• •		,		;				
		,	•	;			,	
	,		,				,	
	_					,		
						,		

•O—N=O(2 ")

N N.

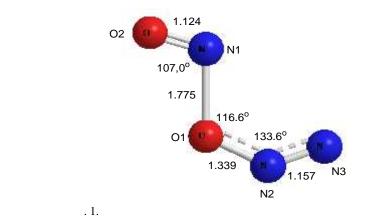
The calculation by quantum-chemical method is rotined, that the thermodynamically forbidden reaction of oxidation of molecular nitrogen by nitrogen dioxide can run on the bimolecular mechanism of interaction of an electronic-exited state for $NO_2(^2$ ") with N_2 . The calculated activation energy of reaction makes 95,2 kJ/mol. The heat effect of reaction rH is estimated in limits from -65,7 to -71,5 J/mol. Such mechanism of the oxidation reaction is characterized by availability of spin-fissile atom of oxygen in the molecule $\bullet O$ — $N=O(^2$ "), which is capable to activate triple bond N N.

•	•NO ₂ -	-
	NO ₂ (NO+O),	- - -
	NO_2	, , NO
NO ₂ , NO ₂ [1].	NO [2],	, NO ₂
. 0	413	:
	2NO ₂ 2NO+O ₂ 893 [3].	(1)

```
NO_2
                                                      893 - 1700 .
            [4],
        758 – 1173 .
                                         [5]:
                            4HNO_3 4NO_2+2H_2O+O_2
                                                                                           (2)
                                                        HNO<sub>3</sub>
     [5, 6]:
                            2HNO<sub>3</sub> N<sub>2</sub>O<sub>3</sub>+O<sub>2</sub>+H<sub>2</sub>O,
                                                                                           (3)
         100%
                                        531 - 533
                    (3)
                                                     134 - 155
                                                                               [4].
(2) (3)
                         NO_2
                 [4].
                                                            893
                    , NO<sub>2</sub>
  758 - 1173
                                 85%-
                                                                                       ≥1500
              ~0,1-0,2%)
                                                     [2]:
                            N_2+O_2 2NO+182,52
                                                                                           (4)
                                  [4],
                                                          (4),
                    N_2
                                                            N_2O,
                                                             NO_2(^2A_1)
                          (\Delta S_{298}^0 = -1.23)
                                                         ·K))
                    [7].
                            NO<sub>2</sub>+N<sub>2</sub> N<sub>2</sub>O+NO+139,08
                                                                                            (5)
                                                                       50
                           20
                                                               80
```

(1) ≤413 [2] $(NO_2)_2$ $(NO)_2$ [8]. •NO, N-N $\bullet NO_2$ NO_2 (≥893), $(^{2}A_{1})$ – NO₂: ²_{2,} [10] 2 $_{1}$ 2 A₂ [9]. NO_2 $\overset{\text{,}}{C}_{s}$ ²A". NO_2 $(^{2}A_{1}, ^{2}B_{2}, ^{2}B_{1}, ^{2}A")$ N_2 $(^{1} g), O_{2} (^{3} g),$. 1. (DFT) B3LYP [11, 12]. 6-311++G(3df),

B3LYP [11, 12].


6-311++G(3df),

GAUSSIAN-92 [13].

