В.М. ГРИБАНОВ, д.т.н., **Н.В. КЛИПАКОВ**, асп., **Ю.В. ГРИБАНОВА**, к.т.н., **А.Е. ДОСТАЛЬ**, асп., Луганск, ВНУ им. В. Даля

КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ЗУБЧАТЫХ ГИПЕРБОЛОИДНЫХ ПЕРЕДАЧ НОВИКОВА ВНЕШНЕГО ЗАЦЕПЛЕНИЯ, НАРЕЗАЕМЫХ ЦИЛИНДРИЧЕСКИМИ КОСОЗУБЫМИ ДОЛБЯКАМИ

In article analytical expressions of the basic quality indicators of serviceability of considered transfers are received

В машиноведении работоспособность зубчатых передач принято оценивать качественными показателями — критериями, характеризующими локально-кинематические и гидродинамические явления в зоне контакта зубьев, нагрузочную способность передач и их восприимчивость к погрешностям: $V^{(2)}$ и $\eta^{(m)}$ — относительная скорость скольжения и удельные скольжения активных поверхностей зубьев ведущего (m=1) и ведомого (m=2) колеса (рис. 2); $\Omega^{(m)}$, $\Omega^{(m)}$ и $V^{(2)}$ — относительные скорости качения (перекатывания), верчения и суммарная скорость перемещения точек контакта в направлении, перпендикулярном большой оси эллиптической площадки мгновенного контакта (рис. 1, 2); θ — угол между вектором суммарной скорости и большой осью эллиптической площадки мгновенного контакта (рис. 2); $\mathfrak{A}_{I}^{(m)}$, $\mathfrak{A}_{II}^{(m)}$ и σ_{\max} — главные кривизны активных поверхностей зубьев и максимальное напряжение в корне зуба; \mathfrak{A} — коэффициент чувствительности передачи к погрешностям изготовления и монтажа.

Трение, износ и приработка зубьев, КПД передачи находятся в прямой зависимости от V^{42} , η^{m_2} , $\Omega^{\text{*eep4}}$. Скорости $\Omega^{\text{*a4}}$, V^{ϵ_2} оказывают существенное влияние на образование масляного клина — с их увеличением улучшаются условия для образования масляного клина, следовательно, создаются более

благоприятные условия контактирования зубьев и наоборот. Угол \mathcal{G} , главные кривизны, определяющие приведенную кривизну \mathfrak{x}_{np} , а также σ_{\max} и \mathfrak{x} оказывают существенное влияние на нагрузочную способность передач — более высокая нагрузочная способность будет у тех передач, у которых угол \mathcal{G} больше, а характеристики \mathfrak{x}_{np} , σ_{\max} и \mathfrak{x} меньше и наоборот.

Общие формулы для вычисления упомянутых качественных показателей (критериев) получим следующим образом. В точках контакта зубьев должны выполняться условия

$$\Omega_{1}\vec{r}_{1} = \Pi \ \gamma \ \Omega_{2}\vec{r}_{2} + a_{w}\vec{j} , \quad \Omega_{1}\vec{e}_{1} = \Pi \ \gamma \ \Omega_{2}\vec{e}_{2}, \tag{1}$$

выражающие связь-равенство радиус-векторов

$$\vec{r}_m = x_m \vec{i} + y_m \vec{j} + z_m \vec{k} \tag{2}$$

активных поверхностей зубьев ведущего (m=1) и ведомого (m=2) колес и совпадение ортов

$$\vec{e}_m = e_{xm}\vec{i} + e_{ym}\vec{j} + e_{zm}\vec{k} \tag{3}$$

их нормалей в неподвижной системе координат рабочего зацепления, где

$$\Omega_{m} = \begin{vmatrix} \cos\alpha^{m} & -41^{m} \sin\alpha^{m} & 0 \\ +1^{m} \sin\alpha^{m} & \cos\alpha^{m} & 0 \\ 0 & 0 & 1 \end{vmatrix}, \Pi \gamma = \begin{vmatrix} \cos\gamma & 0 & \sin\gamma \\ 0 & 1 & 0 \\ -\sin\gamma & 0 & \cos\gamma \end{vmatrix}$$

