зависимостей температуры электронов и ионов

В табл. 6 – 9 приведены скорректированные коэффициенты регрессий для расчета T_e и T_i в зависимости от индекса солнечной активности $F_{10.7}$ для полуночи и полудня, четырех характерных геофизических периодов в высотном диапазоне 200 – 750 км.

Результаты сравнительного анализа. Используя полученные модельные зависимости, выполнено сравнение результатов расчетов температуры электронов и ионов по региональной модели CERIM IION, глобальной международной справочной модели ионосферы IRI-2007 [4] и экспериментальными данными радара некогерентного рассеяния в Харькове. Для расчетов были выбраны следующие даты: 2 марта 2007 г., 20 июня 2007 г., 25 сентября 2007 г. и 20 декабря 2007 г., что соответствует фазе минимума 23-го цикла солнечной активности. Выбранные периоды характеризовались спокойной гелиогеофизической обстановкой. Индекс геомагнитной активности A_p не превышал 12 единиц, K_p -индекс варьировался в пределах 0 – 3. Поток радиоизлучения Солнца на длине волны 10,7 см менялся в пределах (66 – 73)·10⁻²² Вт·м⁻²·Гц⁻¹.

На рис. 9 – 10 приведены экспериментальные высотные профили T_e и T_i и результаты расчетов по моделям CERIM IION и IRI-2007.

Таблица 6 – Коэффициенты регрессий для расчета температуры T_e и T_i от индекса $F_{10.7}$ для весеннего равноденствия

		7	[e		T_i			
<i>z</i> , км	00 EET		12 I	EET	00 1	EET	12 H	EET
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1
200	440,64	2,29	1908,57	2,43	400,28	2,35	596,42	2,20
250	535,66	2,25	1958,18	2,29	441,32	2,41	676,60	2,28
300	630,68	2,20	2007,79	2,15	482,36	2,46	756,78	2,36
350	725,71	2,15	2057,40	2,00	523,40	2,52	836,96	2,43
400	820,73	2,10	2107,01	1,86	564,43	2,57	917,14	2,51
450	915,75	2,05	2156,62	1,72	605,47	2,63	997,31	2,59
500	1010,78	2,00	2206,23	1,58	646,51	2,68	1077,49	2,67
550	1105,80	1,95	2255,84	1,44	687,55	2,74	1157,67	2,74
600	1200,83	1,90	2305,45	1,30	728,59	2,79	1237,85	2,82
650	1295,85	1,85	2355,05	1,16	769,63	2,84	1318,02	2,90
700	1390,87	1,81	2404,66	1,02	810,66	2,90	1398,20	2,98
750	1485,90	1,76	2454,27	0,88	851,70	2,95	1478,38	3,05

		1	e			T_i			
<i>Z</i> , КМ	00 EEST		12 E	EST	00 E	EST	12 E	EST	
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1	
200	401,59	2,54	1814,05	1,31	483,98	1,82	759,66	1,39	
250	485,91	2,41	1880,76	1,40	513,46	2,02	849,00	1,48	
300	570,22	2,28	1947,47	1,48	542,95	2,22	938,34	1,57	
350	654,54	2,16	2014,18	1,57	572,44	2,41	1027,69	1,67	
400	738,86	2,03	2080,89	1,65	601,92	2,61	1117,03	1,76	
450	823,18	1,90	2147,60	1,74	631,41	2,80	1206,37	1,85	
500	907,49	1,77	2214,30	1,82	660,90	3,00	1295,71	1,95	
550	991,81	1,64	2281,01	1,91	690,39	3,20	1385,06	2,04	
600	1076,13	1,51	2347,72	2,00	719,87	3,39	1474,40	2,13	
650	1160,45	1,38	2414,43	2,08	749,36	3,59	1563,74	2,23	
700	1244,76	1,26	2481,14	2,17	778,85	3,78	1653,08	2,32	
750	1329,08	1,13	2547,85	2,25	808,33	3,98	1742,43	2,41	

