промисловість України. – 2009. – № 5. – С. 37 – 41. 10. Овсієнко О.Л. Дослідження формування фазової структури мідь-цинк-алюмінієвого каталізатора синтезу метанолу: дис. ... кандидата хим. наук. – М.: НІФХІ ім. Л.Я. Карпова, 1990. – 183 с. 11. Овсиенко О.Л. Медь-цинк-алюминиевые катализаторы синтеза метанола / О.Л. Овсиенко, Л.М. Родин, Л.П. Сидоренко // Український хімічний журнал. – 1998. – № 7 – 8. – С. 97 – 102. 12. Каталізатор мідь-цинк-алюмінієвий (СНМ-У, CHK-2): TYV 6-04687873.047-2000. 13. Ruigin Yang A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 / [Ruiqin Yang, Xiaocai Yu, Yi Zhang and oth.] // Fuel. - 2008. - V. 87, I. 4 - 5. - P. 443 - 450. 14. Shin-ichiro Fujita, Shuhei Moribe, Yoshinori Kanamori. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2 – effects of the calcinations and reductions on the catalytic performance / [Shin-ichiro Fujita, Shuhei Moribe, Yoshinori Kanamori and oth.] // Applied Catalysis A: General. - 2001. - V. 207, I. 1 - 2. - P. 121 - 128. 15. L.Z. Gao. Mechanistic studies of CO and CO₂ hydrogenation to methanol over a 50Cu/45Zn/5Al catalyst by *in-situ* FT-IR, chemical trapping and isotopelabelling methods / L.Z. Gao, J.T. Li, C.T. Au. // Studies in Surface Science and Catalysis. - 2000. - V. 130, Part 4. - P. 3711 - 3716. 16. Xian-ji GUO Preparation of CuO/ZnO/Al2O3 catalysts for methanol synthesis using parallel-slurrymixing method / Xian-ji GUO, Li-min, Shu-min LIU and oth.] // Jornal of Fuel Chemistry and Technology. - 2007. - V. 35, I. 3. - P. 329 - 333. 17. Fujitani T. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts / T. Fujitani, J. Nakamura. // Applied Catalysis A: General. - 2000. -V. 191, I. 1 - 2. – P. 111 – 129. **18.** Shin-ichiro Fujita. Methanol synthesis from CO₂ over Cu/ZnO catalysts prepared from various coprecipitated precursors / [Shin-ichiro Fujita, Yoshinori Kanamori, Agus Muhamad Satriyo, Nobutsune Takezawa] // Catalysis Today. - 1998. - V. 45, I. 1 - 4. - P. 241 - 244.

Поступила в редколегію 20.11.09

УДК 666.762.11:666.762.8

Л.А. АНГОЛЕНКО, канд. техн. наук, Г.Д. СЕМЧЕНКО, докт. техн. наук, М.А. КУЩЕНКО, С.В. ТИЩЕНКО, Е.Е. СТАРОЛАТ, НТУ «ХПИ» В.В. ПОВШУК, «Укрспецогнеупор», Запорожье, В.Н. СИДОРОВ, канд. техн. наук, УИПА, г. Харьков

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССОВ ОКИСЛЕНИЯ ГРАФИТА И АНТИОКСИДАНТНЫХ ДОБАВОК

У роботі представлено результати термодинамічних розрахунків реакцій горіння графіту та окиснення антиоксидантних добавок Al, Si, B, Mg, а також процесів фазових перетворень $M_{\text{тв}} \leftrightarrow M_{\text{рідк}} <=> M_x O_{\text{у тв}} \leftrightarrow M_x O_{\text{у рідк}}$. Розглянуто протікання реакцій окиснення графіту в широко-

му інтервалі температур (до 1450 °C) з метою прогнозування стійкості до окиснення графітвмісних матеріалів, термодинамічно обґрунтовано ефективність застосування антиоксидантних добавок Al, Si, B, Mg та спрогнозовано їх найбільш імовірнісні фізико-хімічні перетворення.

In work the results of thermodynamic calculations for reactions of graphite burning and oxidation of antioxidant additives Al, Si, B, Mg, and also processes of phase transformations $M_{solid} \leftrightarrow M_{liquid} \iff M_x O_y$ solid $\leftrightarrow M_x O_y$ liquid have been given. The course of reactions of graphite oxidation in a wide interval of temperatures (up to 1450 °C) has been considered with the purpose to forecast resistance to oxidation of graphite-containing materials, thermodynamically the efficiency of application of antioxidant additives Al, Si, B, Mg has been proved and their most probable physico-chemical changes have been predicted.

