-	: .	:0	5.23.05 /		
	, 1972. – 24 . 5.		-		-
		:			:
05.17.11 /		, 1974. – 20 . 6.		•••••••••••••••••••••••••••••••••••••••	•
1092	1 10 10 7			//	
. – 1982. –	1. –	• •,	· · _ 19	83 _ 5	-
5 – 16. 8.			. 17		/5.
//	. – 1982. – 10. – . 13	– 14. 9.			
	//		. – 1957	. – .	•
77 - 82. 10.					//
-	. – .:	, 1956. –	. 31 – 49. 11.		•
		: .	, 1961. – 291	. 12.	-
• •,	•••, •••, //			-	_
.– .	. – 1968. –	. 3 – 13. 13.	•••,	•••,	-
				//	
""	: " ". – 2008. –	10. – . 127 – 134. 2	. .	•	-
					-
1082 22	:		: 05.17.11 /		. –
, 1905. – 22	•				

21.05.08

539.193:544.18

- • • • , . . , ,
- , . . , •
- , . . , • • · · · , • ,
 - -(III)

(II, III)

DFT/B3LYP -(III) LANL2DZ (II,III). (III) • (II,III) c .

By quantum-chemical method of density functional theory DFT/B3LYP with use of basis LANL2DZ the calculations of binuclear aqua-complexes molecular structures of chrome (III), manganese (II,III) are carried out. A stabilizing model of binuclear aqua-complexes through a sulfate bridge ligand is offered. Vibration frequencies have been calculated to evaluate of stability of the state of binuclear aqua-complexes of hrome (III), manganese (II,III) with sulfate bridge ligand.

$$Cr(H_2O)_6^{3+} + Mn(H_2O)_6^{2+} \xrightarrow{H_2SO_4} (H_2O)_5Cr^{3+} - SO_4^{2-} - Mn^{2+}(H_2O)_5 + 2H_2O + 2H^+,$$

(III) (V):

,

$$(H_{2}O)_{5}Cr^{3+}-SO_{4}^{2-}-Mn^{2+}(H_{2}O)_{5}\xrightarrow{O_{3},(-H_{2}O)} \rightarrow (H_{2}O)_{5}Cr^{3+}-SO_{4}^{2-}-Mn^{2+}(H_{2}O)_{4}-O \rightarrow (H_{3}CrO_{4}+Mn(H_{2}O)_{6}^{2+}+H_{2}SO_{4}+O_{2}+H^{+})$$

(III)

,

				(DFT	[)
-		-		B3LYP [5,	6]
		-			-
	(),	(,) DFT			-
	,			[7].	
					-
			LANL	2	-
()		[8].		
			double-	DZ.	
			B3LYP/LA	NL2DZ	-
			[8].		-
				•	-
			-		

GAUSSIAN-92 [9].

. 1., - . 1.

. 2,

. 1.

Cr (III)

Mn (II,III)

. 2.

	{total} , ()	R{Me-O} , (Å)	r _ , (Å)	,()	,()
$[Cr(H_2O)_6]^{3+}$	-543,914836	2,00	0,99	90,0	110,3
$[Mn(H_2O)_6]^{2+}$	-562,110725	2,19	0,98	90,0	110,5
$[Mn(H_2O)_6]^{3+}$	-561,476922	2,03	0,99	90,0	110,3

. 2.

[10].

2

	total , ()	R _{Cr-O} , (Å)	Ř _{Cr-O} , (Å)	R _{Mn-O} , (Å)	R ['] _{Mn-O} , (Å)
$[(H_2O)_5Cr^{III} - SO_4 - Cr^{III}(H_2O)_5]^{4+}$	-1246,569317	2,01	1,97	-	-
$[(H_2O)_5Cr^{III} - SO_4 - Mn^{II}(H_2O)_5]^{3+}$	-1264,764189	2,02	1,89	2,19	2,26
$[(H_2O)_5Cr^{III} - SO_4 - Mn^{II}(H_2O)_5]^{4+}$	-1264,138959	2,01	1,96	2,06*	1,89

*

DFT/B3LYP

,

Cr (III) Mn (II,III)

DFT/B3LYP Mn (II) Mn (III) Cr (III)

Cr (III)

	:1			(,
):		: 05.1	17.05.	/		-
	. – , 1987. – 360 . 2 .					: .	-
	/		-	:	, 1981. –	. 446 –	452.
3.	· ·, · ·, · ·,			•			
		//			. – 1977. –	. 42. –	6.
_	. 628 – 632. 4 .				/	. –	· .:
	, 1975. – 272 . 5. Becke A.D. Density-functional e	xchang	ge-ene	rgy ap	proximation with	ith correct	t as-
ym	nptotic behavior // Phys. Rev 1988 A. 38 P. 309	8 - 310	00. 6 .	Lee C	., Yang W., Par	r R.G. De	evel-
opr	ment of the Colle-Salvetti carrelation-energy formula	into a	functi	on of	the electron de	ensity // P	'hys.
Re	ev 1988 B. 37 P. 785 - 789. 7. Becke A. D. Dens	sity-fu	nction	al ther	mochemistry. I	II. The rol	le of
exa	act exchange // J. Chem. Phys 1993 Vol. 98	5648 -	- 5652	2. 8 . H	ay P.J., Wadt W	N.R. Ab in	nitio

effective core potential for molecular calculations // J. Chem. Phys. – 1985. – Vol. 82. – P. 270 – 310. 9. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 92/DFT, Revision G.2 / Gaussian Inc. – Pittsburgh: PA, 1993. 10. "GAUSSIAN": [.] / . . .]. – : .

GAUSSIAN'': [.] / . .]. - : .

03.05.08

666.6.

•

A generalised task on making multilayer diffusion silicide coatings is formulated. The equations to calculate parameters of phase formation and redistribution are given, e.g. co-ordinates of interphase boundaries and speed of these boundaries' dislocation. The boundary conditions for these equations are found.