## 665.7.665.647.2

··· , · · , · · , · · , · · ,



Different changing ways of catalytic system state by aerosol nanocatalysis in special conditions are viewed. The coagulation constant of aerosol nanocatalysis and the time of its subsidence depending on temperature and structure of catalytic system are calculated. The structure of catalytic system consists of these main parameters: quantity of inert material, catalyst concentration in reaction volume. As result, the minimum frequency of mechanical influences on system has been certain in various conditions of process.



( .1, ).

( . 1, ).

( .1, ).















$$-$$
 , ( · / <sup>2</sup>);

,

$$K = \frac{2kT}{3y} \left[ 1 + r \left( \frac{1}{r} \right) + AL \left( \frac{1}{r} \right) + ALr \left( \frac{1}{r^2} \right) \right], \qquad (3)$$

:

L-,

$$A = 0,7004 \left(\frac{2}{f} - 1\right),$$
 (4)

( 1 – f – »), « , = 0,70,

$$L = \frac{1}{n^{\dagger} \sqrt{2}}, \tag{5}$$

(1, 2), (1, 3, 4) [4, 5, 6].

. 1. 
$$Fe_2O_3$$
, 50%  
, 600 , -  
( ).  
: 50 ; 3  
5 10 , 10 50 10 100 .  
, ,

:  $V = \frac{2}{9} * \frac{r^2 g_{\cdots}}{y},$ , / <sup>3</sup>; , / <sup>2</sup>.

\_ g \_

|      | , 31      |                 |                       |                                                                                                      |                       | ,                    |                      |                |        |        |  |
|------|-----------|-----------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|----------------|--------|--------|--|
| ,    |           |                 | K <sub>3</sub>        |                                                                                                      |                       |                      |                      | t <sub>3</sub> |        |        |  |
| / 3  | 1         | 2               | 5 - 10                | 10 - 50                                                                                              | 10 - 100              | $t_1$                | t <sub>2</sub>       | 5 -            | 10 -   | 10 -   |  |
|      |           |                 |                       |                                                                                                      |                       |                      |                      | 10             | 50     | 100    |  |
| 1    |           |                 | 6,7*10 <sup>-11</sup> | $1,1*10^{-10}$                                                                                       | $1,7*10^{-10}$        | 2,8*10 <sup>-5</sup> | 1,4*10 <sup>-4</sup> |                |        |        |  |
| 2    |           |                 | 3,3*10 <sup>-11</sup> | 5,3*10 <sup>-11</sup>                                                                                | 8,4*10 <sup>-11</sup> | 1,4*10 <sup>-5</sup> | 1,4*10 <sup>-4</sup> |                |        |        |  |
| 5    | $0^{-16}$ | $4,02*10^{-13}$ | 1,3*10 <sup>-11</sup> | $3,3*10^{-11}$ 2,1*10 <sup>-11</sup> 3,4*10 <sup>-11</sup> 5,8*10 <sup>-6</sup> 1,4*10 <sup>-4</sup> | 0-8                   | 0_0                  | 0-2                  |                |        |        |  |
| 10   | 9*1       |                 | 6,7*10 <sup>-12</sup> | 1,1*10 <sup>-11</sup>                                                                                | 1,7*10 <sup>-11</sup> | 3,0*10 <sup>-6</sup> | 1,4*10 <sup>-4</sup> | 3,4*10         | 2,98*1 | 1,54*1 |  |
| 100  | 4,3       |                 | 6,7*10 <sup>-13</sup> | 1,1*10 <sup>-12</sup>                                                                                | 1,7*10 <sup>-12</sup> | 4,7*10 <sup>-7</sup> | 1,4*10 <sup>-4</sup> |                |        |        |  |
| 500  |           |                 | 1,3*10 <sup>-13</sup> | 2,1*10 <sup>-13</sup>                                                                                | 3,4*10 <sup>-13</sup> | 2,4*10 <sup>-7</sup> | 1,4*10 <sup>-4</sup> |                |        |        |  |
| 1000 |           |                 | 6,7*10 <sup>-14</sup> | 1,1*10 <sup>-13</sup>                                                                                | $1.7*10^{-13}$        | $2.2*10^{-7}$        | $1.4*10^{-4}$        |                |        |        |  |



(

51

52

(6)