— матрицы, моделирующие вращение зубчатых колес и угол перекрещивания осей вращения, a_w — межосевое расстояние. Координаты векторов (2), (3) имеют вид [1]

$$\vec{r}_{m} = \begin{pmatrix} x_{m} \\ y_{m} \\ z_{m} \end{pmatrix} = \begin{cases} x_{m} = A_{m} \cos \varphi_{m} - -1^{m} B_{m} \sin \varphi_{m} \\ y_{m} = -1^{m} A_{m} \sin \varphi_{m} + B_{m} \cos \varphi_{m} , \\ z_{m} = C_{m} \end{cases}$$

$$\vec{e}_{m} = \begin{pmatrix} e_{xm} \\ e_{ym} \\ e_{zm} \end{pmatrix} = \begin{cases} e_{xm} = M_{m} \cos \varphi_{m} - -1 & P_{m} \sin \varphi_{m} \\ e_{ym} = -1 & M_{m} \sin \varphi_{m} + P_{m} \cos \varphi_{m} \\ e_{zm} = Q_{m} \end{cases}$$

Обозначено:

$$A_{m} = \begin{bmatrix} A_{\partial m} \cos U_{m} - \varphi_{\partial m} & - & -1 \\ & Cos \beta_{m} - & -1 \\ &$$

$$\begin{split} M_{m} &= \left[M_{\partial m} \cos U_{m} - \varphi_{\partial m} - -1 \, {}^{m} P_{\partial m} \sin U_{m} - \varphi_{\partial m} \, \right] \cdot \\ &\quad \cos \beta_{m} - -1 \, {}^{m} \beta_{\partial m} - -1 \, {}^{m} Q_{\partial m} \sin \beta_{m} - -1 \, {}^{m} \beta_{\partial m} \\ P_{m} &= -1 \, {}^{m} M_{\partial m} \sin U_{m} - \varphi_{\partial m} + P_{\partial m} \cos U_{m} - \varphi_{\partial m} \\ Q_{m} &= -1 \, {}^{m} \left[M_{\partial m} \cos U_{m} - \varphi_{\partial m} - -1 \, {}^{m} P_{\partial m} \sin U_{m} - \varphi_{\partial m} \, \right] \cdot \\ &\quad \sin \beta_{m} - -1 \, {}^{m} \beta_{\partial m} + Q_{\partial m} \cos \beta_{m} - -1 \, {}^{m} \beta_{\partial m} \end{split}$$

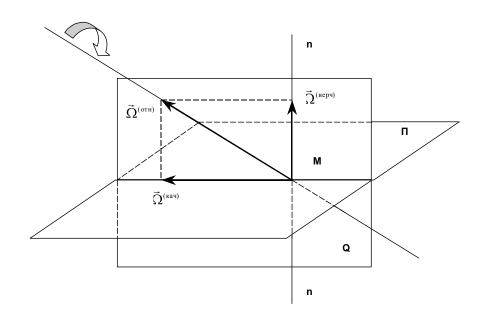


Рис. 1 — К определению относительных скоростей перекатывания и верчения активных поверхностей зубьев: М — точка начального (до упругого сближения зубьев) контакта; П и Q — касательная и нормальная плоскости

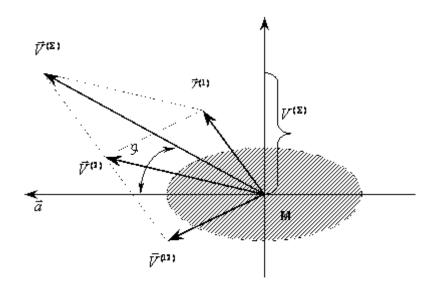


Рис. 2 — К определению g- угла, суммарной скорости и скорости скольжения активных поверхностей зубьев

$$A_{\partial m} = \rho_{m} \cos v_{m} \cos \beta_{\partial m} - b_{m} \cot v_{m} \cos \beta_{\partial m},$$

$$B_{\partial m} = \rho_{m} \sin v_{m} - b_{m} + -1 {}^{m} r_{\partial m},$$

$$C_{\partial m} = \rho_{m} \cos v_{m} \sin \beta_{\partial m} + b_{m} \cot v_{m} \cot \beta_{\partial m} \cos \beta_{\partial m} + r_{m} \phi_{m} \cos \beta_{m} - a_{m} \csc \beta_{\partial m}$$
;

$$M_{\partial m} = -\cos v_m \cos \beta_{\partial m}, P_{\partial m} = -\sin v_m, Q_{\partial m} = -\cos v_m \sin \beta_{\partial m};$$

