В.М.ЗОЛОТАРЕВ, д-р техн. наук., ген. директор, ПАО «Завод Южкабель», Харьков;

В.П.КАРПУШЕНКО, канд. экон. наук, советник ген. директора, ПАО «Завод Южкабель», Харьков;

В.В.ЗОЛОТАРЕВ, нач. отдела, ПАО «Завод Южкабель», Харьков; **Ю.А.АНТОНЕЦ**, канд. техн. наук, техн. директор, ПАО «Завод Южкабель», Харьков

А.А.НАУМЕНКО, канд. техн. наук, вед. специалист, ПАО «Завод Южкабель», Харьков

ТАНГЕНС УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ МНОГО-СЛОЙНЫХ СШИТЫХ ИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ

На основі математичної моделі стаціонарного електричного поля в багатошаровому неідеальному діелектрику визначений тангенс кута діелектричних втрат у багатошарових зшитих (вулканізованих) конструкціях силових кабелів і проводів.

On the basis of mathematical model of stationary electric field in multilayer non-ideal dielectric, the tangent of dielectric loss angle in multilayer crosslinked (vulcanized) structures of power cables and wires are detected.

На основе математической модели стационарного электрического поля в многослойном неидеальном диэлектрике определен тангенс угла диэлектрических потерь в многослойных сшитых (вулканизованных) конструкциях силовых кабелей и проводов.

Анализ публикаций. Задачи о распределении электрического поля в многослойном диэлектрике имеют важные практические приложения, прежде всего, при разработке многослойных конструкций сердечников кабелей с изоляцией из сшитого полиэтилена [1, 2]. В [3] решение дано для осесимметричной коаксиальной модели без учета активной проводимости в слоях. Решение нестационарной задачи для плоского конденсатора с двухслойным неидеальным диэлектриком приведено в [4]. Однако, ни одна из приведенных работ не позволяет получить решение задачи для многослойного неидеального диэлектрика, расположенного между коаксиальными проводящими цилиндрами, к которым приложено переменное напряжение низкой частоты для случая, когда электромагнитный процесс является стационарным, то есть в том случае, когда закончились все переходные процессы.

Постановка задачи. Воздействие переменного электрического поля на реальны диэлектрик помимо чисто реактивного тока, вызывает в нем и дополнительные токи, которые зависят от качества диэлектрика. К ним относятся:

 сквозной ток проводимости или ток утечки, обусловленный чисто активной проводимостью диэлектрика;

- ток и, соответственно, потери, обусловленные поляризацией молекул под действием переменного поля;
- адсорбционный ток, возникающий вследствие имеющихся микронеоднородностей структуры диэлектрика;
- эквивалентный ток, связанный с ионизационными потерями в газовых включениях различной формы.

Последние два тока очень слабо влияют на распределение напряженности поля в толще диэлектрика и при решении данной задачи ими можно пренебречь. Потери, обусловленные поляризацией молекул диэлектрика, теоретически учесть очень сложно; мы не будем их здесь учитывать, и ограничимся только током сквозной проводимости, вносящим основной вклад в общую картину процесса воздействия переменного электрического поля на кусочнооднородный несовершенный диэлектрик. Таким образом в такой постановке задача дает нижний предел для тангенса угла диэлектрических потерь.

Будем считать, что диэлектрик состоит из *n* кусочно-однородных областей $\Omega_1, \Omega_2, ..., \Omega_i, ..., \Omega_n$ ограниченных, соответственно, коаксиальными цилиндрами, имеющими радиусы $r_0 - r_1, r_1 - r_2, ..., r_{i-1} - r_i, ..., r_{n-1} - r_n$. Пусть в каждой области Ω_i однородный диэлектрик характеризуется относительной диэлектрической проницаемостью ε_i и удельной электропроводностью γ_i , а идеально проводящие электроды для возбуждения поля в диэлектрике имеют радиусы r_0 и r_n .