Таблица 7 – Коэффициенты регрессий для расчета температуры T_e и T_i от индекса F_{10.7} для летнего солнцестояния

Таблица 8 – Коэффициенты регрессий для расчета температуры T_e и T_i от индекса $F_{10.7}$ для осеннего равноденствия

		7	e			T_i			
<i>Z</i> , KM	00 EEST		12 E	EST	00 E	EST	12 E	EST	
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1	
200	403,10	1,77	1662,84	0,53	444,46	1,81	723,64	0,97	
250	493,63	1,85	1739,89	0,84	495,64	1,91	793,29	1,26	
300	584,17	1,93	1816,94	1,16	546,81	2,01	862,94	1,55	
350	674,70	2,00	1893,99	1,47	597,98	2,11	932,59	1,84	
400	765,24	2,08	1971,04	1,79	649,16	2,21	1002,24	2,13	
450	855,77	2,15	2048,09	2,10	700,33	2,32	1071,88	2,41	
500	946,31	2,23	2125,14	2,41	751,50	2,42	1141,53	2,70	
550	1036,84	2,30	2202,19	2,73	802,68	2,52	1211,18	2,99	
600	1127,38	2,38	2279,24	3,04	853,85	2,62	1280,83	3,28	
650	1217,91	2,46	2356,29	3,36	905,02	2,72	1350,47	3,57	
700	1308,45	2,53	2433,34	3,67	956,20	2,83	1420,12	3,86	
750	1398,99	2,61	2510,39	3,99	1007,37	2,93	1489,77	4,15	

Таблица 9 – Коэффициенты регрессий для расчета температуры T_e и T_i от индекса F_{10.7} для зимнего солнцестояния

		1	Г _е		T_i			
<i>z</i> , км	00 EET		12 I	EET	00 I	EET	12 H	EET
	a_0	a_1	a_0	a_1	b_0	b_1	b_0	b_1
200	485,39	0,54	1979,03	0,15	485,59	1,05	731,80	1,03
250	537,94	0,82	1988,54	0,66	495,80	1,39	785,23	1,26
300	590,48	1,10	1998,06	1,18	506,02	1,73	838,66	1,49
350	643,03	1,38	2007,58	1,70	516,23	2,06	892,09	1,72
400	695,57	1,67	2017,10	2,22	526,45	2,40	945,52	1,95
450	748,12	1,95	2026,62	2,74	536,66	2,74	998,95	2,19
500	800,66	2,23	2036,13	3,25	546,87	3,08	1052,38	2,42
550	853,21	2,52	2045,65	3,77	557,09	3,42	1105,81	2,65
600	905,75	2,80	2055,17	4,29	567,30	3,75	1159,24	2,88
650	958,30	3,08	2064,69	4,81	577,51	4,09	1212,67	3,11
700	1010,84	3,37	2074,21	5,33	587,73	4,43	1266,10	3,34
750	1063,39	3,65	2083,72	5,84	597,94	4,77	1319,53	3,58

Рис. 9 – Высотные профили температуры электронов и ионов для периодов весеннего (*a*) и осеннего (б) равноденствий. Здесь и далее на графиках обозначены кривые: звездочки – экспериментальные данные; кружки – расчет по модели CERIM IION; сплошная – расчет по модели IRI-2007

Рис. 10 – Высотные профили температуры электронов и ионов для периодов летнего (*a*) и зимнего (б) солнцестояний

