А.А. ПЕТКОВ, д-р техн. наук, доцент, НТУ «ХПИ»

ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ ПОРАЖАЮЩЕГО РАЗРЯДА МОЛНИИ В РАЙОНЕ РАСПОЛОЖЕНИЯ СТЕРЖНЕВОГО ОБЪЕКТА

В статье предложены соотношения для определения функции и плотности распределения радиус-вектора и угла проекций точек начала финальных разрядов молний, поражающих стержневые объекты.

Ключевые слова: разряд молнии, функция распределения, плотность распределения

Постановка проблемы. Молниезащита зданий и сооружений с использованием молниеотводов на сегодняшний день является одним из наиболее эффективных средств снижения потерь от грозовой деятельности. Этим фактом определяется непрерывное увеличение объема научных исследований, связанных с изучением поведения молнии вблизи различных объектов, в первую очередь, расположенных на поверхности грунта. Одним из наиболее распространенных типов объектов, подвергающихся воздействию разрядов молнии, являются стержневые объекты. Ввиду того, что стержневые объекты могут выступать как в качестве объектов защиты, так и в качестве средства защиты других объектов, изучению поражения их разрядом молнии уделяется особое внимание.

Анализ публикаций. Согласно нормативному документу [1], ожидаемое количество поражений сосредоточенных объектов стержневого типа (дымовые трубы, башни и т.п.) в течение года N определяется по следующей формуле:

$$N = 9 \cdot 10^{-6} \pi h_{\rm max}^2 n \,, \tag{1}$$

где h_{max} – наибольшая высота объекта, м; n – плотность ударов молнии на 1 км² земной поверхности в течение года, определенная по данным метеорологических наблюдений в месте расположения объекта, 1/(км²·год).

При отсутствии данных наблюдений плотность *n* может быть приближенно рассчитана по формуле

$$n = \frac{6.7T_{cp}}{100}, \ 1/(\kappa M^2 \cdot \Gamma O \mathcal{A}),$$
 (2)

где T_{cp} – средняя продолжительность гроз в часах, определенная по картам интенсивности грозовой деятельности (для территории Украины составляет 40–100 час).

© А.А. Петков, 2014

Ожидаемое количество поражений N, определенное по (1), основывается на том положении, что сосредоточенный объект (по аналогии с рассредоточенными объектами [1, 2]) «собирает» удары молнии с некоторого объема пространства («область захвата»), проекция которого на поверхность грунта представляет собой круг («круг стягивания») с центром на оси объекта и радиусом 3 $h_{\rm max}$. Величина радиуса определена по результатам имитации молнии разрядом длинной искры на одиночный стержень [2].

Использование электрогеометрического метода расчета поражения объектов молнией дает значения количество поражений N отличные от значений, вычисляемых по (1).Это связано с тем, что радиус «круга стягивания» не постоянен и зависит от величины тока молнии, значение которого имеет статистический характер [3].

Как показывают результаты наблюдений поражения молнией стержневых объектов и моделирования молнии разрядом длинной искры [2, 2], не все разряды с проекцией начала финальной стадии разряда на «круг стягивания» поражают стержневой объект. Также вполне очевидно, что при прочих равных условиях финальные разряды молнии с проекцией, расположенной ближе к стержневому объекту, поражают его с большей вероятностью. Таким образом, ожидаемое количество поражений имеет вероятностный характер. Для установления вероятностного закона поражения стержневого объекта в первую очередь необходимо установить вероятность появления финального разряда молнии в точке, проекция которой попадает в «круг стягивания».

Приведенный анализ показывает, что проблема определения ожидаемого количество поражений объектов не может считаться окончательно решенной и требует дальнейших исследований.

Цель работы. Разработка описания вероятностных характеристик распределения проекций точек начала финальных разрядов молнии, поражающих стержневые объекты.

Результаты исследований. Источником данных для описания распределения проекций точек начала финальных разрядов молнии являются метеорологические наблюдения в месте расположения объектов, а именно, плотность ударов молнии на 1 км² земной поверхности в течение года. Использование этого показателя подразумевает, что на площади равной 1000х1000 м² разряды молнии распределены равномерно вдоль декартовых координат. Для перехода к системе полярных координат с центром, совпадающим с осью стержневого объекта, рассмотрим вспомогательную задачу.