Система двух коаксиально расположенных цилиндров, между которыми находится многослойный неидеальный диэлектрик, представляет собой электрический конденсатор с *п*-слойной изоляцией. В силу того, что напряженность электрического поля не зависит от азимутального угла, потенциал на каждой из окружностей, имеющих радиус $r_0, r_1, r_2, ..., r_n$ будет величиной постоянной. Это позволяет представить конденсатор с *n*-слойным диэлектриком в виде соединенных последовательно *п* конденсаторов, в каждом из которых его диэлектрик является однородным. В свою очередь в каждом элементарном конденсаторе несовершенный диэлектрик можно заменить последовательной или параллельной схемой замещения. Векторные диаграммы токов и напряжений для этих двух случаев приведены на рис. 1 и 2. Они наглядно показывают, что углы диэлектрических потерь $\delta_1, \delta_2, ..., \delta_n$ слоев диэлектрика отличаются друг от друга и от общего угла потерь δ всего диэлектрика. Для того, чтобы в общем случае определить тангенс общего угла δ потерь всего диэлектрика необходимо вычислить активную I_a и реактивную I_p компоненты полного тока $I = I_a + I_p$, протекающего через одну из обкладок этого конденсатора [5].

Тангенс угла потерь в общем случае цилиндрического *n*-слойного неидеального диэлектрика. Выбрав для определенности внешнюю обкладку и учитывая закон Ома в дифференциальной форме для комплексных величин

$$\dot{J}(r) = \dot{Y}(r)\dot{E}(r) \tag{1}$$

имеем

$$\dot{I} = \oint \dot{J}(r_n) dl = \oint \dot{Y}_n \dot{E}_n dl_n = 2\pi r_n \dot{Y}_n \dot{E}(r_n)$$
⁽²⁾

где, $\dot{E}(r_n)$, $\dot{J}(r_n)$ – соответственно, нормальная компонента электрической напряженности на внутренней поверхности внешнего электрода, имеющего радиус r_n ; dl – элемент длины линии, образующейся при сечении внешнего бесконечно тонкого электрода плоскостью, перпендикулярной оси выбранной цилиндрической системы координат; \dot{Y}_n – полная проводимость слоя диэлектрика с номером *n*.

Тогда, с учетом $\dot{E}(r)$ выражение для комплексного вектора полного тока \dot{I} , протекающего через конденсатор, имеет вид

$$\dot{I} = \frac{2\pi \dot{U}}{\frac{1}{\dot{Y}_1} \ln \frac{r_1}{r_0} + \frac{1}{\dot{Y}_2} \ln \frac{r_2}{r_1} + \dots + \frac{1}{\dot{Y}_n} \ln \frac{r_n}{r_{n-1}}}.$$
(3)

С другой стороны для конденсатора, образованного всем диэлектриком, справедливо соотношение

$$\dot{I} = \dot{Y}\dot{U}, \qquad (4)$$

где, У – общая комплексная проводимость всего диэлектрика.

Сравнивая теперь между (3) и (4) получаем выражение для общей комплексной проводимости \dot{Y} для всего диэлектрика из *n* слоев

$$\dot{Y} = \frac{2\pi}{\frac{1}{\dot{Y}_{1}} \ln \frac{r_{1}}{r_{0}} + \frac{1}{\dot{Y}_{2}} \ln \frac{r_{2}}{r_{1}} + \dots + \frac{1}{\dot{Y}_{n}} \ln \frac{r_{n}}{r_{n-1}}}.$$
(5)

Активная I_a и реактивная I_p , составляющие полного тока I, будут равны, соответственно, действительной и мнимой частям комплексного выражения для полного тока \dot{I} .

$$I_a = \operatorname{Re}\{I\}; \tag{6}$$

$$I_p = \operatorname{Im}\{I\},\tag{7}$$

а тангенс общего угла δ потерь всего диэлектрика теперь можно найти как обычно

$$tg\delta = I_a / I_p . ag{8}$$

Из (5) ... (8) видно, что полученное выражение для тангенса общего угла диэлектрических потерь, с одной стороны, учитывает диэлектрические проницаемости $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ и активные проводимости $\gamma_1, \gamma_2, ..., \gamma_n$ в каждом слое, то есть свойства реальных применяемых материалов. С другой стороны, особенности взаимного коаксиального расположения слоев учтены набором коэффициентов $\ln(r_1/r_0), \ln(r_2/r_1), ..., \ln(r_n/r_{n-1})$ характерных для цилиндрической геометрии.

