Н.М. АНТРАПЦЕВА, докт. хим. наук, *Н.В. ТКАЧЕВА*, Национальный университет биоресурсов и природопользования Украины, г. Киев

ОБ УСЛОВИЯХ СИНТЕЗА КОБАЛЬТ (II) ДИФОСФАТА ГЕКСАГИДРАТА

Визначено умови одержання та взаємодією у системі $CoSO_4 - K_4P_2O_7 - H_2O$ синтезовано аморфний $Co_2P_2O_7\cdot 5H_2O$ і кристалічний $Co_2P_2O_7\cdot 6H_2O$ кобальт(II) дифосфати. Кристалізується $Co_2P_2O_7\cdot 6H_2O$ в моноклінній сингонії з параметрами елементарної комірки, нм: a=0.7202, b=1.8348, c=0.7677, $\beta=92.29$, V=1.0137 нм³. Одержано його IV спектроскопічні та рентгенографічні характеристики.

Amorphous $Co_2P_2O_7\cdot 5H_2O$ and crystal $Co_2P_2O_7\cdot 6H_2O$ cobalt(II) diphosphates are synthesized by interaction in the system $CoSO_4-K_4P_2O_7-H_2O$. Conditions of their reception are determined. $Co_2P_2O_7\cdot 6H_2O$ crystallizes in monoclinic system with parameters of unit cell, nm: a=0.7202, b=1.8348, c=0.7677, $\beta=92.29$, V=1.0137 nm³. It IR spectroscopic and X-ray characteristics are received.

Введение. Фосфаты двухвалентных металлов с различным строением аниона (моно-, поли-, цикло-) широко используют в качестве основы вяжущих, керамических и строительных материалов [1, 2]. Области их применения непрерывно расширяются поскольку, варьируя условия синтеза возможно целенаправленно изменять не только строение аниона, но и их дисперсное состояние. Последнее свойство особенно важно, так как процессы измельчения целевого продукта зачастую значительно усложняют их технологию.

Относительно кристаллогидратов кобальт(II) дифосфата известно, что кристаллический $Co_2P_2O_7.5H_2O$ получен авторами [3,4] взаимодействием водных растворов кобальт(II) нитрата и калий дифосфата при изучениии условий синтеза двойных солей – дифосфатов щелочных и поливалентных металлов. О синтезе $Co_2P_2O_7.6H_2O$ имеются данные препаративного характера, где отмечается, что при взаимодействии растворов $CoCl_2$ и $Na_4P_2O_7$ он осаждается в виде аморфной фазы. Для получения кристаллического дифосфата необходима длительная перекристаллизация (8 – 18 часов) при повышенных температурах [5]. Однако, учитывая склонность полимерных фосфатных

анионов к гидролитической деструкции, описанные условия получения $Co_2P_2O_7\cdot 6H_2O$ требуют уточнения, поскольку анионный состав в работе [5] не приводится. Целенаправленные исследования условий синтеза аморфного и кристаллического $Co_2P_2O_7\cdot 6H_2O$ в научно-технической литературе отсутствуют.

Цель настоящей работы – установить условия синтеза аморфного и кристаллического кобальт (II) дифосфатов.

Экспериментальная часть. В качестве исходных реагентов использовали $CoSO_4\cdot 7H_2O$ и $K_4P_2O_7$ марки "ч.д.а.". В отдельных сериях опытов устанавливали, аналогично [6], зависимость состава твердой фазы в системе $CoSO_4 - K_4P_2O_7 - H_2O$ от основных параметров процесса. Для этого соотношение в исходных растворах $n = P_2O_7^{4-}/Co^{2+}$ изменяли в интервале 0.10-0.60, их концентрацию -0.05-0.50 моль/л. Продолжительность контакта твердой фазы с маточным раствором устанавливали по достижению равновесия; температурный режим взаимодействия -293-298 К. При выборе условий перекристаллизации контролировали анионный состав.

Содержание фосфора в дифосфате определяли гравиметрическим хинолин-молибдатным методом [6], $\mathrm{Co^{2+}}-\mathrm{c}$ помощью спектрофотометра СФ-46 по методике [7], содержание воды — по потере массы при нагревании до 1073 К. Для идентификации твердой фазы использовали рентгенофазовый анализ (дифрактометр ДРОН-4-М, Fe $\mathrm{K_{\alpha}}$, внутренний стандарт NaCl), инфракрасную спектроскопию (спектрометр Nexus-470, диапазон частот 400 – 4000 см⁻¹, прессование фиксированной навески (0.05%) в матрицу KBr).