Как видно из рис. 9a, для периода, близкого к весеннему равноденствию, значения температуры ионов, рассчитанные по модели CERIM IION, хорошо согласуются с экспериментальными данными в околополуденные часы, тогда как в 00 ЕЕТ расчет и экспериментальные данные имеют близкие значения только в диапазоне высот 200 – 300 км. Выше 300 км имеет место занижение модельных данных по сравнению с экспериментом. Как видно из рисунка, глобальная модель IRI для 00 ЕЕТ завышает значения T_i как по сравнению с экспериментом, так и расчетами по модели CERIM IION. В околополуденные часы расчеты T_i по модели IRI хорошо согласуются с экспериментом и расчетами по модели CERIM IION в диапазоне высот 200 – 350 км. Для температуры электронов в околополуночные часы имеет место хорошее согласие между экспериментом и моделью CERIM IION, тогда как значения T_e , рассчитанные по модели IRI, превышают экспериментальные во всем рассматриваемом диапазоне высот. Для полуденных значений T_e в диапазоне высот 300 – 500 км наблюдается неплохое соответствие между

экспериментальными данными и расчетами по моделям CERIM IION и IRI-2007.

Для периода осеннего равноденствия (рис. 9б) получено, что хорошее согласие между рассчитанными и экспериментальными значениями температуры ионов наблюдаются в околополуденные часы. Для ночных условий, как и для весеннего периода, расчеты по модели CERIM IION неплохо согласуются с экспериментом в диапазоне высот 200 -300 км. С ростом высоты расчеты по региональной модели занижены по сравнению С экспериментальными значениями T_i. Модель IRI во рассматриваемом диапазоне высот всем лает завышенные значения температуры ионов по сравнению, как с экспериментом, так и расчетами по модели CERIM IION. Для температуры электронов наблюдается схожая ситуация. Для 00 EEST расчеты по региональной модели хорошо согласуются с экспериментом, тогда как расчеты по глобальной модели IRI-2007 завышены во всем рассматриваемом высотном диапазоне. Для полуденных значений Те имеет место следующая ситуация. Экспериментальные температуры значения электронов и расчеты по модели IRI близки в диапазоне высот 300 - 400 км. На высотах выше и ниже данного диапазона значения Т_е, рассчитанные по глобальной модели ионосферы меньше значений Т_е, полученных в ходе эксперимента на радаре НР. Расчеты T_e по модели CERIM IION практически во всем рассматриваемом высотном диапазоне занижены по сравнению с расчетами по модели IRI и экспериментом.

Для периода летнего солнцестояния (рис. 10а) сравнительный анализ показал, что расчеты Те по региональной модели ионосферы CERIM IION как в дневных, так и ночных условиях хорошо согласуются с экспериментальными данными. Величина Т_е, рассчитанная по модели IRI, во всем рассматриваемом диапазоне высот превышает значения температуры электронов, полученной экспериментально и с помощью модели CERIM IION. Значения температуры ионов для 00 EEST, рассчитанные по региональной близки значениям модели, T_i полученных в ходе наблюдений на радаре некогерентного рассеяния. Модель IRI также существенно завышает значения Т_i, по сравнению с региональной моделью и экспериментом. В дневных условиях в диапазоне высот 350 - 500 км расчеты по модели IRI близки к экспериментальным данным. На высотах ниже 350 км глобальная модель IRI завышает значения Т_i по сравнению с экспериментальными значениями. Расчеты по региональной модели ионосферы CERIM IION показали, что практически во всем диапазоне высот имеет место завышение значений температуры ионов по сравнению с экспериментом и расчетами по глобальной модели ионосферы IRI-2007.

Для периода зимнего солнцестояния (рис. 10б) получены следующие результаты. В ходе сравнительного анализа получено, что в ночных условиях как для T_e , так и T_i расчеты по модели IRI-2007 существенно завышают значения температуры электронов и ионов, полученных экспериментально и рассчитанных по региональной модели CERIM IION. Значения T_i по модели CERIM IION существенно превышают экспериментальные значения, начиная с высоты примерно 300 км. Сравнение температуры электронов, полученной по региональной модели и экспериментальным путем, показало хорошее соответствие между экспериментом и модельными расчетами.

В дневных условиях значения T_e , рассчитанные по модели CERIM IION близки экспериментальным только на высотах z > 350 км. Ниже 350 км модельные расчеты завышают значения T_e по сравнению с экспериментом. Расчеты по модели IRI показали хорошее согласие с экспериментальными данными в диапазоне высот 200 – 350 км. С ростом высоты имеет место завышение рассчитанных значений T_e по модели IRI-2007 по сравнению с экспериментальными результатами.