Рисунок 1 – Векторная диаграмма токов и напряжений для последовательной схемы замещения n-слойного неидеального диэлектрика

Рисунок 2 – Векторная диаграмма токов и напряжений для параллельной схемы схемы замещения п-слойного неидеального диэлектрика

Далее, как видно из (5), в общем случае проводимость \dot{Y} диэлектрика с *n* слоями между двумя металлическими электродами радиусов r_0 и r_1 может быть представлена в виде

$$\dot{Y} = \frac{\prod_{k=1}^{n} \dot{Y}_{k}}{\dot{\beta}}, \qquad (9)$$

где

$$\dot{\beta} = \prod_{m=1}^{n} \dot{Y}_m \sum_{k=1}^{n} \dot{Y}_k^{-1} \alpha_k ; \qquad (10)$$

$$\alpha_k = \frac{1}{2\pi} \ln \frac{r_k}{r_{k-1}},\tag{11}$$

k = 1, 2, ..., n; m = 1, 2, ..., n.Здесь значком \prod обозначены произведения проводимостей \dot{Y}_k или \dot{Y}_m в слоях, номерам которых соответствуют значения индексов k = 1, 2, ..., n и m = 1, 2, ..., n.

Чтобы избавиться от комплексного числа в знаменателе выражения для \dot{I} , представим последнее в виде

$$\dot{I} = \frac{\dot{U}\prod_{k=1}^{n} \dot{Y}_{k}\dot{\beta}^{*}}{\dot{\beta}\dot{\beta}^{*}}.$$
(12)

Звездочка означает комплексное сопряжение чисел $\dot{\beta}$ и $\dot{\beta}^*$.

Без ограничения общности фазу комплексного вектора \dot{U} всегда можно положить равной нулю. Тогда, учитывая (6) – (12) и то, что знаменатель (12) как произведение двух комплексно сопряженных чисел всегда будет числом действительным, можно сразу записать общее выражение для тангенса угла потерь δ всего *n*-слойного диэлектрика.

$$tg\delta = \frac{I_a}{I_p} = \frac{R_e \left\{ \prod_{k=1}^n \dot{Y}_k \dot{\beta}^* \right\}}{I_m \left\{ \prod_{k=1}^n \dot{Y}_k \dot{\beta}^* \right\}},$$
(13)

поскольку справедливы соотношения

$$I_{a} = R_{e} \left\{ \frac{2\pi \dot{U} \prod_{k=1}^{n} \dot{Y}_{k} \dot{\beta}^{*}}{\dot{\beta} \dot{\beta}^{*}} \right\} = \frac{U}{\dot{\beta} \dot{\beta}^{*}} R_{e} \left\{ \prod_{k=1}^{n} \dot{Y}_{k} \dot{\beta}^{*} \right\};$$
(14)

$$I_{p} = \left\{ \frac{2\pi U \prod_{k=1}^{n} \dot{Y}_{k} \dot{\beta}^{*}}{\dot{\beta} \dot{\beta}^{*}} \right\} = \frac{U}{\dot{\beta} \dot{\beta}^{*}} I_{m} \left\{ \prod_{k=1}^{n} \dot{Y}_{k} \dot{\beta}^{*} \right\}.$$
(15)