Срок службы углеродсодержащих огнеупорных изделий определяется как термомеханическим износом, так и химическим при взаимодействии материала футеровки с реагентами плавки, который включает взаимодействие компонентов огнеупора (главным образом оксидов – Al_2O_3 , MgO, SiO₂ и др. – и различных антиоксидантных добавок – Al, Si, B, Mg) с твердым углеродом и с газообразными продуктами, образующимися при окислении графита, кокса или антрацита и органических веществ, получающихся при деструкции углеродсодержащих связок (смола, пек и др.), а также взаимодействие огнеупора с примесями золы [1].

Основными компонентами газовой фазы являются CO и CO₂, направление реакций их образования зависит от температуры, суммарного давления газов в системе и отношения парциальных давлений CO и CO₂, а также скорости удаления образующегося продукта CO₂ [2].

Представляет интерес рассмотреть термодинамическую вероятность протекания реакций окисления графита в широком интервале температур с целью прогнозирования стойкости к окислению графитсодержащих материалов, а также термодинамически обосновать эффективность применения различных антиоксидантных добавок – Al, Si, B, Mg – и спрогнозировать их наиболее вероятностные физико-химические превращения с целью направленного синтеза фаз в процессе высокотемпературной эксплуатации.

Теплоту образования [3] оксида углерода (II) и (IV) рассчитывали, используя данные табл. 1, для реакций:

$$C_{rp} + O_2 = CO_2;$$
 $\Delta H_I^0 = -393,51 \text{ кДж/моль}$ (I)

$$CO + \frac{1}{2}O_2 = CO_2;$$
 $\Delta H_{II}^{0} = -393,51 \text{ кДж/моль}$ (II)

$$C_{rp} + \frac{1}{2}O_2 = CO;$$
 (III)

$$C_{rp} + CO_2 = 2CO \tag{IV}$$

Вычитая из реакции (I) реакцию (II), получали теплоту реакции (III):

$$\Delta H_{III}^{\ \ 0} = \Delta H_{I}^{\ \ 0} - \Delta H_{II}^{\ \ 0} = -110,53$$
кДж/моль (V)

Реакция (III) неосуществима в чистом виде, поэтому теплоту образования СО можно найти путем вычитания указанным способом. Аналогично находили теплоту реакции (IV):

$$\Delta H_{IV}^{\ 0} = \Delta H_{I}^{\ 0} - 2\Delta H_{II}^{\ 0} = 172, 45$$
кДж/моль. (VI)

Таблица 1

Вещество	$\Delta H°_{298,15}$, кДж/ моль	$\Delta S°_{298,15}$, Дж/ моль-град	С° _{р 298,15} , кДж/моль-град
CO (r) [5]	-110,530	197,548	29,141
CO _{2 (г)} [6]	-393,510	213,674	-
С (графит) [5]	0	5,74	8,536
O _{2 (r)} [4]	0	205,035	-

Термические константы веществ

Изучали равновесие реакции окисления графита [7]:

$$C_{\rm rpa\phi \mu r} + O_2 = CO_2 \tag{VII}$$

Реакция полного горения может быть представлена как сумма двух ступеней процесса горения:

- 1) сжигание графита до монооксида углерода;
- 2) дожигание монооксида углерода, т.е.

$$\mathbf{L} = \begin{bmatrix} C_{\text{графит}} + \frac{1}{2} & O_2 = CO \end{bmatrix}$$
(A)

$$CO + \frac{1}{2}O_2 = CO_2$$
 (B)

$$\Sigma \quad C_{\text{графит}} + O_2 = CO_2 \tag{C}$$

По закону Гесса, тепловой эффект результирующей реакции равен алгебраической сумме тепловых эффектов всех промежуточных реакций. Для наше случая это означает, что

$$\Delta H^{0}{}_{C} = \Delta H^{0}{}_{A} + \Delta H^{0}{}_{B}$$

 $\Delta H^{0}{}_{A} = -110,53 \text{ кДж/моль; } \Delta H^{0}{}_{B} = -282,98 \text{ кДж/моль;}$
 $\Delta H^{0}{}_{C} = -393,51 \text{ кДж/моль}$

Подобным образом вычисляем изобарный потенциал указанных реакций.

$$\Delta G^{0}_{C} = \Delta G^{0}_{A} + \Delta G^{0}_{B}$$

$$\Delta G^{0}_{A} = -110, 53 - 0,0892905 \cdot T$$

$$\Delta G^{0}_{B} = -282,98 + 0,0863915 \cdot T$$

$$\Delta G^{0}_{C} = -393,51 - 0,002899 \cdot T$$

При 1073 К: $\Delta G^0_{C 1073} = -395,8292$ кДж/моль.