Обсуждение полученных результатов. Анализ экспериментальных данных, полученных на радаре некогерентного рассеяния в период с 1997 по 2013 гг., показал, что на основе имеющихся данных о температурах электронов и ионов, можно получить регрессионные зависимости температур заряженных частиц от уровня солнечной активности (индекса Полученные коэффициенты регрессии F_{107}) позволяют рассчитать температуру электронов и ионов в околополуденные и околополуночные часы для четырех характерных геофизических периодов (весна, осень, лето, зима) в широком диапазоне высот 200 – 750 км. Как показал регрессионный анализ экспериментальных данных, основной проблемой является недостаток данных, полученных на быстропротекающих фазах цикла солнечной активности (фазы роста и спада), а также в периоды очень высокой (экстремальной) активности Солнца. Решить данную проблему можно проведением дополнительных экспериментальных исследований для указанных сезонов и уровней солнечной активности.

Сравнительный анализ экспериментальных данных и результатов расчета по региональной модели ионосферы CERIM IION и глобальной модели IRI-2007 показал, что разрабатываемая в Институте ионосферы региональная модель довольно корректно отражает высотно-временные вариации температуры электронов и ионов. Расчет значений температуры частиц по модели IRI-2007, заряженных в большинстве случаев, завышает значения T_e и T_i, полученных экспериментально и рассчитанных по модели CERIM IION.

Выводы. В ходе регрессионного и сравнительного анализа, выполненного в настоящей работе, получены следующие результаты.

1. Построены регрессионные зависимости температуры электронов и ионов от индекса солнечной активности для 00 и 12 часов, четырех

характерных геофизических периода (весеннее и осеннее равноденствия, летнее и зимнее солнцестояния) в диапазоне высот 200 – 750 км.

2. Получены соответствующие коэффициенты регрессий для расчета температуры электронов и ионов в рамках дальнейшего развития региональной модели ионосферы CERIM IION по данным харьковского радара некогерентного рассеяния.

3. Сравнительный анализ экспериментальных данных с расчетами по моделям CERIM IION и IRI-2007 показал, что значения температуры электронов и ионов по региональной модели ионосферы CERIM IION, по сравнению с глобальной моделью IRI-2007, в целом, хорошо согласуются с экспериментальными данными. Модель CERIM IION корректно отражает высотный ход температуры электронов и ионов в дневных и ночных условиях.

