П.М. ГЛАДКИЙ, канд. техн. наук, профессор, НТУ "ХПИ"; **О.В. ДМИТРИЕНКО**, канд. техн. наук, доцент, НТУ "ХПИ"

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОЙ ЖЕСТКОСТИ ГИДРОЦИЛИНДРА ОБЪЕМНОГО ГИДРОПРИВОДА С УЧЕТОМ РАСТВОРЕННОГО ВОЗДУХА В РАБОЧЕЙ ЖИДКОСТИ

В статті описана математична модель робочого процесу в гідроциліндрі з урахуванням наявності газоповітряної фази в робочій рідині, а також можливого розриву плину при дроселюванні на вході в порожнину низького тиску гідроциліндра. Виконано чисельні розрахунки на ЕОМ, в результаті яких визначена динамічна жорсткість гідроциліндра (без врахування пружних деформацій стінок) у залежності від різних параметрів у діапазоні частоті 10 – 200 Гц. За результатами розрахунки на декількох частотах побудовані амплітудні частотні характеристики.

В статье описана математическая модель рабочего процесса в гидроцилиндре с учетом наличия воздуховоздушной фазы в рабочей жидкости, а также возможного разрыва течения при дросселировании на входе в пустоту низкого давления гидроцилиндра. Выполнены численные расчеты на ЭВМ, в результате которых определена динамическая жесткость гидроцилиндра (без учета упругих деформаций стенок) в зависимости от разных параметров в диапазоне частот 10 – 200 Гц. По результатам расчетов на нескольких частотах построены амплитудные частотные характеристики.

In this work described mathematical working process model in hydrocylindr with provision for presence an gas-air phase in working liquids, as well as possible current breakup under throttling at the input in the cavity of low pressure hydrocylindr. Executed digit calculations on PC, as a result which determined dynamic acerbity hydrocylindr (disregarding springy deforming the walls) depending on different parameters within the range of frequencies 10 - 200 Hz. On results of calculations on several frequencies built magnitude frequency features.

Введение. Рабочий процесс в цилиндре гидропривода объемного регулирования характеризуется тем, что в полости, соединенной со сливом, устанавливается весьма низкое давление, практически равное давлению в гидробаке. Известно, что при низком давлении наличие в рабочей жидкости нерастворенного воздуха резко уменьшает приведенный модуль упругости гидросмеси, ухудшая динамические характеристики гидропривода. Представляет интерес оценить степень этого влияния.

Постановка задачи. В статье ставится задача построить математическую модель рабочего процесса в гидроцилиндре с учетом наличия газовоздушной фазы в рабочей жидкости, а также возможного разрыва течения при дросселировании на входе в полость низкого давления гидроцилиндра. Затем выполнить численные расчеты на ЭВМ, в результате которых определить динамическую жесткость гидроцилиндра (без учета упругих деформаций стенок) в зависимости от различных параметров в диапазоне частот 10...200 Гц. Модуль динамической жесткости будем определять как отношение амплитуды возмущающей силы к амплитуде первой гармоники перемещения штока.

Математическая модель и анализ влияния газовоздушной фазы в рабочей жидкости на динамическую жесткость гидроцилиндра объемного

гидропривода. Расчетная схема объемного гидропривода приведена на рис. 1.

Рисунок 1 – Расчетная схема объемного гидропривода: 1 – насос; 2 – гидроцилиндр; 3 – гидробак; 4 – обратные клапаны; 5 – полости насоса; 6 – соединительные каналы

Система уравнений, описывающих динамику гидропривода:

$$m\frac{d^{2}y}{dt^{2}} = (P_{2} - P_{3}) \cdot S - K \cdot \frac{dy}{dt} + F - F_{c};$$
(1)

$$q(t) - \frac{V_1}{E(P_1)} \cdot \frac{dP_1}{dt} - Q_{12} + Q_{n1} - K_y \cdot (P_1 - P_n) = 0;$$
(2)

$$Q_{12} - \frac{V_2}{E(P_2)} \cdot \frac{dP_2}{dt} - S \cdot \frac{dy}{dt} = 0;$$
(3)

$$Q_{34} - \frac{V_4}{E(P_4)} \cdot \frac{dP_4}{dt} + Q_{n4} - K_y \cdot (P_4 - P_n) - q(t) = 0.$$
(5)

