В.Л. АВРАМЕНКО, канд. техн. наук, **КАРИМИ ЯЗДИ АМИР ЭХСАН**, студент, НТУ "ХПИ"

ИССЛЕДОВАНИЕ СВОЙСТВ ТРУДНОГОРЮЧИХ ПКМ НА ОСНОВЕ ЭПОКСИДНЫХ ОЛИГОМЕРОВ

Досліджений новий метод зниження горючості ПКМ шляхом іммобілізації антипірену на поверхні наповнювача — синтетичного алюмосиликата - з водного розчину полімеру-носія. Встановлена ефективність зниження горючості епоксидних ПКМ шляхом введення в їх склад наповнювача з іммобілізованим на його поверхні антипіреном — амінополіфосфатом.

The new method of decrease in combustibility PCM by immobilization of fire retardant on a filler surface - synthetic aluminosilicate - from polymer-carrier water solution is investigated. Efficiency of decrease in combustibility epoxy PCM by introduction in their composition of filler with immobilized on its surface fire retardant – amine polyphosphate is positioned.

С расширением областей применения полимерных композиционных материалов в авиации, судостроении, строительстве и других областях, проблема снижения горючести ПКМ остается актуальной [1,2].

Между тем, традиционные способы понижения горючести путём введения в состав ПКМ антипиренов, часто отрицательно сказываются на прочностных характеристиках ПКМ и процессе структурирования, ингибируя его.

Нами исследован новый метод снижения горючести ПКМ путём иммобилизации антипирена на поверхность наполнителя — синтетического алюмосиликата - из водного раствора полимера-носителя.

Полученный наполнитель-антипирен вводили в состав ПКМ на основе эпоксидной смолы "ЭПИКОТ 828-X-90". В качестве отвердителя исследован аминный отвердитель "ARADUR 2963"

Наполнитель в полимер вводили в количестве 0-30 % масс. Кроме приведенных выше ПКМ, исследованы также свойства ПКМ, в которые антипирены вводили традиционным способом в тех же количествах, что и модифицированный наполнитель.

После структурирования для полноты отверждения все образцы подвергали термообработке при 60 °C в течение 24 часов.

В качестве антипиренов исследованы аммония полифосфат $NH_4H_2P_2O_4$ (АПФ) и тригидрат алюминия $Al(OH)_3(AT\Gamma)$.

Полученные образцы испытывали на ударную вязкость (ASTM D256) на приборе "Zwick/material prufund". Термогравиметрический анализ проводили на приборе TGA-PL, кислородный индекс определяли по методу ASTM D2863; огнеопасность определяли по стандарту UL-94.

Изменения и процессы, происходящие в ПКМ, определяли дифференциальной сканирующей калориметрией (ДСК) на приборе "NETZSCH-DSC 200F3".

В таблице 1 представлены данные определения кислородного индекса, в таблице 2 – огнеопасность исследуемых образцов по ASTM D-635.

Таблица 1 Зависимость изменения кислородного индекса от природы наполнителя и его процентного содержания

наполнитель	0 %	5 %	10 %	20 %	30 %
КИ	0 70				
Не обротанный цеолит	17	17	20	22	23
Обротанный цеолит	17	24	25	27	28
Амониум фосфат	17	17	17	17	20
Тригидрат алюминия	17	21	23	28	36

Из таблицы 1 видно, что модификация синтетического цеолита водным раствором аминополифосфата при введении его в ПКМ в количестве 30 %, позволяет повысить кислородный индекс с 17 % у исходных образцов до 28 % у образцов, наполненных модифицированным цеолитом.

Следует обратить внимание, что начиная со степени наполнения 10 % модифицированным цеолитом кислородный индекс практически не меняется.

С другой стороны, введение 30 % АТГ увеличивает кислородный индекс до 36 %, однако при наполнении 10 % и выше кислородный индекс растёт с 23 % до 36 %.