Для того, чтобы оценить правильность решения поставленной здесь задачи проведем сравнение полученного результата с имеющимся в известной литературе. В [6] приводится решение такой задачи для частного случая определения тангенса угла потерь двух последовательно соединенных конденсаторов C_1 и C_2 , которые имеют утечку, то есть для случая, когда их диэлектрик в слоях является несовершенным. Таким образом, полученное выше общее решение (13) необходимо записать для случая двухслойного диэлектрик Следуя этому, с учетом того, что $\dot{Y} = \gamma + i\omega\varepsilon$ и n = 2, из (9) – (11) имеем с учетом (7)

$$\dot{Y} = \frac{\dot{Y}_{1}\dot{Y}_{2}}{\dot{\beta}} = \frac{2\pi\dot{Y}_{1}\dot{Y}_{2}}{\dot{Y}_{1}\dot{Y}_{2}\left(\frac{1}{\dot{Y}_{1}}\ln\frac{r_{1}}{r_{0}} + \frac{1}{\dot{Y}_{2}}\ln\frac{r_{2}}{r_{1}}\right)} = \frac{2\pi\dot{Y}_{1}\dot{Y}_{2}}{\dot{Y}_{2}\ln\frac{r_{1}}{r_{0}} + \dot{Y}_{1}\ln\frac{r_{2}}{r_{1}}}.$$
(16)

С учетом конкретных значений \dot{Y}_1 и \dot{Y}_2 имеем

$$\dot{Y} = \frac{(\gamma_1 + i\omega\varepsilon_1)(\gamma_2 + i\omega\varepsilon_2)}{\alpha_1(\gamma_2 + i\omega\varepsilon_2) + \alpha_2(\gamma_1 + i\omega\varepsilon_1)},$$
(17)

здесь

$$\dot{\beta}^{*} = \{\alpha_{1}\gamma_{2} + i\omega\varepsilon_{2}\alpha_{1} + \alpha_{2}\gamma_{1} + i\omega\varepsilon_{1}\alpha_{2}\}^{*} = \{(\alpha_{1}\gamma_{2} + \alpha_{2}\gamma_{1}) + i\omega(\varepsilon_{1}\alpha_{2} + \varepsilon_{2}\alpha_{1})\}^{*} = (18) = (\alpha_{1}\gamma_{2} + \alpha_{2}\gamma_{1}) - i\omega(\varepsilon_{1}\alpha_{2} + \varepsilon_{2}\alpha_{1});$$

$$\dot{Y}_{1}\dot{Y}_{2} = (\gamma_{1} + i\omega\varepsilon_{1})(\gamma_{2} + i\omega\varepsilon_{2}) = [(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) + i\omega(\varepsilon_{1}\gamma_{2} + \varepsilon_{2}\gamma_{1})]; \quad (19)$$

$$\begin{split} \dot{Y}_{1}\dot{Y}_{2}\dot{\beta}^{*} &= [(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) + i\omega(\varepsilon_{1}\gamma_{2} + \varepsilon_{2}\gamma_{1})][(\alpha_{1}\gamma_{2} + \alpha_{2}\gamma_{1}) - i\omega(\varepsilon_{1}\alpha_{2} + \varepsilon_{2}\alpha_{1})] = \\ &= [(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) + i\omega(\gamma_{1}\alpha_{2} + \gamma_{2}\alpha_{1}) + \omega^{2}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})(\varepsilon_{1}\alpha_{2} + \varepsilon_{2}\alpha_{1})] + \\ &+ i\omega[(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})(\gamma_{1}\alpha_{2} + \gamma_{2}\alpha_{1}) - (\varepsilon_{1}\alpha_{2} + \varepsilon_{2}\alpha_{1})(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})]. \end{split}$$
(20)