 NO_2 DFT

(
^		B3LYP/	B3LYP/6-311++G(3df)			
^	(q _e)	. (3)				
	(ap)	(p)	(total) - (E _o)	$\Delta_{ m f} { m H}^{ m o}_{298}$	S ^o ₂₉₈ // ····K	C ^o ,298
	$q_e(N)=+0.63$ $q_e(O)=-0.315$ $\mu=0.346$	q _s (N)=0,530 q _s (O)=0,235	$E_{o}=-205,1553$ $E_{o}=23,1$ / (22,05)	26,6*** (34,2)	239,7 (240,17)	36,8 (36,7)
	$q_e(N)=+0.37$ $q_e(N)=+0.37$ $q_e(O)=-0.185$	q _s (N)=-0,050 q _s (O)=0,525	$_{\rm total}$ =-205,1033 $_{\rm E_o=17,47}$	165,0*** (130,7)*	244,0	40,16
	μ =0,439 $q_e(N)$ =+0,730 $q_e(O)$ =-0,365	q _s (N)=0,60 q _s (O)=0,20	$_{ m total}$ = -205,0958 $_{ m E_o}$ = 21,78	189,2 (188,6)*	192,12	39,4
NO ₂ (² A") r(N-O1)=1,5075 r(N-O2)=1,1562	$q_e(N)=+0.30$ $q_e(O1)=-0.20$	$q_s(N) = -0.12$ $q_s(O1) = 0.98$	$_{\mathrm{total}=-205,0750}$ $_{\mathrm{E_o}=17,2}$	239,0 (229,9)*	254,1	42,7
O ₂ (³ g) r(N-O)=1,090 (1,097) (1,097)	$q_e(U2)=-0.10$ $q_e(N)=+0.00$ $q_e(O)=+0.00$	qs(O2)=0,14 qs(N)=0,00 qs(O)=1,00	$_{\rm total}=-109,5674$ $_{\rm E_0=14,63}$ / $_{\rm E_{con}=-150,3795}$	0,0 (0,0) 0,0	191,35 (191,50) 204,90	29,10 (29,12) 29,28
	,	•	$E_o=9,84$	(0,0)	(205,04)	(29,37)

```
. 1:
                                                                                 [7].
{}^{2}B_{2}(1), {}^{2}B_{1}(1,6), {}^{2}A''(2,03)
                                                                               NO_2(^2A_1) [10],
                                                                              \Delta_{\rm f} {\rm H^{o}}_{298}, :
   ^{\circ}_{298}(^{2}\text{B}_{2})=34,2+96,5=130,7 / .
                                                           NO_2(^2A_1)
    O_2(^3 g) + 1/2 N_2(^1 g).
                                                                 NO_2
NO_{2}(^{2}A_{1}) E_{o}.
\Delta H(^{2}A_{1}) - \Delta H(^{2}B_{2}) = total(^{2}A_{1}) + E_{o}(^{2}A_{1}) - E_{total}(^{2}B_{2}) - E_{o}(^{2}B_{2}) = \Delta E_{total} - \Delta E_{o} = 136,43 - 5,63 = 130,8
                                                                NO_2(^2B_2)
(^{2}A_{1})+130,8=34,2+130,8=165,0 / .
                                                           : 1 . .=627,544
=4,184 ; 1 =96,5 / .
                                     NO_2 (^2A")
                                                  •O-N=O
                                                 \bullet NO_2.
\bullet O—N=O N_2
                        NO_2(^2A").
                                    <sup>2</sup>A"
                                            NO_2 (\Delta H_{298}^0 = 239,0) / ,
S_{298}^0 = 254,1 \quad /( \cdot ))
                                NO_2(^2A'')+N_2 N_2O+NO-65,7
 (\Delta G_{298}^0 = -61,2 / ).
N<sub>2</sub>, N<sub>2</sub>O NO
                                                                             \Delta H_{298}^{0}
                                                                (6)
           DFT
                                                                 . 2.
                                                       . 1
                         (6)
                                            N_2
                                                                                      O—N—N
(q_s=0,7).
                                                                             •O—N=O (^{2}A").
```