Изобарный потенциал каждой из рассмотренных реакций:

$$\begin{array}{c|c}
+ & -\Delta G^{0}{}_{A} = RT \ln K_{A} \\
\hline & -\Delta G^{0}{}_{B} = RT \ln K_{B} \\
\hline & -\Delta G^{0}{}_{C} = RT \ln K_{C}
\end{array}$$

откуда следует, что

$$RT \ln K_C = RT \ln K_A + RT \ln K_B; \quad \ln K_C = \ln K_A + \ln K_B$$

и, следовательно,

$$K_C = K_A \cdot K_B$$
.

Для трех рассмотренных реакций (A), (B) и (C)

$$K_{A} = \frac{P_{CO}}{P_{O_{2}}^{1/2}}; \qquad K_{B} = \frac{P_{CO_{2}}}{P_{CO} \cdot P_{O_{2}}^{1/2}} \qquad K_{C} = \frac{P_{CO_{2}}}{P_{O_{2}}}$$
$$K_{C} = K_{A} \cdot K_{B} = \frac{P_{CO} \cdot P_{CO_{2}}}{P_{O_{2}}^{1/2} \cdot P_{CO} P_{O_{2}}^{1/2}} = \frac{P_{CO_{2}}}{P_{O_{2}}}$$

При 1073 К: *ln K_C* = 395,8292 / 8,314 / 800 ·= 0,0595, откуда *K_C* = 1,0613.

Также рассматривали окисление монооксида углерода стехиометрическим количеством кислорода при нескольких температурах и давлениях.

Количество присутствующих компонентов выражали в виде долей e превращенного CO: CO + 0,5 O₂ \leftrightarrow CO₂

$$y_{CO} = 2(1-e)/(3-e); y_{O2} = (1-e)/(3-e); y_{CO2} = 2e/(3-e).$$

Энергию Гиббса записывали как функцию е:

$$\frac{G}{RT} = \frac{1}{RT} \sum n_i m_i = \sum n_i \left[\frac{m_{i0}}{RT} + ln(y_i P) \right] = (1 - e) \left[\frac{m_{10}}{RT} + ln \frac{2(1 - e)P}{3 - e} \right] + 0.5(1 - e) ln \frac{(1 - e)P}{3 - e} + e \left[\frac{m_{30}}{RT} + ln \frac{2eP}{3 - e} \right]$$

где μ_{i0} – энергии Гиббса образования, кДж/моль.

Были построены графики зависимости константы скорости реакции $(-ln \ K = \Delta G/RT)$ от относительной степени превращения монооксида углерода при различных температурах и давлении 1 атм, приведенные на рис. 1.

Рис. 1. Зависимость константы скорости реакции (– $ln \ K = \Delta G/RT$) от относительной степени превращения *е* при температурах 673, 1073 и 1723 К и давлении 1 атм

Нижние точки на кривых (рис. 1) при e = 0,3 соответствуют равновесным превращениям.

Для защиты графита от окисления применяются различные антиоксидантные добавки, механизм защитного действия которых определяется бо́ль-шим сродством к кислороду, чем графит. Нами применялись в качестве антиоксидантов порошки алюминия, кремния, магния и бора. Термодинамический анализ реакций окисления Al, Si, B, Mg проводили при 1073 К (800 °C) и 1450 °C (1723 К), используя данные табл. 2. Основные расчетные величины приведены в табл. 3.

Термические константы веществ					
Формула решестра	$\Lambda H^{\circ}_{100,15}$ K Π W/MOTH	S° _{298,15} ,	$C^{\circ}_{\ p\ 298,15},$		
Формула вещества	298,15, KAAN MOJIB	Дж/моль•град	кДж∕моль∙град		
Al [8]	0	28,35	24,354		
α-Al ₂ O ₃ [8]	-1675,700	50,92	79,033		
Si [9]	0	18,84	-		
SiO ₂ [9]	-906,585	41,87	-		
В _(аморф) [8]	0	6,53	11,97		
B_2O_3 [8]	-1273,75	54,01	62,80		
Mg [10]	0	32,7	-		
MgO [10]	-602,100	26,96	37,18		
O ₂ [10]	0	205,035	-		

Таблица 3

Таблица 2

Расцетище термолицамищески		еакний окиспения	$\Delta 1 Si$	RuN	Mσ
тасчетные термодинамически	с воличины для р	сакции окнолонии	<i>i</i> ii, bi,	Dhr	VIS.