В выражениях (1) – (5) приняты следующие обозначения: т – масса поршня гидроцилиндра; y – перемещение поршня гидроцилиндра; P_1 , P_4 – давления в полостях насоса; P_2 , P_3 – давления в полостях гидроцилиндра; S – рабочая площадь поршня гидроцилиндра; K – коэффициент вязкого трения; V_1 , V_4 – объемы полостей насоса; $q \in -$ геометрическая подача насоса; F – внешняя нагружающая сила; F_c – сила сухого трения по уплотнениям штока и поршня; K_y – коэффициент утечек в насосе; P_n – давление в гидробаке; V_2 , V_3 – объемы полостей гидроцилиндра; Q_{n1} , Q_{n4} – расходы обратных клапанов; Q_{12} , Q_{34} – расходы, соответственно из полостей P_1 , P_3 в полости P_2 , P_4 ; E e = E = E = 2, $P_4 = -$ адиабатический модуль упругости

смеси рабочей жидкости и газовоздушной фазы в соответствующих полостях. В связи с тем, что при исследовании динамической жесткости перемещения поршня как правило малы, а также, учитывая, что жесткость гидроцилиндра минимальна при среднем положении поршня [1], в дальнейшем анализе принято: $V_2 = V_3 = \text{const}$.

Вычисление $E(\mathbf{P}_1) - E(\mathbf{P}_4)$ производится в зависимости от давления и содержания газовоздушной фазы [1]. Пренебрегая непостоянством адиабатического модуля упругости рабочей жидкости в диапазоне давлений $P_i = 0 - 20$ МПа, можно записать:

$$E(P_{i}) \approx E^{*} \cdot \frac{1 - \frac{P_{i} - P_{0}}{E^{*}} + \varepsilon \cdot (\frac{P_{0}}{P_{i}})^{\frac{1}{n}}}{1 - \frac{P_{i} - P_{0}}{E^{*}} + \varepsilon \cdot (\frac{P_{0}}{P_{i}})^{\frac{1}{n}} \cdot \frac{E^{*}}{n \cdot P_{i}}},$$

где E^* – средний адиабатический модуль объемной упругости рабочей жидкости в интервале давлений от P_0 до P_i ; n = 1, 3 – показатель политропы; $\varepsilon = V_{ov}/V_{og}$ – относительное содержание газовоздушной фазы; P_0 – атмосферное давление; i = 1 - 4; V_{ov} , V_{og} – объемы, соответственно газовоздушной фазы и жидкости при нормальных условиях.

Сила сухого трения определяется в соответствии с [4]:

$$F_{c} = \begin{cases} F_{c}^{0} \cdot sign (dy/dt) & \text{при } |dy/dt| > 0; \\ F_{g} & \text{при } dy/dt = 0 \text{ и } F_{g} \le F_{c}^{0}; \\ F_{c}^{0} \cdot sign (F_{g}) & \text{при } dy/dt = 0 \text{ и } F_{g} > F_{c}^{0}, \end{cases}$$

где F_c^0 – модуль силы сухого трения; $F_g = (P_2 - P_3) \cdot S + F$.

Расход через обратные клапаны в зависимости от давления в полостях

определяется следующим образом: $Q_{ni} = \begin{cases} 0 & npu \ P_i \ge P_{ni}; \\ G_n \cdot \sqrt{P_n - P_i} & npu \ P_i \prec P_n; \end{cases}$

где G_n – проводимость обратных клапанов, i = 1, 4.

Расходы между полостями определяются по формулам:

$$\begin{split} Q_{12} &= G \cdot \sqrt{|P_1 - P_2|} \cdot sign(P_1 - P_2); \\ Q_{34} &= G \cdot \sqrt{|P_3 - P_4|} \cdot sign(P_3 - P_4), \end{split}$$

где *G* – проводимость соединительных каналов от насоса к полостям гидроцилиндра (принята одинаковой для нагнетания и всасывания).