 φ^{m_1} , v^{m_2} — криволинейные координаты на активных поверхностях зубьев; r_m — радиусы горлового сечения аксоидов гиперболоидных колес; $r_{\partial m}$ — радиусы начальных цилиндров зуборезного инструмента; β_m — угол наклона образующей аксоида колеса передачи; $\beta_{\partial m}$ — номинальный угол наклона зубьев зуборезного инструмента; $\rho_1 = \rho_a$, $\rho_2 = \rho_f$, $a_1 = x_a$, $a_2 = x_f$, $b_1 = y_a$, $b_2 = y_f$ — геометрические параметры исходного инструментального контура.

Продифференцируем первое уравнение (1) по времени t

$$\vec{W}^{1} + \vec{V}^{1} = \vec{W}^{2} + \vec{V}^{2}$$
.

Здесь \vec{W} $\vec{V} = \omega^{-1} \Omega_1^{\alpha} \vec{r}_1$, $\vec{W}^2 = \omega^2 \Pi \gamma \Omega_2^{\alpha} \vec{r}_2$ $\omega^m = d\alpha^m / dt$ — линейные скорости переносных (вращательных) движений; $\vec{V}^{-1} = \omega^{-1} \Omega_1 \vec{r}_1^{\phi} \dot{\phi}^{-1} + \vec{r}_1^{v} \dot{v}^{-1}$, $\vec{V}^2 = \omega^1 \Pi \gamma \Omega_2 \vec{r}_2^{\phi} \dot{\phi}^2 + \vec{r}_2^{v} \dot{v}^2$ — скорости перемещения точек контакта по активным поверхностям зубьев.

Верхние индексы α , φ , v обозначают частные производные по углам поворота колес и по криволинейным координатам, а точки над функциями – производные по $\alpha^{(1)}$. Тогда $\vec{V}^{(2)} = \vec{V}^{(2)} - \vec{V}^{(1)}$ — вектор относительной скорости. Его величина

$$V^{\frac{12}{2}} = \omega^{\frac{1}{2}} \sqrt{D^{\frac{1}{2}} - 2D^{\frac{12}{2}} + D^{\frac{2}{2}}}.$$
 (4)

Здесь

$$D^{m} = E^{m} \dot{\phi}^{m} \dot{2} + 2F^{m} \dot{\phi}^{m} \dot{v}^{m} + G^{m} \dot{v}^{m} \dot{2}$$

$$D^{12} = E^{12} \dot{\phi}^{1} \dot{\phi}^{2} + F^{12} \dot{\phi}^{1} \dot{v}^{2} + F^{21} \dot{\phi}^{2} \dot{v}^{1} + G^{12} \dot{v}^{1} \dot{v}^{2}$$
(5)

 первые квадратичные и совместная квадратичная формы активных поверхностей зубьев, коэффициенты которых

$$E^{m} = \vec{r}_{m}^{\varphi} \vec{r}_{m}^{\varphi} , \quad F^{m} = \vec{r}_{m}^{\varphi} \vec{r}_{m}^{v} , \quad G^{m} = \vec{r}_{m}^{v} \vec{r}_{m}^{v}$$

$$E^{12} = \Omega_{1} \vec{r}_{1}^{\varphi} , \Pi \quad \gamma \quad \Omega_{2} \vec{r}_{2}^{\varphi} , \quad F^{12} = \Omega_{1} \vec{r}_{1}^{\varphi} , \Pi \quad \gamma \quad \Omega_{2} \vec{r}_{2}^{v}$$

$$G^{12} = \Omega_{1} \vec{r}_{1}^{v} , \Pi \quad \gamma \quad \Omega_{2} \vec{r}_{2}^{v} , \quad F^{21} = \Omega_{1} \vec{r}_{1}^{v} , \Pi \quad \gamma \quad \Omega_{2} \vec{r}_{2}^{\varphi}$$

$$(6)$$

посчитаны в общих точках контакта зубьев $\varphi^{m_{\bar{k}}} = \alpha^{m_{\bar{k}}}$, $v^{m_{\bar{k}}} = \alpha_k (\alpha_k - y \text{гол профиля в номинальной точке контакта}).$