Реакция	$\Delta G_T = f(T)$	Δ G° ₁₀₇₃ , кДж/моль	К _{Р 1073}	Δ G° ₁₇₂₃ , кДж/моль	К _{Р 1723}
$4Al + 3O_2 = 2Al_2O_3$	-3351,4+0,6267·T	-2678,989	1,3502	-2271,656	1,1718
$Si + O_2 = SiO_2$	-906,585+0,0795·T	-821,295	1,0964	-769,628	1,0552
$4B + 3O_2 = 2B_2O_3$	-3547,5+0,5332·T	-2975,371	1,3959	-2628,788	1,2014
$2Mg + O_2 = 2MgO$	-1204,2+0,2165·T	-971,879	1,1151	-831,145	1,0597

Как видно из приведенных данных, в принятом интервале температур 1073 – 1723 К возможно протекание реакций окисления Al, Si, B, Mg, что указывает на возможность их использования в качестве антиоксидантов для графитсодержащих огнеупорных материалов.

Если при заданных условиях меняется агрегатное состояние веществ, то при расчетах равновесия необходимо учитывать переход из одного состояния в другое.

На основе численных значений ΔH° и ΔS° соединений могут быть получены уравнения *ln K* и ΔG° , отвечающие процессу плавления.

Эти величины самостоятельного значения не имеют, но в силу аддитивности логарифмов констант равновесия и изобарных потенциалов они должны учитываться при определении ΔG° системы, в которой отдельные участники меняют агрегатное состояние. Если исходной является система, состоящая из твердых веществ, а изучается возможность их взаимодействия при температуре, соответствующей жидкому состоянию, то расчет изобарного потенциала реакции может складываться из последовательного вычисления ΔG_1° процессов плавления веществ и взаимодействия их в жидком состоянии ΔG_2° .

Изобарный потенциал реакции при температуре выше точки плавления веществ будет равняться сумме изобарных потенциалов плавления и взаимодействия в жидком состоянии.

Уравнение для расчета константы скорости реакции $lnK = -\frac{DH_{298}^0}{RT} + \frac{DS_{298}^0}{R}$ можно представить в иной форме, обозначив $-\frac{DH_{298}^0}{R} = M$ и $\frac{DS_{298}^0}{R} = N$, тогда $lnK = \frac{M}{T} + N$.

Определяли тепловые зависимости $ln \ K$ и ΔG для процесса плавления алюминия, кремния, бора и магния.

Исходные и расчетные значения представлены в табл. 4.

Таблица 4

Термодинамические величины фазовых переходов Al_{тв}→Al_ж, Si_{тв}→Si_ж, B_{тв}→B_ж,

						0					
Вещество	T_{nx} K	$\Delta H_{nr},$ қДжМоль	$\Delta S_{nn}, Dec($ worte $K)$	Μ	$N, \cdot 10^{-3}$	$ln K_p = f(T)$	K_{1073}	K_{1723}	$\Delta G_T = f(T)$	ΔG_{l073} , қДркмоњ	ΔG_{1723} , қДжмоњ
-Al _{TB}	933,5	10,75	11,5158	0	0	-1,293	1,0002	1,0006	10,75 –	-1,6065	-9,0917
$+Al_{*}$				-1,2930	1,3851	T +			0,0115·T		
Δf				-1,2930	1,3851	1,3851.10-3					
-Si _{тв}	1688	50,6	29,9763	0	0	-6,0861	0,9979	1,0001	50,6 -	18,4354	-1,0492
$+Si_{m}$				-6,0861	3,6055	+			0,02998·T		
Δf				-6,0861	3,6055	3,6055.10-3					
- В _{тв}	2573	23,6	9,1722	0	0	-2,8386	0,9985	0,9995	23,6 -	13,7583	7,7964
$+B_{\star}$				-2,8386	1,1032	+			0,0092·T		
Δf				-2,8386	1,1032	$1,1032 \cdot 10^{-3}$					
-Мдтв	922	9,20	9,9783	0	0	-1,1066	1,0002	1,0006	9,2 –	-1,5067	-7,9926
$+Mg_{\ast}$				-1,1066	1,12	T +			0,00998·T		
Δf				-1,1066	1,12	$1,2002 \cdot 10^{-3}$					

На основе полученных уравнений ln K = f(T) и $\Delta G_T = f(T)$ были построе-

ны графики зависимости константы скорости реакции и энергии Гиббса для процессов плавления Al, Si, B и Mg (рис. 2).