В связи с возможностью нарушения неразрывности течения при дросселировании на входе в гидроцилиндр, уравнения (3) и (4) дополняются следующими условиями:

a) если
$$P_2 \le P_s$$
 или $V_{b2} < 0,$ (7)

TO
$$\begin{cases} P_2 = P_s; \\ V_{b2} = \int Q_{p2} \cdot dt; \end{cases}$$
(8)

б) если
$$P_3 \le P_s$$
 или $V_{b3} < 0,$ (9)

TO
$$\begin{cases} P_{3} = P_{s}; \\ V_{b3} = \int_{t_{03}}^{t} Q_{p3} \cdot dt \end{cases}$$
(10)

где $P_{\rm s}$ – давление парообразования рабочей жидкости; V_{b2} , V_{b3} – объемы парогазовых полостей в гидроцилиндре (приняты отрицательными); t_{02} , t_{03} – время начала образования парогазовых полостей (т.е. моменты начала выполнения условий (7) и (9)); t – текущее время; Q_{p2} , Q_{p3} – мгновенные значения «недостающего» расхода в соответствующих полостях.

Условия (7) и (5) проверяются на каждом шаге численного интегрирования и, в случаеих выполнения, вместо уравнений (3) и (4) используются соотношения (8) и (10) соответственно. При этом Q_{p2} и Q_{p3} определяются из уравнений (3) и (4) (в предположении $dP_2/dt = 0$ либо

$$dP_3/dt = 0$$
): $Q_{p2} = Q_{12} - S \cdot \frac{dy}{dt}$; $Q_{p3} = S \cdot \frac{dy}{dt} - Q_{34}$.

При использовании соотношений (8) и (10) не учитывается изменение давления в паровой полости. Однако, ввиду непродолжительности разрывных явлений и незначительности абсолютной величины давления паров, такое упрощение не искажает общей картины рабочего процесса в гидроцилиндре.

Система дифференциальных уравнений (1) – (5) с учетом условий (7) – (10) решалась методами численного интегрирования на ПЭВМ. Анализ был выполнен для гидропривода, имеющего следующие параметры: m = 0,5 кг; $S = 1,04 \cdot 10^{-3}$ м²; $F_c^0 = 400$ H; $V_2 = V_3 = 6 \cdot 10^{-5}$ м³; $P_s = 5$ кПа; K = 50 H·c/м; q(t) = 0; $G_n = 10^{-7}$ м⁴·c⁻¹·H^{-0,5}; $K_y = 1,1 \cdot 10^{-12}$ м⁵/(с·H); $P_n = 0,5$ МПа; $E^* = 1300$ МПа; $G = 3 \cdot 10^{-7}$ м⁴·c⁻¹·H^{-0,5}; $V_1 = V_4 = 2 \cdot 10^{-6}$ м³; $P_0 = 0,1$ МПа.

Внешняя нагружающая сила полагалась синусоидальной:

$$F = F_H \cdot \sin(2\pi \cdot f \cdot t),$$

где F_H – амплитуда; f – частота.

Значение є при расчетах изменялось от 0 до 0,03, что, как правило, имеет место при эксплуатации гидропривода [3].

Результаты расчетов приведены в табл. 1, 2 и на рис. 2.