Кривизна поверхности в сечении нормальной плоскостью, содержащей касательный к поверхности (2) единичный вектор

$$\vec{\tau}^{m} = \mathbf{D}^{m} + \vec{r}_{m}^{\varphi} d\varphi^{m} + \vec{r}_{m}^{\psi} dv^{m}, \qquad (7)$$

вычисляется по формуле [2]

$$a^{m} = D^{m} / d^{m} \qquad m = 1, 2,$$
 (8)

где

$$d^{m} = L^{m} \dot{\phi}^{m2} + 2M^{m} \dot{\phi}^{m} \dot{v}^{m} + N^{m} \dot{v}^{m2}$$
 (9)

- ее вторая квадратичная форма. Коэффициенты

$$L^{m} = -\vec{r}_{m}^{\varphi} \vec{e}_{m}^{\varphi}, \quad M^{m} = -\vec{r}_{m}^{\varphi} \vec{e}_{m}^{v}, \quad N^{m} = -\vec{r}_{m}^{v} \vec{e}_{m}^{v}. \tag{10}$$

Формула (8) соответствует произвольно выбранному направлению (7). Главные же кривизны \mathfrak{E}_{I}^{m} , \mathfrak{E}_{II}^{m} вычисляются по формулам [2]

$$\begin{array}{c}
\mathbf{\mathfrak{E}}_{I,II}^{m} = H^{m} \pm \sqrt{H^{m2} - K^{m}} \\
H^{m} = \frac{1}{2} \mathbf{\mathfrak{E}}_{I}^{m} N^{m} + L^{m} G^{m} - 2M^{m} F^{m} \mathbf{\mathfrak{E}}_{I}^{m} G^{m} - F^{m2} \mathbf{\mathfrak{E}}_{I}^{m} \\
K^{m} = \mathbf{\mathfrak{L}}_{I}^{m} N^{m} - M^{m2} \mathbf{\mathfrak{E}}_{I}^{m} G^{m} - F^{m2} \mathbf{\mathfrak{E}}_{I}^{m}
\end{array} \right\}. \tag{11}$$

В этом случае главные направления определяются из (7) для $d\varphi^{m}$, dv^{m} , удовлетворяющих уравнениям

$$d\vec{e}_m = -\mathbf{x}_I^m d\vec{r}_m , \qquad d\vec{e}_m = -\mathbf{x}_{II}^m d\vec{r}_m . \tag{12}$$

В силу выше сказанного $\dot{\phi}^{*} = 1$, $\dot{\phi}^{2} = r_{1} \cos \beta_{1} / r_{2} \cos \beta_{2}$, $\dot{v}^{*} = \dot{v}^{*} = 0$ и квадратичные формы (5), (9) принимают вид

$$D^{1} = E^{1}, D^{12} = \frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}E^{12}, D^{2} = \left(\frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}\right)^{2}E^{2}$$

$$d^{1} = L^{1}, d^{2} = \left(\frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}\right)^{2}L^{2}$$
(13)

Тогда относительная скорость скольжения (4) –

$$V^{12} = \omega^{1} \sqrt{E^{1} - 2\frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}E^{12} + \left(\frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}\right)^{2}E^{2}};$$
 (14)

нормальная кривизна (8) –

$$a^{m} = E^{m} / L^{m} \quad m = 1, 2 \quad . \tag{15}$$

Главные же кривизны и главные направления определяются, как и ранее, формулами (11) и (12).

Коэффициенты удельных скольжений в направлении $V^{(12)}$ экстремального износа активных поверхностей зубьев, характеризующие интенсивность износа шестерни m=1 и колеса m=2 —

$$\eta^{m} = \vec{V}^{12} \vec{V}^{12} / \vec{V}^{m} \vec{V}^{12}$$

или

$$\eta^{1} = -1 - \frac{D^{2} - D^{12}}{D^{1} - D^{12}}, \quad \eta^{2} = 1 + \frac{D^{1} - D^{12}}{D^{2} - D^{12}}.$$