Аналогичным образом рассчитаны $ln \ K$ и ΔG° (табл. 5), отвечающие процессам плавления Al₂O₃, SiO₂, B₂O₃, MgO и построены их графические зависимости от температуры (рис. 3).

Рис. 2. Зависимость константы скорости реакции $K_{n,n}$ (а) и энергии Гиббса $\Delta G_{n,n}$ (б) при плавлении Al, Si, B и Mg

Рис. 3. Зависимость константы скорости реакции $K_{n_{7}}$ (а) и энергии Гиббса $\Delta G_{n_{7}}$ (б) при плавлении Al₂O₃, SiO₂, B₂O₃, MgO

Анализируя полученные данные, можно заключить, что в принятом интервале температур (до 1800 К) возможно плавление Al, Si, Mg, а также B₂O₃.

С термодинамической точки зрения важен лишь результат процесса, но не путь, по которому он проходил.

Так, для алюминия безразлично, будет ли алюминий сначала затверде-

вать, а потом окисляться до твердого глинозема, или, наоборот, сначала жидкий алюминий окислится, образуя жидкий глинозем, который затвердеет.

Таблица 5

	$B_2O_3 _{TB} \rightarrow B_2O_3 _{K}, MgO _{TB} \rightarrow MgO _{K}$										
Вещество	T_{nv}, K	ΔH , қДж/моль	ΔS , Дж(моль K)	Μ	N, $\cdot 10^{-3}$	$ln K_p = f(T)$	K_{1073}	K_{1723}	$\Delta G_T = f(T)$	ΔG_{I073} , қДқемоль	ΔG_{1723} , қДқемоль
-Al ₂ O _{3tb}	2323	-1675,7	50,92	-201,5516	6,1246	-13,3991	0,8394	0,8969	111,4 –	59,9440	28,7731
$+Al_2O_{3\kappa}$		111,4	47,9552	13,3991	-5,7680	+			0,04796∙T		
Δf		_	-	-188,1525	0,3566	$5,7686 \cdot 10^{-3}$					
-SiO _{2tb}	1883	-906,585	41,87	-109,0432	5,0361	-1,0272	0,9083	0,9435	8,54 -	3,6736	0,7257
+SiO _{2ж}		8,54	4,5353	1,0272	-0,5455	+			0,0045·T		
		-	-	-108,016	4,4906	0,5413.10-3					
-В ₂ О _{3тв}	2573	-1273,75	54,01	-153,2054	6,4963	-2,9541	0,8714	0,9187	24,56 –	-11,8893	-33,9696
$+B_2O_{3k}$		24,56	33,97	2,9541	-4,0858	+			0,03397·T		
Δf		_	_	-150,2514	2,4104	$4,0859 \cdot 10^{-3}$					
-MgO _{тв}	3100	-602,1	26,96	-72,42	3,2427	-9,2615	0,9431	0,9643	77 –	50,3481	34,2029
+MgO _ж		77	24,84	9,2615	-2,9876	+			0,0248·T		
Δf		-	—	-63,1585	0,2551	$2,9829 \cdot 10^{-3}$					

Термодинамические величины фазовых переходов Al_2O_3 _{тв} $\rightarrow Al_2O_3$ _ж, SiO_2 _{тв} $\rightarrow SiO_2$ _ж,

Следовательно, рассматриваемый процесс можно описать следующими пятью уравнениями, из которых процесс (3) будет результирующим как для процессов (1) и (2), так и для процессов (4) и (5):

+	(1)	$2 \operatorname{Al}_{\mathfrak{K}} \rightarrow 2 \operatorname{Al}_{\mathrm{TB}}$
	(2)	$2 \text{ Al}_{\text{\tiny TB}} + 1,5 \text{ O}_2 \rightarrow \text{Al}_2\text{O}_{3 \text{ tb}}$
Σ	(3)	$2 \text{ Al}_{\text{\tiny J\!K}} + 1,5 \text{ O}_2 \rightarrow \text{Al}_2\text{O}_{3 \text{ tb}}$
	(4)	$2 \operatorname{Al}_{\mathfrak{K}} + 1,5 \operatorname{O}_{2} \to \operatorname{Al}_{2} \operatorname{O}_{3 \mathfrak{K}}$
+	(5)	$Al_2O_3 {} Al_2O_3 {} Blackson $

Аналогичным образом определены схемы превращений для Si, B и Mg.