Тогда тангенс угла потерь в двухслойном диэлектрике в соответствии с (13) будет равен

$$tg\delta = \frac{(\gamma_1\gamma_2 - \omega^2\varepsilon_1\varepsilon_2)(\gamma_1\alpha_2 + \gamma_2\alpha_1) + \omega^2(\varepsilon_2\gamma_1 + \varepsilon_1\gamma_2)(\varepsilon_1\alpha_2 + \varepsilon_2\alpha_1)}{\omega[(\varepsilon_2\gamma_1 + \varepsilon_1\gamma_2)(\gamma_1\alpha_2 + \gamma_2\alpha_1) - (\varepsilon_1\alpha_2 + \varepsilon_2\alpha_1)(\gamma_1\gamma_2 - \omega^2\varepsilon_1\varepsilon_2)]} = = \frac{\omega^2(\varepsilon_2^2\gamma_1\alpha_1 + \varepsilon_1^2\gamma_2\alpha_2) + \gamma_1\gamma_2(\gamma_1\alpha_2 + \gamma_2\alpha_1)}{\omega[\varepsilon_2\gamma_1^2\alpha_2 + \varepsilon_1\gamma_2^2\alpha_1 + \omega^2\varepsilon_1\varepsilon_2(\varepsilon_1\alpha_2 + \varepsilon_2\alpha_1)]}.$$
(21)

Выражение (21) для tg δ записано через удельные характеристики ε_1 , γ_1 и

 ε_2 , γ_2 слоев диэлектрика. Для сравнения (21) с имеющимся результатом [6] следует, очевидно, перейти к сосредоточенным параметрам и рассматривать двухслойный диэлектрик как два последовательно соединенные коаксиальные конденсаторы с погонными емкостями [7].

$$C_1 = \frac{2\pi\varepsilon_1}{\ln r_1/r_0}; \qquad (22)$$

$$C_2 = \frac{2\pi\varepsilon_2}{\ln r_2/r_1} \tag{23}$$

и общими проводимостями q_1 и q_2 коаксиальных слоев (на единицу их длины в цилиндрической геометрии)

$$q_{1} = \frac{2\pi}{\ln\frac{r_{1}}{r_{0}}} \frac{1}{\rho_{1}} = \frac{2\pi\gamma_{1}}{\ln\frac{r_{1}}{r_{0}}};$$
(24)

$$q_2 = \frac{2\pi}{\ln\frac{r_2}{r_1}} \frac{1}{\rho_2} = \frac{2\pi\gamma_2}{\ln\frac{r_2}{r_1}},$$
(25)

где ρ_1 , ρ_2 – удельные объемные сопротивления первого и второго слоев диэлектрика, соответственно.

Выражения (24), (25) получены из следующих соображений.

Сопротивление dR элементарного цилиндра толщиной dr и средним радиусом r равно

$$dR \approx \rho \frac{dR}{2\pi r}$$

Тогда интегрируя последнее выражение в пределах от начального значения радиуса слоя диэлектрика r_{μ} до конечного значения радиуса этого слоя r_{κ} получаем полное активное сопротивление выбранного слоя цилиндрического диэлектрика на единицу длины цилиндра

$$R = \frac{\rho}{2\pi} \int_{r_{\rm H}}^{r_{\rm K}} \frac{\mathrm{d}\mathbf{r}}{\mathbf{r}} = \frac{\rho}{2\pi} \ln \frac{r_{\rm K}}{r_{\rm H}}.$$

Поделив окончательно числитель и знаменатель (21) на $\alpha_1^2 \alpha_2^2$ получаем

$$tg\delta = \frac{\omega^2 (c_1^2 q_2 + c_2^2 q_1) + q_1 q_2 (q_1 + q_2)}{w [c_1 q_2^2 + c_2 q_1^2 + \omega^2 c_1 c_2 (c_1 + c_2)]}.$$
(26)

Выражение (26) совпадает с выражением [6] для частного случая двухслойного несовершенного диэлектрика, что полностью подтверждает правильность полученного здесь теоретического решения поставленной задачи определения тангенса угла потерь для произвольного количества цилиндрических коаксиальных слоев неидеального диэлектрика, находящегося в стационарном электрическом поле.