Список литературы: 1. Lathuillere C. From the Sun's atmosphere to the Earth's atmosphere: an overview of scientific models available for space weather developments / C. Lathuillere, M. Menvielle, J. Lilensten, T. Amari, S.M. Radicella // Ann. Geophysicae. - 2005. - Vol. 20. -P. 1081-1104. 2. Zhang S. Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars / S. Zhang, J.M. Holt, A.P. Eyken, M. McCready, C. Amory-Mazaudier, S. Fukao, M. Sulzer // Geophys. Res. Lett. - 2005. - Vol. 32. - L20102, doi: 10.1029/2005GL023603. 3. Picone J.M. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues / J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin // J. Geophys. Res. -2002. - Vol. 107, № A12. - P. 1-16. 4. Bilitza D. International Reference Ionosphere 2007: Improvements and new parameters / D. Bilitza, B. Reinisch // J. Adv. Space Res. - 2008. - Vol. 42, № 4. - P. 599-609, doi:10.1016/j.asr.2007.07.048. 5. Anderson D.N. Intercomparison of physical models and observations of the ionosphere / D.N. Anderson, M.J. Buonsanto, M. Codrescu, D. Decker, C.G. Fesen, T.J. Fuller-Rowell, B.W. Reinisch, P.G. Richards, R.G. Roble, R.W. Schunk, J.J. Sojka // J. Geophys. Res. - 1998. - Vol. 103, № A2. - P. 2179-2192. 6. Чернышев О.В. Прогноз максимальных применимых частот / О.В. Чернышев, Т.Г. Васильева. М.: Наука, 1973. - 113 с. 7. Ануфриева Т.А. Геометрические параметры слоя F2 ионосферы / *Т.А. Ануфриева, Б.С. Шапиро.* М.: Наука, 1976. – 91 с. **8.** Поляков В.М. Полуэмпирическая ионосферы модель В.М. Поляков, В.Е. Суходольская, М.К. Ивельская, Г.В. Шапранова // Материалы мирового центра данных Б. - М.: Гидрометеоиздат, 1978. - 112 c. 9. Bhuyan P.K. Electron density measurements in the topside F-region and its comparison with the IRI in the 75° E longitude sector / P.K. Bhuyan, Chamua Minakshi // J. Atmos. Solar-Terr. Phys. -2002. - Vol. 1. - P. 55-64. 10. Araujo-Pradere E.A. Time empirical ionospheric correction model (STORM) response in IRI-2000 and challenges for empirical modeling in the future / E.A. Araujo-Pradere, T.J. Fuller-Rowell, D. Bilitza // Radio Sci. - 2004. - Vol. 39. - RS1S24. - doi:10.1029/ 2002RS002805. 11. Sethi N.K. Diurnal and seasonal variations of h_m F2 deduced from digital ionosonde over New Delhi and its comparison with IRI 2001 / N.K. Sethi, R.S. Dabas, V.K. Vohra // Ann. Geophysicae. - 2004. - Vol. 22. - P. 453-458. 12. Захаров И.Г. Сравнение экспериментальных и модельных значений полного электронного содержания в ионосфере над Восточной Европой / И.Г. Захаров, М.В. Ляшенко // Радиофизика и радиоастрономия. -2003. - T. 8, № 3. - C. 280-286. 13. Taran V.I. Spatial and temporal distribution of the total electron content inferred from beacon-satellite observations and Kharkiv incoherent scatter radar data / V.I. Taran, I.G. Zakharov, O.F. Tyrnov, M.V. Lyashenko // Adv. Space Res. - 2007. - Vol. 39, № 5. - P. 803-807. 14. Zang S. Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987 / S. Zang, J.M. Holt, A.M. Zalucha // J. Geophys. Res. - 2004. - Vol. 109, № A11311. - P. 1-9. 15. Holt J.M. Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data / J.M. Holt, S. Zhang, M.J. Buonsanto // Geophys. Res. Lett. - 2005. - Vol. 29, № 8. 10.1029/2002GL014678. 16. Ляшенко М.В. Полуэмпирическая модель параметров динамических процессов в геокосмической

плазме (100-1000 км) / М.В. Ляшенко // Международная Байкальская Молодежная Научная Школа по Фундаментальной Физике. IX Конференция молодых ученых "Физические процессы в космосе и околоземной среде", 11 – 16 сентября 2006 г. Программа и тезисы докладов. – Иркутск: Изд-во ИСЗФ СО РАН, 2006. – С. 62-63. 17. Ляшенко М.В. Региональная модель ионосферы по данным харьковского радара некогерентного рассеяния: дис. ... кандидата физ.-мат. наук: 04.00.22 / Ляшенко Михаил Владимирович.- Х., 2008.-204 c. 18. Lyashenko M. Development of Central Europe Regional Ionospheric Model (CERIM IION) based on Kharkov Incoherent Scatter Data / M. Lyashenko, I. Domnin, L. Chernogor // Workshop on Assessment and Validation of Space Weather Models (Alcala de Henares, Spain, 16 - 17 March, 2011). - 2011. - P. 23-24. 19. Lyashenko M.V. Simulation of Seasonal Variations of Electron Concentration in the Ionospheric F2-Peak for Midnight and Noon Local Time / M.V. Lyashenko // Telecommunications and Radio Engineering.-2005. 64. Ρ. 973-980. № 11. doi: 10.1615/TelecomRadEng.v64.i11.90. 20. Chernogor L. Central Europe Ionospheric Model (CERIM IION) based on Kharkiv Incoherent Scatter Radar Database: Ionospheric F2 Peak Electron Density Simulation / L. Chernogor, I. Domnin, M. Lyashenko // Workshop of Final Results COST Action ES0803 "Developing space weather products and services in Europe" (13-14 March 2012, Prague, Czech Republic).-2012. - P. 35.