Пусть имеется система случайных величин (X, Y) равномерно распределенных в прямоугольнике **П** со сторонами a и b, центр которого совпадает с началом координат, а стороны параллельны осям координат (рис. 1). Определим функцию распределения F(x, y) системы случайных величин.

Площадь области распределения равна S = ab. Тогда плотность распределения случайной точки, определяемой системой случайных величин (X, Y) определиться как

$$f(x, y) = \begin{cases} \frac{1}{ab}, & (x, y) \in \Pi; \\ 0, & (x, y) \notin \Pi. \end{cases}$$
(3)

Рисунок 1 – Схема систем случайных величин

Функцию распределения определим по общему правилу исходя из следующей формулы [4]

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy .$$
(4)

Для нашего варианта имеем

$$F(x, y) = \int_{-\frac{a}{2}}^{x} \int_{-\frac{b}{2}}^{y} \frac{dxdy}{ab} = \frac{1}{ab} \left(x + \frac{a}{2} \right) \left(y + \frac{b}{2} \right), \ (x, y) \in \prod.$$
(5)

Зная двухмерную функцию распределения случайных декартовых координат точки T F(x, y), вычисленную по выражению (5), можно определить плотность вероятности радиуса точки r (рис. 1). Для этого воспользуемся известным решением задачи для бесконечной плоскости и произвольной функции распределения декартовых координат w(x, y), приведенным в [5]

$$W(r) = r \int_{0}^{2\pi} w(r \cos \alpha, r \sin \alpha) d\alpha .$$
 (6)

Откуда для нашего варианта исходных данных, представленных выражением (5), в области, где r не зависит от α , плотность вероятности определится по выражению

$$W(r) = r \int_{0}^{2\pi} \frac{1}{ab} \left(r \cos \alpha + \frac{a}{2} \right) \left(r \sin \alpha + \frac{b}{2} \right) d\alpha = \frac{\pi r}{2}, \tag{7}$$

117

где диапазон изменения радиуса определяется как 0 < r < MIN(a / 2, b / 2).

Из (7) следует, что в указанных пределах изменения радиуса, его плотность вероятности не зависит от размеров прямоугольника *a* и *b*.

Полученное выражение (7) используем для решения основной задачи.

Пусть имеется стержень 1, расположенный на поверхности грунта Q, перпендикулярно этой поверхности (см. рис. 2). Из некоторой точки т. 1 пространства, прилегающего к стержню 1, развивается финальный разряд длиной искры, который может поразить стержень 1 или плоскость Q. Известно, что финальный разряд может поразить стержень 1 в том случае, если проекция точки т. 1 на плоскость Q (точка т. 2) попадает в круг радиусом R_{max} . Требуется определить функцию распределения радиуса точек, из которых финальный разряд может поразить стержень F(r).

Рисунок 2 – Схема развития разряда

В нашем случае функция распределения представляет собой вероятность того, что проекция точки, с которой развивается финальный разряд, попадает в круг радиусом *r* (рис. 1). Используя (7) функция распределения определиться как

$$F(r) = \frac{\frac{\pi}{2} \int_{0}^{r} r dr}{\frac{\pi}{2} \int_{0}^{R_{\text{max}}} r dr} = \frac{r^2}{R_{\text{max}}^2},$$
(8)

где $0 < R_{\text{max}} \leq \text{MIN}(a / 2, b / 2); 0 \leq r \leq R_{\text{max}}.$

Тогда плотность распределения радиус-вектора имеет вид

$$f(r) = \frac{dF(r)}{dr} = 2\frac{r}{R_{\text{max}}^2}.$$
(9)

Таким образом, для максимального радиуса, значения которого не превышают половины наименьшей стороны прямоугольника, плотность и функция распределения *r* не зависят от размеров прямоугольника.

На рис. 3 и рис. 4 показаны графики функции и плотности распределения радиуса, построенные по соответствующим аналитическим выражениям – 1 и результаты имитационного моделирования – 2.

Имитационное моделирование осуществлялось при следующих исходных данных: a = 1000 м, b = 1000 м; $R_{\text{max}} = 60$ м. Для построения графиков использованы данные, полученные по результатам 7500 случайных реализаций.