1



|                    | Fe <sub>2</sub> O <sub>3</sub> |               | Ni                     | 0                    | $Al_2O_3$              |                      |  |
|--------------------|--------------------------------|---------------|------------------------|----------------------|------------------------|----------------------|--|
| ,                  | V, /                           | ,             | V, /                   | ,                    | V, /                   | ,                    |  |
| 1*10-9             | 3,81*10 <sup>-11</sup>         | $1,05*10^9$   | 5,41*10 <sup>-11</sup> | 7,39*10 <sup>8</sup> | 2,88*10 <sup>-11</sup> | $1,38*10^9$          |  |
| 5*10 <sup>-9</sup> | 9,52*10 <sup>-10</sup>         | $4,20*10^{7}$ | 1,35*10 <sup>-9</sup>  | $2,96*10^7$          | 7,19*10 <sup>-10</sup> | 5,56*10 <sup>7</sup> |  |
| 1*10-8             | 3,81*10 <sup>-9</sup>          | $1,05*10^7$   | 5,41*10 <sup>-9</sup>  | $7,39*10^{6}$        | 2,88*10 <sup>-9</sup>  | $1,38*10^{7}$        |  |
| 5*10-8             | 9,52*10 <sup>-8</sup>          | $4,20*10^{5}$ | 1,35*10 <sup>-7</sup>  | $2,96*10^5$          | 7,19*10 <sup>-8</sup>  | $5,56*10^5$          |  |
| 1*10-7             | 3,81*10 <sup>-7</sup>          | $1,05*10^5$   | 5,41*10 <sup>-7</sup>  | 7,39*10 <sup>4</sup> | $2,88*10^{-7}$         | $1,38*10^5$          |  |
| 5*10 <sup>-6</sup> | 9,52*10 <sup>-4</sup>          | 42,1          | 1,35*10 <sup>-3</sup>  | 29,6                 | 7,19*10 <sup>-4</sup>  | 55,6                 |  |
| 5*10 <sup>-5</sup> | 9,52*10 <sup>-2</sup>          | 0,42          | 1,35*10 <sup>-1</sup>  | 0,30                 | $7,19*10^{-2}$         | 0,56                 |  |





. 2.

,





3.

| ,                 |                      |                      | ()                   |
|-------------------|----------------------|----------------------|----------------------|
| n <sub>0</sub> /n | 20                   | 50                   | 100                  |
| 2                 | 2,4*10 <sup>-7</sup> | 3,8*10 <sup>-6</sup> | 4,5*10 <sup>-5</sup> |
| 5                 | 9,7*10 <sup>-7</sup> | 1,5*10-5             | 1,4*10 <sup>-4</sup> |
| 10                | $2,2*10^{-6}$        | 3,4*10 <sup>-5</sup> | 2,9*10 <sup>-4</sup> |
| 100               | 2,4*10 <sup>-5</sup> | 3,8*10 <sup>-4</sup> | 3,0*10-3             |





53



2

|    |               | ]    |       |       |       |
|----|---------------|------|-------|-------|-------|
|    |               |      |       |       |       |
|    | -             | -    |       |       |       |
| -1 |               |      |       |       |       |
|    | -1            | ,    |       | ,     |       |
|    | ,             |      | 5     | 10    | 20    |
| 1  | $5,38*10^{7}$ | 1,0  | 0,204 | 2,42  | 12,92 |
| 2  | $1,08*10^8$   | 0,5  | 0,410 | 4,84  | 25,84 |
| 3  | $1,74*10^{8}$ | 0,34 | 0,614 | 7,26  | 38,76 |
| 4  | $2,16*10^8$   | 0,25 | 0,818 | 9,71  | 51,68 |
| 5  | $2,71*10^{8}$ | 0,20 | 1,022 | 12,12 | 64,60 |
| 6  | $3,24*10^{8}$ | 0,16 | 1,228 | 14,54 | 77,52 |
| 7  | $3,76*10^{8}$ | 0,13 | 1,432 | 16,96 | 90,44 |

5

5 / 3 . ) Fe<sub>2</sub>O<sub>3</sub> ( 2 10 20 5 , ---\_ ---% % % \* 359 41,88 281 7,74 1 -\* 547 10,32 299 2 3 4 5 6 1,93 \_ 558 54,31 582 4,59 303 0,86 848 30,55 1220 611 594 2,58 305 0,48 304 982 19,55 600 304 0,31 1,65 1055 13,58 603 1,15 0,21 304 7 1100 9,98 605 0,84 305 0,16 \*\_

.

55

[7],





56







,

,

,







( . 4).

,

## AnCVB.

,

· , · . ,



| 1996 | 30.        | 4.    | . 430-434. 2.    |            |        |        |          |          |            |              |           | -         |
|------|------------|-------|------------------|------------|--------|--------|----------|----------|------------|--------------|-----------|-----------|
|      |            |       |                  |            |        | /      |          |          |            |              | .,        | . 2005.   |
| 20 . | 3          |       | ,                | ,          |        |        | ,        |          |            |              |           |           |
|      |            |       |                  | -          |        |        | //       |          |            | . 2005.      | 4         | . 30-38.  |
| 4.   |            |       |                  |            | 1955.  | 354    | . 5.     |          | ,          |              |           |           |
|      |            |       |                  |            |        | //     |          |          | . 2002.    | . 28.        | . 10.     | . 24-29.  |
| 6.   |            |       | 2. 2-            | · .,       |        |        | ,        |          | , 1964. 11 | 68 . 7. M.   | Seipen    | busch, J. |
| Binn | ig et al A | Aeros | ol Catalysis: th | ne Influer | nce of | Partic | le Struc | cture of | on the Cat | alytic Activ | vity of I | Platinum- |
| Nanc | particle   | Aggle | omerates // He   | lv. Chim.  | . Acta | . 2001 | V. 84.   | P. 36    | 86 - 3701  |              |           |           |

20.04.06