Tuominga T											
	F _H , H	Частота, Гц									
3		10	20	40	100	200					
		Динамическая жесткость, $C_g \cdot 10^{-7}$, H/м									
0	2000	3,55	4,25	4,75	5,05	5					
	10000	3,05	3,8	4,3	4,5	4,5					
0,01	2000	2,5	2,86	3,15	3,26	3,26					
	10000	2,9	3,55	3,97	4,18	4,1					

Таблица 1

т *с*

Гаолица 2										
0	з		Давление в гидробаке, <i>P_n</i> , МПа							
G,		F _H , H	0,1	0,5	1	1,5	2	4		
мсп			Динамическая жесткость, $C_g \cdot 10^{-7}$, Н/м ($f = 40$ Гц)							
3.10 ⁻⁷	0	2000	4,75	4,75	4,75	4,75	4,75	4,75		
5.10		10000	3,96	4,3	4,3	4,3	4,3	4,3		
10-8	0	2000	4,87	5,02	5,07	5,07	5,07	5,07		
10		10000	1,8	2,73	3,6	4,24	4,57	4,56		
3.10-7	0,03	2000	0,7	1,9	3,15	3,78	4,11	4,55		
5.10		10000	1,1	3,4	3,9	4,06	4,13	4,29		
10-8	0,03	2000	0,7	1,67	3,18	3,96	4,37	4,89		
10		10000	1,1	1,66	2,39	3,1	3,66	4,4		

Анализ табл. 1 показывает, что в рассматриваемом диапазоне частот при давлении в гидробаке 0,5 МПа, изменение ε с 0 до 0,01 снижает модуль динамической жесткости (C_g) примерно на 30% (при малой амплитуде F_H).

Из рис. 2 видно, что с повышением давления в гидробаке с 0,5 МПа до 2 МПа C_g увеличивается в 2–2,3 раза (в зависимости от ε и F_H).

В некоторых схемах объемных гидроприводов [2] может иметь место дросселирование на входе в гидроцилиндр. В табл. 2 показано, что уменьшение проводимости соединительных каналов от $G = 3 \cdot 10^{-7}$ до $G = 10^{-8}$ м⁴·c⁻¹·H^{-0,5} (соответствует изменению диаметра эквивалентного отверстия с 3,3 мм до 0,6 мм), снижает C_g при малых P_n более чем в 2 раза даже при полном отсутствии газовоздушной фазы в жидкости. Проведенные расчеты позволяют определить нижнюю границу давления в гидробаке, при котором практически достижимые значения относительного содержания газовоздушной фазы, а также уменьшение проводимости соединительных каналов незначительно влияют на динамическую жесткость гидроцилиндра.

Следует отметить, что на высоких частотах величина динамической жесткости гидроцилиндра привода объемного регулирования приближается к жесткости гидроцилиндра привода дроссельного регулирования [1], которая для приведенного примера составляет 4,53·10⁷ H/м.

Рисунок 2 – Влияние давления в гидробаке (P_n) и относительного содержания газовоздушной фазы (ε) на динамическую жесткость. Частота внешней нагружающей силы f = 40 Гц

Выволы. В результате исследований определена динамическая жесткость гидроцилиндра (без учета упругих деформаций стенок) в зависимости от различных параметров в диапазоне частот 10-200 Гц. Модуль линамической жесткости определялся как отношение амплитулы возмущающей силы к амплитуде первой гармоники перемещения штока. По результатам расчетов на нескольких частотах построены амплитудные характеристики. Изменение относительного частотные содержания газовоздушной фазы с 0 до 0,01 приводит к снижению модуля динамической жесткости (С,) примерно на 30%. Проведенные расчеты позволяют определить нижнюю границу давления в гидробаке, при котором уменьшение проводимости соединительных каналов будут незначительно влиять на динамическую жесткость гидроцилиндра.

Список литературы: 1. Гамынин Н.С. Гидравлический привод систем управления. – М.: Машиностроение, 1972. – 376 с. 2. Патент США №4, 199,055. 3. Аксиально-поршневой регулируемый гидропривод / Под ред. В.Н. Прокофьева. – М.: Машиностроение, 1969. – 496 с. 4. Баженов А.И., Гамынин Н.С., Кареев В.И. и др. Проектирование следящих гидравлических приводов летательных аппаратов / Под ред. Н.С. Гамынина. – М.: Машиностроение, 1981. – 312 с. 5. Свешников В.К. Перспективы развития гидропривода // Привод и управление. – 2008. – №1. – С. 5 – 12.

Надійшла до редколегії 30.08.2010