Результаты и их обсуждение. Анализ хода кривых изменения рН маточных растворов при разных значениях n (изомолярная серия 0.1 моль/л), свидетельствует о том, что взаимодействия в интервале $0.10 \le n \le 0.30$ имеют много общего (рис. 1). Начальные и конечные значения рН близки и составляют 5.28 - 5.49 и 4.90 - 5.18, соответственно; продолжительность стабилизации значений рН - 7 суток. Характер кривых, конкретные значения рН и продолжительность его стабилизации в случае взаимодействия растворов при n = 0.4 и, особенно, 0.5 и 0.6 значительно отличаются (рис. 1). Принципиально отличный характер имеют и изменения рН на протяжении контакта твердой фазы с маточным раствором: рН растворов при n = 0.4 возрастает до 6.63 и стабилизируется лишь на 20 сутки. Для растворов, полученных при n = 0.5

и 0.6, значение pH сначала возрастает на 3 сутки контакта (до 8.47 и 8.94, соответственно) потом постепенно уменьшается и на 23 сутки составляет 7.24 при n = 0.5 и 8.60 при n = 0.6 (рис. 1).

Рис. 1. Изменения pH маточных растворов в системе $CoSO_4 - K_4P_2O_7 - H_2O$ при n ($n = P_2O_7^{4-}/Co^{2+}$) 0.6 (1), 0.5 (2), 0.4 (3), 0.3 (4), 0.2 (5), 0.1 (6)

Химический анализ твердой фазы (табл. 1) коррелирует с результатами потенциометрического исследования маточных растворов. Содержание кобальта и фосфора в образцах, полученных при $0.10 \le n \le 0.30$, близко к расчетным значениям для дифосфата состава $Co_2P_2O_7\cdot 5H_2O$. Завышенное содержание воды характеризует образование аморфных солей. Данный вывод подтверждают и результаты рентгенофазового анализа.

ИК спектроскопические исследования, выполненные с целью идентификации аморфных дифосфатов (рис. 1), показали, что общая спектральная картина, набор полос поглощения и значение волновых чисел их максимумов аналогичны приведенным для $Co_2P_2O_7\cdot 5H_2O$ в [3,4]. Полученный аморфный дифосфат не кристаллизуется даже на протяжении 80 суток контакта с маточным раствором.

Для установления условий кристаллизации аморфного кобальт(II) дифосфата его перекристаллизовывали из слабокислых растворов, полученных пропусканием SO_2 через суспензию аморфного дифосфата в дистиллированной воде. Согласно результатам химического анализа в составе полученного кристаллического дифосфата (табл. 2) определено, % мас.: Co - 29.51,

 $P-15.27,\ H_2O-7.41.\ Для\ Co_2P_2O_7\cdot 6H_2O$ рассчитано, % мас.: Co $-29.47,\ P-15.49,\ H_2O-27.03.$

По результатам количественной бумажной хроматографии его анионный состав на 98.3 % отн. представлен дифосфатным анионом.

Таблица 1 Зависимость состава твердой фазы от соотношения $n=P_2O_7^{4-}/Co^{2+}$ (система $CoSO_4-K_4P_2O_7-H_2O$, изомолярная серия 0.1 моль/л)

Соотношение $n = P_2O_7^{4-}/Co^{2+}$		мас	рдой фаз с. %	·	Химический состав	Фазовый состав - Дифосфат Со ₂ P ₂ O ₇ ·5H ₂ O	
	Co	P 15.50	H ₂ O	К			
0.10	31.07	15.58	24.66	-	$Co_2P_2O_7\cdot 5.44 H_2O$		
0.20	31.22	15.57	24.53	-	$Co_2P_2O_7\cdot 5.42 H_2O$		
0.30	31.50	15.41	24.20	-	Co ₂ P ₂ O ₇ ·5.37 H ₂ O	CO21 207 31120	
0.40	31.84	15.38	23.89	0.23	Co ₂ P ₂ O ₇ ·5.37 H ₂ O +	Смесь	
0.50	31.11	15.92	23.48	0.35	двойная соль –	Co ₂ P ₂ O ₇ ·5H ₂ O и	
0.60	30.91	15.85	23.35	0.60	калий-кобальт дифосфат	калий-кобальт дифосфата	

^{*}Расчетные значения для $Co_2P_2O_7\cdot 5H_2O$, % мас.: Co - 30.86, P - 16.22, $H_2O - 23.59$.

Таблица 2 Рентгенометрические характеристики ${\rm Co_2P_2O_7\cdot 6H_2O}$

d, HM	I/I_0	hkl	d, нм	I/I_0	hkl	d, HM	I/I_0	hkl
0.923	10	020	0.354	35	022	0.2575	16	202
0.707	15	011	0.349	8	<u>1</u> 41	0.2510	5	250
0.670	18	110	0.335	25	220	0.2363	5	<u>1</u> 13
0.565	53	120	0.322	20	150	0.2318	25	320
0.514	100	101	0.313	19	<u>1</u> 22	0.2267	13	260
0.494	50	111	0.304	8	122	0.2140	6	133
0.462	68	130	0.2970	10	060	0.2119	10	$\bar{2}52$
0.449	45	121	0.2945	98	042	0.2030	15	$\bar{2}23$
0.384	6	140	0.2832	8	240	0.1967	26	190
0.360	7	200	0.2753	5	<u>1</u> 42			

Синтезированный $Co_2P_2O_7\cdot 6H_2O$ осаждается в виде поликристаллов розово-малинового цвета. Кристаллизуется $Co_2P_2O_7\cdot 6H_2O$ в моноклинной сингонии с параметрами элементарной ячейки, нм: $a=0.7202;\ b=1.8348;\ c=0.7677;\ b=92.29;\ V=1.0137\ \text{нм}^3.$

В его ИК спектре (рис. 2) регистрируются полосы поглощения, аналогичные известным для $Co_2P_2O_7 \cdot 6H_2O$ [8].