При этом огнеопасность наполненных образцов значительно ниже, чем у исходных (таблица 2). Причем введение в ПКМ цеолита с иммобилизированным на его поверхности антипиреном по скорости горения не уступает традиционным способам снижения горючести — введением в состав ПКМ ТГА и АПФ в том же количестве.

Однако в предложенном способе количество антипирена, иммобилизированного на поверхность наполнителя на порядок ниже. Одним из механических показателей, характеризующих наполненные ПКМ является ударная

вязкость, показывающая влияние наличия жесткой неорганической фазы в полимерной матрице.

Таблица 2 Огнеопасность исследуемых образцов по ASTM D-635

№	Наполнитель	Содержание наполнителя, масс	Скорость горения, см/мин	
		%		
1	эпоксид	0	7.51	
2	Не обротанный цеолит	5	1.87	
3	Не обротанный цеолит	10	1.49	
4	Не обротанный цеолит	20	1.3	
5	Не обротанный цеолит	30	1.17	
6	Обротанный цеолит	5	1.53	
7	Обротанный цеолит	10	1.2	
8	Обротанный цеолит	20	1.03	
9	Обротанный цеолит	30	0.83	
10	Амониум полифосфат	5	1.88	
11	Амониум полифосфат	10	1.30	
12	Амониум полифосфат	20	Не горит	
13	Амониум полифосфат	30	Не горит	
14	Тригидрат алюминия	5	2.22	
15	Тригидрат алюминия	10	1.66	
16	Тригидрат алюминия	20	1	
17	Тригидрат алюминия	30	Не горит	

Из рисунка видно, что с увеличением степени наполнения показатель ударной вязкости падает. Падение ударной вязкости незначительное у ПКМ с модифицированным наполнителем.

В остальных случаях снижение ударной вязкости большее, особенно при введении антипиренов традиционным способом.

Незначительное снижение ударной вязкости у ПКМ с модифицированным наполнителем обусловлено наличием на поверхности цеолита полимераносителя антипирена, что способствует усилению адгизионного взаимодействия полимер-наполнитель.

Этот вывод подтверждают данные термической гравиметрии. У образцов ПКМ наполненных модифицированным наполнителем температура начала потери массы и сама потеря массы примерно на 50 % меньше, чем у остальных ПКМ.

Данные ДСК показывают, что процесс структурирования ПКМ, содержащего модифицированный наполнитель происходит в том же временном интервале, что и у исходных (ненаполненных) образцов, т.е. не ингибирует его.

Физико-механические свойства, в частности ударная вязкость (рисунок), изменяются обычным образом; введение в полимер жёсткой фазы (неорганический наполнитель) способствует увеличению жёсткости образцов и, как следствие, незначительному уменьшению ударной вязкости.

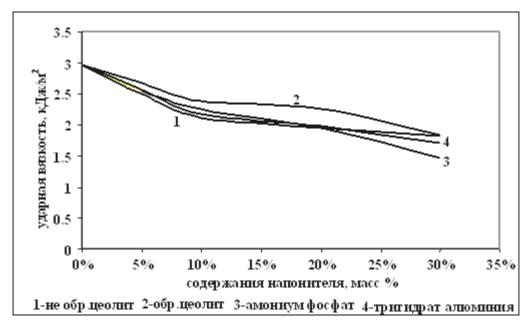


Рисунок – Зависимость ударной вязкости эпоксидных ПКМ от содержания наполнителей и антипиренов

Таким образом, установлена эффективность снижения горючести эпоксидных ПКМ путём введения в их состав наполнителя с иммобилизованным на его поверхность антипиреном – аминополифосфатом.

Список литературы: **1.** *Firuzmanesh M.* Composite Materials Through New Metods of Thermal Analysis / *M. Firuzmanesh, S. Yazdanpanah.* – Tehran, 2000. – 300 р. **2.** *Кодолов В.И.* Горючесть и огнестойкость полимерных материалов / *В.И. Кодолов.* – М.: Химия, 1976. – 157 с.

Поступила в редколлегию 10.05.09