Теоретическое значение тангенса угла диэлектрических потерь для трехслойной экструдированной изоляционной конструкции. Этот практически важный случай имеет место в силовых кабелях на напряжение 6...500 кВ, тогда в изоляционной конструкции есть экран по жиле из проводящего полиэтилена, собственно изоляция из высококачественного изоляционного полиэтилена и наложенный поверх него экран по изоляции также из проводящего полиэтилена.

Приняв здесь n = 3 по формулам (9), (10), (13) последовательно вычисляем

$$\dot{Y} = \frac{\prod_{k=1}^{3} \dot{Y}_{k}}{\dot{\beta}} = \frac{\dot{Y}_{1} \dot{Y}_{2} \dot{Y}_{3}}{\dot{\beta}};$$
(27)

$$\dot{\beta} = \prod_{k=1}^{3} \dot{Y}_{k} \sum_{k=1}^{3} \dot{Y}_{k}^{-1} \alpha_{k} = \dot{Y}_{1} \dot{Y}_{2} \dot{Y}_{3} \left(\frac{1}{\dot{Y}_{1}} \alpha_{1} + \frac{1}{\dot{Y}_{2}} \alpha_{2} + \frac{1}{\dot{Y}_{3}} \alpha_{3} \right) =$$

$$= \dot{Y}_{2} \dot{Y}_{3} \alpha_{1} + \dot{Y}_{1} \dot{Y}_{3} \alpha_{2} + \dot{Y}_{1} \dot{Y}_{2} \alpha_{3};$$
(28)

$$\begin{split} \dot{Y}_{1}\dot{Y}_{2} &= (\gamma_{1} + i\omega\varepsilon_{1})(\gamma_{2} + i\omega\varepsilon_{2}) = \gamma_{1}\gamma_{2} + i\omega\varepsilon_{2}\gamma_{1} + i\omega\varepsilon_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2} = \\ &= (\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) + i\omega(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2}); \end{split}$$
(29)

$$\dot{Y}_{1}\dot{Y}_{3} = (\gamma_{1}\gamma_{3} - \omega^{2}\varepsilon_{1}\varepsilon_{3}) + i\omega(\varepsilon_{3}\gamma_{1} + \varepsilon_{1}\gamma_{3}); \qquad (30)$$

$$\dot{Y}_{2}\dot{Y}_{3} = (\gamma_{2}\gamma_{3} - \omega^{2}\varepsilon_{2}\varepsilon_{3}) + i\omega(\varepsilon_{3}\gamma_{2} + \varepsilon_{2}\gamma_{3}); \qquad (31)$$

$$\begin{split} \dot{Y}_{1}\dot{Y}_{2}\dot{Y}_{3} &= (\gamma_{1} + i\omega\varepsilon_{1})(\gamma_{2} + i\omega\varepsilon_{2})(\gamma_{3} + i\omega\varepsilon_{3}) = \\ &= [(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) + i\omega(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})](\gamma_{3} + i\omega\varepsilon_{3}) = \\ &= (\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\gamma_{3} + i\omega\gamma_{3}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2}) + \\ &+ i\omega\varepsilon_{3}(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) - \omega^{2}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\varepsilon_{3} = \\ &= [(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\gamma_{2} - \omega^{2}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\varepsilon_{3}] + \\ &+ i\omega[\gamma_{3}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2}) + \varepsilon_{3}(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})]; \end{split}$$
(32)

$$\dot{\beta}^* = [(\gamma_2\gamma_3 - \omega^2\varepsilon_2\varepsilon_3)\alpha_1 + (\gamma_1\gamma_3 - \omega^2\varepsilon_1\varepsilon_3)\alpha_2 + (\gamma_1\gamma_2 - \omega^2\varepsilon_1\varepsilon_2)\alpha_3] - i\omega[(\varepsilon_3\gamma_2 + \varepsilon_2\gamma_3)\alpha_1 + (\varepsilon_3\gamma_1 + \varepsilon_1\gamma_3)\alpha_2 + (\varepsilon_2\gamma_1 + \varepsilon_1\gamma_2)\alpha_3];$$
(33)