 $NO_2(^2 ")+N_2 NO+N_2O ($, -) 2 DFT $NO_2(^2A"), N_2(^1 g), NO(^2), N_2O(^1 g)$ () : $NO_2(^2A")+N_2 NO+N_2O$

	NC	$O_2(^2A'')+N_2$ NO	$+N_2O$	
		B3LYP/6-311+	++G(3df)	
(*			
)	(Å,)			
		(q_e)	(q_s)	
NO ₂ (² A")	r(N-O1)=1,5075	$q_e(N) = +0.30$	$q_s(N) = -0.12$	total=-205,0751
- , ,	r(N-O2)=1,1562	$q_e(O1) = -0.20$	$q_s(O1)=0.98$	$E_0 = 17.2$ /
+	<ono=110,01< th=""><th>$q_e(O2) = -0.10$</th><th>$q_s(O2)=0,14$</th><th>,</th></ono=110,01<>	$q_e(O2) = -0.10$	$q_s(O2)=0,14$,
		•	•	
$N_2 \begin{pmatrix} 1 & g \end{pmatrix}$	r(N-N)=1,090	$q_e(N) = +0.00$	$q_s(N)=0,00$	total=-109,5674
	(1,097)	_	_	E _o =14,63 /
	r(N1-O1)=1,776	$q_e(O1) = -0.30$	$q_s(O1) = -0.06$	total=-314,6062
	r(N1-O2)=1,124	$q_e(N1)=+0.31$	$q_s(N1)=0,20$	
ON-O-	r(O1-N2)=1,339	$q_e(O2) = -0.03$	$q_s(O2)=0,10$	$NO_2(^2A'')+N_2$
$NN(^2A')$	r(N2-N3)=1,157	$q_e(N2)=+0,27$	$q_s(N2)=0,19$	NO+N ₂ O
(.1)		$q_e(N3) = -0.25$	$q_s(N3)=0,57$	=95,2 /
	r(N-O)=1,145(1,151)	$q_e(N)=+0.09$	$q_s(N)=0,72$	total=-129,9399
NO (²)		$q_e(O) = -0.09$	$q_s(O)=0,28$	$E_0=11.8$
	r(N1-N2)=1,121			
+	(1,128)	$q_e(N1) = -0.25$	$q_s(N1)=0,0$	total=-184,7334
$N_2O(^1 g)$	r(N2-O)=1,183	$q_e(N2)=+0,71$	$q_s(N2)=0,0$	$E_0=29,4$
	(1,184)	$q_e(O) = -0.46$	$q_{s}(O)=0,0$	
				NO CAN N
				$NO_2(^2A'')+N_2$
				NO+N ₂ O
				_r =–71,5 /

79

. 2. -71,5	/ (2).	ΔH^0_{298}	95, (6)	2 / .
300 -	·	O-NON	-N	
200 -	$\frac{NO_2(^2A'')}{NO_2(^2B_1)}$			
100 -	NO ₂ (² B ₂)	X	NO +	N ₂ O
0.0	NO ₂ (² A ₁)	NO ₂ + N ₂	→ NO + N ₂ O	-
	. 2. N ₂	2 1	NO ₂ (² "	NO ₂) [4], -

 $NO_2(^2A")$ N_2 .

N N.

8.

: 1. Zhen Yan, Chao-Xian Xiao, Yuan Kou. NOx-catalyzed gas-phase activation of methane: in situ IR and mechanistic studies //Catalysis Lett. 2003. V.85. 3-4, p.135-138. 2.

1985. – 327 . **3.** , 1965. – 519 . **4.** 01 21/30, 2156730 1 27.01.2000. **5.** , 1987. - 464 . **6.** , 1962. – 524 . **7.** , 1967. - 184 .

. // . 2005. . 46. 2. .221-227. 9. Ionov S.I., Davis H.F., Mikhaylichenko K., Valachovic L., Beaudet R.A., Witting C. The density of reactive levels in NO₂ unimolecular decomposition. //J. Chem. Phys. 1994. V.101. 6. p. 4809-4818. 10. Crawford T.D., Stanton J.F., Schafer H.F. The ²A₂ excited state of NO₂: Evidence for a C_s equilibrium structure and a failure of some spin-restricted reference wavefunctions //J. Chem. Phys. 1997. V. 107. 7. p. 2525-2528. 11. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior //Phys. Rev. 1988. V. A38. p. 3098 - 3100. 12. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a function of the electron density //Phys. Rev. 1988. V. B37. p. 785-789. 13. Frisch M.J., Trucks G.W., Schlegel H.B., Gill P.M.W. and other. Gaussian 92/DFT, Revision G.2, Gaussian, Inc., Pittsburgh PA, 1993.

20.04.06

•O---N=O

628.543.22

81