И окончательно, с учетом (13), –

$$\eta^{1} = \left[\left(\frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} \right)^{2} E^{2} - 2 \frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} E^{12} + E^{1} \right] \left[\frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} E^{12} - E^{1} \right]^{-1}$$

$$\eta^{2} = \left[\left(\frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} \right)^{2} E^{2} - 2 \frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} E^{12} + E^{1} \right] \times$$

$$\times \left[\left(\frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} \right)^{2} E^{2} - \frac{r_{1} \cos \beta_{1}}{r_{2} \cos \beta_{2}} E^{12} \right]^{-1}$$

$$(16)$$

Абсолютная величина Ω^{teept} вектора $\vec{\Omega}^{\text{teept}}$ угловой скорости верчения, направленного по нормали nn к активной поверхности зуба, является проекцией вектора $\vec{\Omega}^{\text{omh}} = \left\{ \frac{r_1 \cos \beta_1}{r_2 \cos \beta_2} \sin \gamma; 0; 1 + \frac{r_1 \cos \beta_1}{r_2 \cos \beta_2} \cos \gamma \right\}$ скорости

относительного вращения колеса и шестерни на нормаль:

$$\Omega^{eep_4} = \omega^{-1} \left(\frac{r_1 \cos \beta_1}{r_2 \cos \beta_2} \sin \gamma \cos \beta_1 \cos \alpha_k + \frac{r_2 \cos \beta_2 + r_1 \cos \beta_1}{r_2 \cos \beta_2} \cos \gamma \sin \beta_1 \cos \alpha_k \right)$$

$$(17)$$

Вектор относительной угловой скорости перекатывания (качения) активных поверхностей зубьев $\vec{\Omega}^{\kappa a q}$ является проекцией вектора $\vec{\Omega}^{omn}$ на касательную плоскость Π (рис. 1) и направлен по линии пересечения

плоскости Π с плоскостью Q, проходящей через общую нормаль nn и вектор $\vec{\Omega}^{omn}$. Следовательно, абсолютная величина скорости качения

$$\Omega^{\kappa a q} = \sqrt{\Omega^{6epq^2} - \Omega^{0mH^2}}.$$
(18)

Пусть \vec{a} , \vec{b} — единичные векторы, определяющие направления большой и малой полуосей эллиптической площадки мгновенного контакта (рис. 2). В этом случае проекция $V^{\mathfrak{E}_{\vec{a}}}$ вектора $\vec{V}^{\mathfrak{E}_{\vec{a}}} = \vec{V}^{\mathfrak{E}_{\vec{a}}} + \vec{V}^{\mathfrak{E}_{\vec{a}}}$ суммарной скорости на малую полуось —

$$V^{\Sigma} = \left(F^{1} + \frac{r_{1}\cos\beta_{1}}{r_{2}\cos\beta_{2}}F^{21}\right)/\sqrt{G^{1}}.$$
 (19)

Аналогично, угол \mathcal{G} (рис. 2) между вектором суммарной скорости и направлением большой полуоси площадки мгновенного контакта вычисляется по формуле

$$\theta = \arccos \left[\left(\frac{r_1 \cos \beta_1}{r_2 \cos \beta_2} E^{12} + E^{1} \right) / V^{\Sigma} \sqrt{E^{1}} \right]. \tag{20}$$

Максимальному напряжению в корне зуба и коэффициенту чувствительности придадим удобную в исследованиях форму записи

$$\sigma_{\max} = 6P_u h_0 / B_n S_0^2 , \qquad (21)$$

$$a = 1/m_n \oint_f^* - \rho_a^* \cos \alpha_k. \tag{22}$$

Здесь h_0 — плечо приложения равнодействующей P_u нагрузки на зуб; S_0 — толщина зуба в опасном сечении; B_n — длина зуба в направлении контактной линии; $\rho_f^* m_n = \rho_f$, $\rho_a^* m_n = \rho_a$ (m_n — модуль нормальный).

Вывод. Получены аналитические выражения, позволяющие численно оценивать качественные показатели работоспособности зубчатых гиперболоидных (начальные поверхности зубьев – однополостные гиперболоиды вращения) передач Новикова.

Список литературы: 1. *Грибанов В.М.* Зубчатые гиперболоидные передачи внешнего зацепления, генерируемые цилиндрическими косозубыми долбяками // Вісник Східноукраїнського національного університету.- 2001.- №11(45).- с.11-29; 2. *Выгодский М.Я.* Дифференциальная геометрия. — М.-Л.: Гос. изд-во техн. — теоретич. литературы. — 1949. — 511с.