	(6)	${\rm Si}_{\scriptscriptstyle m I\!\!K} ightarrow {\rm Si}_{\scriptscriptstyle m TB}$
+	(7)	$Si_{\rm tb} + O_2 \rightarrow SiO_{2\ \rm tb}$
Σ	(8)	$Si_{k} + O_2 \rightarrow SiO_2$ TB
1	(9)	$Si_{*} + O_2 \rightarrow SiO_2 *$
+	(10)	$SiO_{2 \text{ K}} \rightarrow SiO_{2 \text{ TB}}$

	(11)	$2 B_{\star} \rightarrow 2 B_{\text{tb}}$
Ŧ	(12)	$2 \text{B}_{\text{TB}} + 1,5 \text{O}_2 \rightarrow \text{B}_2 \text{O}_3 _{\text{TB}}$
Σ	(13)	$2 \text{B}_{\text{\tiny TK}} + 1,5 \text{O}_2 \rightarrow \text{B}_2\text{O}_{3 \text{TB}}$
	(14)	$2 \operatorname{B}_{ж} + 1,5 \operatorname{O}_2 \to \operatorname{B}_2 \operatorname{O}_3 _{ж}$
Т	(15)	$B_2O_3 {} B_2O_3 {} B_2O_3$
	(16)	$Mg_{\kappa} \rightarrow Mg_{\scriptscriptstyle TB}$
Т	(17)	$Mg_{\scriptscriptstyle TB}$ + 0,5 O_2 \rightarrow $MgO_{\scriptscriptstyle TB}$
Σ	(18)	$Mg_{\pi} + 0,5 \text{ O}_2 \rightarrow MgO_{_{TB}}$
<u></u>	(19)	$Mg_{*} + 0,5 O_2 \rightarrow MgO_{*}$
+	(20)	MgO $_{\rm \tiny W} \rightarrow$ MgO $_{\rm \tiny TB}$

.

Таким образом, термодинамические расчеты подтверждают, что наиболее эффективным антиоксидантом является добавка бора, в расплав переходят преимущественно алюминий и бор, а из продуктов реакции наибольшее количество расплава образует оксид бора.

Список литературы: 1. Кащеев И.Д. Оксидноуглеродистые огнеупоры / И.Д. Кащеев. – М.: «Интермет Инжиниринг», 2000. – 265 с. 2. Гельд П.В. Процессы высокотемпературного восстановления / П.В. Гельд, О.А. Есин. – Свердловск: ГНТИ литературы по черной и цветной металлургии. Свердловское отделение, 1957. – 648 с. 3. Герасимов Я.И. Курс физической химии / [Я.И. Герасимов, В.П. Древинг, Е.Н. Еремин и др.]. – М.: Госхимиздат, 1963. – Т.1. – 624 с. 4. Свойства, получение и применение тугоплавких соединений: справ. изд. / [под ред. Косолаповой Т.Я.]. – М.: Металлургия, 1986. – 928 с. 5. Гурвич Л.В. Термодинамические свойства индивидуальных веществ: справочное издание: в 4-х т. / [Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др.]. - [3-е изд., перераб. и расширен.]. – М.: Наука, 1979. – Т. II, Кн. 2. – 344 с. **6.** Елютин В.П. Взаимодействие окислов металлов с углеродом / В.П. Елютин. – М.: Металлургия, 1976. – 360 с. 7. Крестовников А.Н. Справочник по расчетам равновесий металлургических реакций / А.Н. Крестовников. – М.: Металлургиздат, 1963. – 416 с. 8. Термические константы веществ: справочник в десяти выпусках / [под ред. акад. В.П. Глушко]. – М.: ВИНИТИ, 1971. – Вып. V (B, Al, Ga, In, Tl). – 530 с. 9. Термические константы веществ: справочник в десяти выпусках / [под ред. акад. В.П. Глушко]. – М.: ВИНИТИ, 1970. – Вып. IV (С, Si, Ge, Sn, Pb). – Часть 1: Таблицы принятых значений. – 510 с. 10. Рябин В.А. Термодинамические свойства веществ: справочник / В.А. Рябин, М.А. Остроумов, Т.Ф. Свит. – Л.: «Химия», 1977. - 392 с.

Поступила в редколлегию 23.11.09