Как видно из рис. 3 и рис. 4 расчеты по аналитическим моделям – 1 и результаты имитационного моделирования – 2 статистически совпадают.

Предварительный теоретический анализ и обработка результатов имитационного моделирования позволили представить функцию и плотность распределения угла α при *a* = *b* в следующем виде

$$F(\alpha) = \frac{\alpha}{2\pi} + \frac{1}{a^2 \pi} A(1 - \cos \alpha); \qquad (10)$$

$$f(\alpha) = \frac{1}{2\pi} + \frac{1}{a^2 \pi} A \sin \alpha , \qquad (11)$$

где $A = (-0,0006r^3 + 0,1226r^2 - 8,5371r + 197,61)r^2$.

ISSN 2079-0023. Вісник НТУ «ХПІ». 2014. № 21 (1064)

На рис. 5 и рис. 6 показаны графики функции и плотности распределения угла α , построенные по соответствующим аналитическим выражениям – 1 и результаты имитационного моделирования – 2. Имитационное моделирование осуществлялось при следующих исходных данных: a = 1000 м; $R_{\text{max}} =$ 45 м. Для построения графиков использованы данные, полученные по результатам 7500 случайных реализаций.

Как видно из рис. 5 и рис. 6 расчеты по аналитическим моделям – 1 и результаты имитационного моделирования – 2 статистически совпадают.

Таким образом, в работе, исходя из данных метеорологических наблюдений, получены соотношения для определения функции и плотности распределения радиус-вектора и угла проекций точек начала финальных разрядов молний, поражающих стержневые объекты.

Выводы

1. Получено аналитическое соотношение для определения функции распределения случайной точки, равномерно распределенной в прямоугольнике, центр которого совпадает с началом координат, а стороны параллельны осям координат.

2. Выведено соотношение для определения плотности распределения радиус-вектора случайной точки с декартовыми координатами, равномерно распределенными в прямоугольнике.

3. Получены соотношения для определения функции и плотности распределения радиус-вектора и угла проекций точек начала финальных разрядов молний, поражающих стержневые объекты.

Материалы статьи могут быть использованы для усовершенствования статистического описания процесса поражения стержневых объектов.

Список литературы: 1. Улаштування блискавкозахисту будівельі споруд (IEC 62305:2006, NEQ): ДСТУ Б В.2.5-38:2008. – [Чинний від 2008–01–01]. – К.: Мінорегіонбуд України, 2008. – 63 с. 2. Ларионов В.П. Основы молниезащиты / Ларионов В.П. : под ред. И.М. Бортника. – М.: Знак, 1999. – 104 с. 3. Базеля Э.М. Физика молнии и молниезащиты / Э.М. Базелян, Ю.П Райзер. – М. : Физматлит, 2001. – 320 с.. 4. Вентцель Е.С. Теория вероятностей и ее инженерные приложения / Е.С. Вентцель, Л.А. Овчаров. – М.: Высш. шк., 2000. – 480 с.. 5. Левин Б. Р. Теоретические основы статистической радиотехники / Б. Р. Левин. – М.: Радио и связь, 1989. – 656 с.

Bibliography (transliterated): 1. Ulashtuvannya blyskavkozakhystu budivel'i sporud (IEC 62305:2006, NEQ): DSTU B V.2.5-38:2008. – [Chynnyj vid 2008–01–01]. – K.: Minorehionbud Ukrayiny, 2008. – 63. 2. Larionov V.P. Osnovy molniezaschity Larionov V.P. : pod red. I.M. Bortnika. – M.: Znak, 1999. – 104. 3. Bazelya E.M. Fizika molnii i molniezaschity E.M. Bazelyan, Yu.P Rajzer. – M. : Fizmatlit, 2001. – 320. 4. Ventcel' E.S. Teoriya veroyatnostej i ee inzhenernye prilozheniya E.S. Ventcel', L.A. Ovcharov. – M.: Vyssh. shk., 2000.— 480. 5. Levin B. R. Teoreticheskie osnovy statisticheskoj radiotehniki B. R Levin. – M.: Radio i svyaz', 1989. – 656.

Поступила (received) 02.04.2014.