Bibliography (transliterated): 1. Lathuillere C. From the Sun's atmosphere to the Earth's atmosphere: an overview of scientific models avaible for space weather developments / C. Lathuillere, M. Menvielle, J. Lilensten, T. Amari, S.M. Radicella // Ann. Geophysicae. - 2005. - Vol. 20. - P. 1081-1104. 2. Zhang S. Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars / S. Zhang, J.M. Holt, A.P. Eyken, M. McCready, C. Amory-Mazaudier, S. Fukao, M. Sulzer // Geophys. Res. Lett. - 2005. - Vol. 32. - L20102, doi: 10.1029/2005GL023603. 3. Picone J.M. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues / J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin // J. Geophys. Res. -2002. - Vol. 107, № A12. - P. 1-16. 4. Bilitza D. International Reference Ionosphere 2007: Improvements and new parameters / D. Bilitza, B. Reinisch // J. Adv. Space Res. - 2008. - Vol. 42, № 4. - P. 599-609, doi:10.1016/j.asr.2007.07.048. 5. Anderson D.N. Intercomparison of physical models and observations of the ionosphere / D.N. Anderson, M.J. Buonsanto, M. Codrescu, D. Decker, C.G. Fesen, T.J. Fuller-Rowell, B.W. Reinisch, P.G. Richards, R.G. Roble, R.W. Schunk, J.J. Sojka // J. Geophys. Res. - 1998. - Vol. 103, № A2. - P. 2179-2192. 6. Chernyshev O.V. Prognoz maksimal'nyh primenimyh chastot / O.V. Chernyshev, T.G. Vasil'eva.- M.: Nauka, 1973. - 113 s. 7. Anufrieva T.A. Geometricheskie parametry sloya F2 ionosfery / T.A. Anufrieva, B.S. Shapiro.- M.: Nauka, 1976. 91 S. 8. Polyakov V.M. Poluempiricheskaya model' ionosfery / V.M. Polyakov, V.E. Suhodol'skaya, M.K. Ivel'skaya, G.V. Shapranova // Materialy mirovogo centra dannyh B. - M.: Gidrometeoizdat, 1978. - 112 s. 9. Bhuyan P.K. Electron density measurements in the topside F-region and its comparison with the IRI in the 75° E longitude sector / P.K. Bhuyan, Chamua Minakshi // J. Atmos. Solar-Terr. Phys. - 2002. -Vol. 1. - P. 55-64. 10. Araujo-Pradere E.A. Time empirical ionospheric correction model (STORM) response in IRI-2000 and challenges for empirical modeling in the future / E.A. Araujo-Pradere, T.J. Fuller-Rowell, D. Bilitza // Radio Sci. - 2004. - Vol. 39. - RS1S24. doi:10.1029/ 2002RS002805. 11. Sethi N.K. Diurnal and seasonal variations of h_m F2 deduced from digital ionosonde over New Delhi and its comparison with IRI 2001 / N.K. Sethi, R.S. Dabas, V.K. Vohra // Ann. Geophysicae. - 2004. - Vol. 22. - P. 453-458. 12. Zakharov I.G. Sravnenie eksperimental'nyh i model'nyh znacheniy polnogo elektronnogo soderzhaniya v ionosphere nad Vostochnoy Evropoy / I.G. Zakharov, M.V. Lyashenko // Radiofizika i radioastronomiya. -2003. - T. 8, № 3. - S. 280-286. 13. Taran V.I. Spatial and temporal distribution of the total electron content inferred from beacon-satellite observations and Kharkiv incoherent scatter radar data / V.I. Taran, I.G. Zakharov, O.F. Tyrnov, M.V. Lyashenko // Adv. Space Res. - 2007. - Vol. 39, № 5. - P. 803-807. 14. Zang S. Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987 / S. Zang, J.M. Holt, A.M. Zalucha // J. Geophys. Res. - 2004. - Vol. 109, № A11311. - P. 1-9. 15. Holt J.M. Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data / J.M. Holt, S. Zhang, M.J. Buonsanto // Geophys. Res. Lett. – 2005. – Vol. 29, № 8. – 10.1029/2002GL014678.
16. Lyashenko M.V. Poluempiricheskaya model' parametrov dinamicheskih processov v geokosmicheskoy plasme (100–1000 km) / M.V. Lyashenko // Mezhdunarodnaya Baykal'skaya Molodezhnaya Nauchnaya Shkola po Fundamental'noy Fizike. IX Konferenciya molodyh uchenyh "Fizicheskie processy v kosmose i okolozemnoy srede", 11 – 16 sentyabrya 2006 g. Programma i tezisy dokladov.– Irkutsk: Izd-vo ISZS SO RAN, 2006.–S. 62–63.
17. Lyashenko M.V. Regional'naya model' ionosfery po dannym khar'kovskogo radara nekogerentnogo rasseyaniya: dis. ... kandidata fiz.-mat. nauk: 04.00.22 / Lyashenko Mikhail Vladimirovich.– Kh., 2008.–204 s.
18. Lyashenko M. Development of Central Europe Regional Ionospheric Model (CERIM IION) based on Kharkov Incoherent Scatter Data / M. Lyashenko, I. Domnin, L. Chernogor // Workshop on Assessment and Validation of Space Weather Models