Выводы.

Установлено, что аморфный дифосфат состава $Co_2P_2O_7\cdot 5H_2O$ осаждается взаимодействием в системе $CoSO_4-K_4P_2O_7-H_2O$ при соотношении исход-

Рис. 2. ИК спектры поглощения аморфного $Co_2P_2O_7\cdot 5H_2O$ (1) и кристаллического $Co_2P_2O_7\cdot 6H_2O$ (2)

ных реагентов $0.1 \le n = (P_2 O_7^{4-}/Co^{2+}) \le 0.30$; концентрации растворов – 0.1 моль/л; продолжительности контакта твердой фазы с маточным раствором – 7 суток; температурный режим – 293 - 298 К.

Кристаллизуется он из слабокислых растворов в виде $Co_2P_2O_7$ · $6H_2O$.

Список литературы: 1. *Каназава Т*. Неорганические фосфатные материалы: пер. с англ. – К.: Наук. думка, 1998. – 297 с. 2. *Щегров Л.Н.* Фосфаты двухвалентных металлов / *Л.Н. Щегров*. – К.: Наук. думка. – 1987. – 216 с. 3. *Кохановский В.В.* Малорастворимые соединения в системе К₄Р₂О₇ – Со(NO₃)₂ – Н₂О (изомолярный разрез 1.5 моль/л) / *В.В. Кохановский* // Весці АН БССР. Серія хім. навук. – 1990. – № 5. – С. 3 – 8. 4. *Кохановский В.В.* Исследование взаимодействия дифосфата калия с азотнокислым кобальтом в водном растворе / *В.В.Кохановский, Е.А. Продан* // Журн. неорг. химии. – 1988. – Т. 33, № 3. – С. 761 – 765. 5. *Bassett H.* Studies of phosphates: Part IV. Pyrophosphates of some bivalent metals and their double salts, and solid solutions with sodium pyrophosphate / *H. Bassett, W.L. Bedwe, J.B. Hutchinson* // Journal of Chem. Soc. – 1936. – Р. 1412 – 1428. 6. *Антрапцева Н.М.* Визначення оптимальних умов одержання дифосфату цинку пентагідрату / *Н.М. Антрапцева Н.М.* Визначення (Вопросы химии и хим. технологии. – 2003. – № 6 – С. 92 – 95. 7. *Антрапцева Н.М.* Определение марганца, кобальта, цинка в двойных фосфатах / *Н.М. Антрапцева, Л.Н. Дегтяренко, Н.В. Рябцева* // Изв. ВУЗов. Химия и хим. технология. – 1992. – Т. 35,

№ 10. — С. 40 — 45. **8.** *Мельникова Р.Я.* Атлас инфракрасных спектров фосфатов. Конденсированные фосфаты / [*Р.Я. Мельникова, В.В. Печковский, Дзюба Е.Д. и др.*]. — М.: Наука, 1985. — 240 с.

Поступила в редколлегию 19.06.09

УДК 621762.22+621.926.55

Н.Д. ОРЛОВА, канд. техн. наук,

Одесская национальная морская академия, Украина

РАСЧЕТ ЗОН ИЗМЕНЕНИЯ ПАРАМЕТРОВ ВИБРАЦИИ ПРИ ТОНКОМ ИЗМЕЛЬЧЕНИИ

У статті викладені результати теоретичних і практичних досліджень з проблем тонкого вібраційного подрібнення матеріалів.

Results of theoretical and practical investigation on fine grinding problems were presented. Theses problems were concerned with basic trends of investigation—materials grinding kinetics.

В настоящей работе теоретически решается задача выбора параметров изменения частот и амплитуд вибрационной машины при тонком измельчении металлических порошков.

В [1, 4] экспериментально установлена зависимость зон изменения параметров вибрации от физико-механических характеристик измельчаемого материала.

Выбор зон изменения частоты колебаний рабочего органа вибрационной машины.

Допустим, что измельчение осуществляется за счет потерянной при ударе кинетической энергии:

$$\dot{O} = qv^2(1-z^2),$$

где q — функция от массы соударяющихся частиц; v — их относительная скорость; z — коэффициент восстановления.

В простейшем случае:

$$q = \Delta m_1 \cdot \Delta m_2 / (\Delta m_1 + \Delta m_2),$$