$$\begin{split} &\prod_{k=1}^{3} Y_{k} \dot{\beta}^{*} = \dot{Y}_{1} \dot{Y}_{2} \dot{Y}_{3} \dot{\beta}^{*} = \\ &= \{ [(\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2}) \gamma_{3} - \omega^{2} (\varepsilon_{1} \gamma_{2} + \varepsilon_{2} \gamma_{1}) \cdot \varepsilon_{3}] + \\ i \omega [\gamma_{3} (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) + \varepsilon_{3} (\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \} \cdot \\ &\cdot \{ [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{3}) \alpha_{2} + (\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2}) \alpha_{3}] - \\ &- i \omega [(\varepsilon_{3} \gamma_{2} + \varepsilon_{2} \gamma_{3}) \alpha_{1} + (\varepsilon_{3} \gamma_{1} + \varepsilon_{1} \gamma_{3}) \alpha_{2} + (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \alpha_{3}] \}; \\ R_{e} \{ \dot{Y}_{1} \dot{Y}_{2} \dot{Y}_{3} \dot{\beta}^{*} \} = [(\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2}) \cdot \gamma_{3} - \omega^{2} (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \varepsilon_{3}] \cdot \\ &\cdot [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \cdot \\ &\cdot [(\varepsilon_{3} \gamma_{2} + \varepsilon_{2} \gamma_{3}) \alpha_{1} + (\varepsilon_{3} \gamma_{1} + \varepsilon_{1} \gamma_{3}) \alpha_{2} + (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \varepsilon_{3}]; \\ I_{m} \{ \dot{Y}_{1} \dot{Y}_{2} \dot{Y}_{3} \dot{\beta}^{*} \} = [(\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2}) \cdot \gamma_{3} - \omega^{2} (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \varepsilon_{3}] \cdot \\ &\cdot (-\omega) [(\varepsilon_{3} \gamma_{2} + \varepsilon_{2} \gamma_{3}) \alpha_{1} + (\varepsilon_{3} \gamma_{1} + \varepsilon_{1} \gamma_{3}) \alpha_{2} + (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \varepsilon_{3}] \cdot \\ &\cdot (-\omega) [(\varepsilon_{3} \gamma_{2} + \varepsilon_{2} \gamma_{3}) \alpha_{1} + (\varepsilon_{3} \gamma_{1} + \varepsilon_{1} \gamma_{3}) \alpha_{2} + (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) \varepsilon_{3}] + \\ &+ \omega [\gamma_{3} (\varepsilon_{2} \gamma_{1} + \varepsilon_{1} \gamma_{2}) + \varepsilon_{3} (\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \cdot \\ &\cdot [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \cdot \\ &\cdot [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \cdot \\ &\cdot [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{2})] \cdot \\ &\cdot [(\gamma_{2} \gamma_{3} - \omega^{2} \varepsilon_{2} \varepsilon_{3}) \alpha_{1} + (\gamma_{1} \gamma_{3} - \omega^{2} \varepsilon_{1} \varepsilon_{3}) \alpha_{2} + (\gamma_{1} \gamma_{2} - \omega^{2} \varepsilon_{1} \varepsilon_{2}) \alpha_{3}] . \\ \end{split}$$

После чего получаем теоретическое значение тангенса угла диэлектрических потерь для трехслойной изоляционной конструкции

