11.10.06.

544.344.3, 544.971

 $SrO - BaO - TiO_2$

 S_{298} , S_{298} , $S_{70} - BaO - TiO_2$, $S_{70} - BaO - TiO_2$,

In article there were calculated output thermodynamic data: enthalpy H^o_{298} , entropy S^o_{298} , dependence formula of heating capacity from temperature Cp = f(T) for some combinations of system $SrO - BaO - TiO_2$ by different methods. This is important for carrying out thermodynamic analysis of phase equilibriums in this system.

, ,

```
SrO - BaO - TiO_2,
                                                                                                                                    SrO -
BaO - TiO_2
                                                        298
                                                                                                                                   298
                             C_p = f(T).
                             SrTiO_3 - BaTiO_3
                                                                               [1].
                                                          Ba_2TiO_4-1820 \quad \text{, } BaTiO_3-1610
                      ); BaTi<sub>2</sub>O<sub>5</sub> – 1315
                                                           , BaTi_4O_9 - 1465
                                       3
                                                                                                                                     120
                                                                                                  1460
                                                                         BaTi<sub>4</sub>O<sub>9</sub>
                                                           Sr<sub>2</sub>TiO<sub>4</sub>,
         [1].
                                                                                                         1860 \pm 20
                       1600 . C
                                                              Sr_{3}Ti_{2}O_{7} \\
                                                                                                                      1640
                                                                               Sr<sub>2</sub>TiO<sub>4</sub> SrTiO<sub>3</sub>,
                  2040 \pm 20
                                                                                         Ba<sub>2</sub>TiO<sub>4</sub>, SrTiO<sub>3</sub>
                                                      [2, 3].
                                                                                                        : BaTi<sub>2</sub>O<sub>5</sub>, BaTi<sub>4</sub>O<sub>9</sub>,
Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub>;
```

Sr₂TiO₄ BaTiO₃.

298

-

. [4].

.

. . [5]. 1.

1

 $SrO-BaO-TiO_2\\$

	- 298,		
	1	2	
BaTi ₂ O ₅	2750,65	2573,54	2662,095
BaTi ₄ O ₉	4943,19	4560,73	4751,96
Sr ₃ Ti ₂ O ₇	3734,68	3818,19	3776,44

,

 $BaTi_{2}O_{5}, \\BaTi_{4}O_{9}, Sr_{3}Ti_{2}O_{7}$

.

. . [6].

_

[7],

,

 $C_{p}=f(T),$

2.

, BaTi₂O₅, BaTi₄O₉, Sr₃Ti₂O -

3.

2

 $SrO - BaO - TiO_2$.

	S° ₂₉₈ , /					
						,
BaTi ₂ O ₅	184,724	173,5	168,01	168,99	173,55	1593
BaTi ₄ O ₉	274,595	273,45	267,63	268,9	271,14	1713
Sr ₃ Ti ₂ O ₇	266,73	266,312	266,44	267,57	266,76	1853

 $SrO-BaO-TiO_2 \\$

	$C_p = f(T),$ /			
	a	$b \cdot 10^3$	$- c \cdot 10^{-5}$,
BaTi ₂ O ₅	189,2	83,68	34,396	298-1593
BaTi ₄ O ₉	291,75	68,62	64,14	298-2133
Sr ₃ Ti ₂ O ₇	243,7	68,62	279,07	298-1853

Sr₂TiO₄ BaTiO₃, [8] (XII), (298 –) (-),): $Sr_2TiO_4 \\$ =360,87-64,43(298-1898) () = 298,86 - 31,78(1898-2133); () BaTiO₃ = 85,5 + 44,35() (298-1833) = 391,46 - 123,43() (1833-1889).

).

,

•

,

.

 $SrO - BaO - TiO_2$,

•

: **1.** 1965. – 546 . **2.** . IX, 1979 – 574 . **3.** , 1986. – 408 . **4.** // .: , 1985.- 136 . **5.** (G 298) // 298, 3. – .304-306. **6.** // .: , 1970.- 541 . **7.** , 1981. – 180 . 8. // , 1962.–223 .

15.10.06

541.678.686.01

Explored main specified loss oil of the productat evaporation them in surrounding ambience from reservoir with stationary roof. Offered empirical dependencies, which allow to define the loss under small, greater breathing and ventilations gas space reservoir with stationary roof.