(Alcala de Henares, Spain, 16 - 17 March, 2011). - 2011. - P. 23-24. 19. Lyashenko M.V. Simulation of Seasonal Variations of Electron Concentration in the Ionospheric F2-Peak for Midnight and Noon Local Time / M.V. Lyashenko // Telecommunications and Radio Engineering.-973-980. 2005. 64. N⁰ 11. – P. doi: 10.1615/TelecomRadEng.v64.i11.90. 20. Chernogor L. Central Europe Ionospheric Model (CERIM IION) based on Kharkiv Incoherent Scatter Radar Database: Ionospheric F2 Peak Electron Density Simulation / L. Chernogor, I. Domnin, M. Lyashenko // Workshop of Final Results COST Action ES0803 "Developing space weather products and services in Europe" (13-14 March 2012, Prague, Czech Republic).-2012. - P. 35.

Поступила (received) 31.08.2015

Відомості про авторів / Сведения об авторах / About the Authors

Ляшенко Михайло Володимирович – учений секретар Інституту іоносфери НАН та МОН України, м. Харків; тел.: (057) 707-65-27; e-mail: mlyashenko@ya.ru.

Ляшенко Михаил Владимирович – ученый секретарь Института ионосферы НАН и МОН Украины, г. Харьков; тел.: (057) 707-65-27; e-mail: mlyashenko@ya.ru.

Lyashenko Mykhaylo Volodymyrovych – scientific secretary of Institute of ionosphere, NAS and MES of Ukraine, Kharkiv; phone: (057) 707-65-27; e-mail: mlyashenko@ya.ru.

Сіладі Олександр Віталійович – студент Арктичного університету Норвегії, м. Тромсьо, Норвегія, тел.: (066) 155-52-20; e-mail: sean-89@ya.ru.

Силади Александр Витальевич – студент Арктического университета Норвегии, г. Тромсё, Норвегия; тел.: (066) 155-52-20; e-mail: sean-89@ya.ru.

Siladi Oleksandr Vitaliyovych – student of the UiT Arctic University of Norway, Tromsø, Norway; phone: (066) 155-52-20; e-mail: sean-89@ya.ru.