$$tg\delta = \frac{\left[(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) \cdot \gamma_{3} - \omega^{2}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\varepsilon_{3}\right] \cdot}{\left[(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2}) \cdot \gamma_{3} - \omega^{2}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\varepsilon_{3}\right] \cdot} \times \\ \times \frac{\cdot\left[(\gamma_{2}\gamma_{3} - \omega^{2}\varepsilon_{2}\varepsilon_{3})\alpha_{1} + (\gamma_{1}\gamma_{3} - \omega^{2}\varepsilon_{1}\varepsilon_{3})\alpha_{2} + (\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\alpha_{3}\right] +}{\cdot(-\omega)\left[(\varepsilon_{3}\gamma_{2} + \varepsilon_{2}\gamma_{3})\alpha_{1} + (\varepsilon_{3}\gamma_{1} + \varepsilon_{1}\gamma_{3})\alpha_{2} + (\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\alpha_{3}\right] +} \\ \times \frac{+\omega^{2}\left[\gamma_{3}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2}) + \varepsilon_{3}(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\right] \cdot}{+\omega\left[\gamma_{3}(\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2}) + \varepsilon_{3}(\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\right] \cdot} \\ \times \frac{\cdot\left[(\varepsilon_{3}\gamma_{2} + \varepsilon_{2}\gamma_{3})\alpha_{1} + (\varepsilon_{3}\gamma_{1} + \varepsilon_{1}\gamma_{3})\alpha_{2} + (\varepsilon_{2}\gamma_{1} + \varepsilon_{1}\gamma_{2})\alpha_{3}\right]}{\cdot\left[(\gamma_{2}\gamma_{1} - \omega^{2}\varepsilon_{2}\varepsilon_{3})\alpha_{1} + (\gamma_{1}\gamma_{3} - \omega^{2}\varepsilon_{1}\varepsilon_{3})\alpha_{2} + (\gamma_{1}\gamma_{2} - \omega^{2}\varepsilon_{1}\varepsilon_{2})\alpha_{3}\right]}.$$

$$(37)$$

Последнее выражение хотя и является достаточно сложным, но содержит все необходимые параметры, зависящие от материала диэлектрика во всех трех слоях (γ_k , ε_k) и коэффициенты α_k , зависящие от цилиндрической геометрии, рассматриваемой изоляционной конструкции.

Выводы

 На основе математической модели воздействия стационарного электрического поля на несовершенный многослойный цилиндрический диэлектрик получены общие выражения для тангенса угла диэлектрических потерь при произвольном числе слоев с учетом тока смещения и тока проводимости.

 Получены выражения для тангенса угла диэлектрических потерь для частных случаев двухслойного и трехслойного диэлектриков, характерных для изоляции силовых кабелей и проводов со сшитой полиэтиленовой изоляцией.

Список литературы: 1. Патент на корисну модель № 39644, Україна. Потужний високовольтний кабель. МПК Н01 В 7/02 / Золотарьов В.М., Карпушенко В.П., Антонець Ю.П., Золотарьов В.В., Чопов Є.Ю., Обозний А.Л., Науменко О.А., Чайка В.Л. – Заявник і патентовласник ЗАТ завол «Південкабель», заявлено 01.08.08, опубліковано 10.03.09., бюл. № 5. 2. Патент на корисну модель № 39645, Україна. Високовольтний кабель з волоконно-оптичним термодатчиком. МПК Н01 В 7/02 / Золотарьов В.М., Карпушенко В.П., Антонець Ю.П., Золотарьов В.В., Чопов С.Ю., Обозний А.Л., Науменко О.А., Чайка В.Д. – Заявник і патентовласник ЗАТ завод «Південкабель», заявлено 01.08.08, опубліковано 10.03.09., бюл. № 5. 3. Рудаков В.В., Рудаков С.В. Оптимизация конструкции коаксиального кабеля с многослойным диэлектриком // Электротехника и электромеханика. – 2004. - № 4. – С. 70-73. 4. Сканави Г. И. Физика диэлектриков (область сильных полей). – М.: ГИТТЛ, 1949. – 497 с. 5. Золотарев В.В., Карпушенко В.П., Золотарев В.М., Науменко А.А. Распределение стационарного электрического поля в цилиндрическом неидеальном диэлектрике // Электротехника и электромеханика. - Харків: НТУ «ХПІ», 2008. - С. 65-69. 6. Сиротинский Л.И. и др. Техника высоких напряжений. – М-Л.: Госэнергоиздат, 1940. – 247 с. 7. Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. – Л.: Энергия, 1969. – 239 с. Поступила в редколлегию 07.10.2011