О.А. КОРНИЕНКО, канд. хим. наук, научн. сотрудн., ИПМ НАНУ им. И.Н. Францевича, Киев

ВЗАИМОДЕЙСТВИЕ И СВОЙСТВА ФАЗ В СИСТЕМЕ CeO₂ – Sm₂O₃ ПРИ 1100 °C

Вперше вивчені фазові рівноваги в системі CeO₂ – Sm₂O₃ при температурі 1100 °C у всьому інтервалі концентрацій. Нових фаз в системі виявлено не було. У системі існують області твердих розчинів на основі моноклінної (B), кубічних (C і F) модифікацій оксидів рідкоземельних елементів.

Впервые изучены фазовые равновесия в системе $CeO_2 - Sm_2O_3$ при температуре 1100 °C во всем интервале концентраций. Новых фаз в системе обнаружено не было. В системе существуют области твердых растворов на основе моноклинной (В), кубических (С и F) модификаций оксидов редкоземельных элементов.

First there have been studied phase equilibria in the system $CeO_2 - Sm_2O_3$ at 1500 °C in the full range of concentrations. No new phases were found. The fields of solid solutions based on monoclinic (B), cubic (C and F) modifications of rare-earth oxides were revealed in the system.

Диаграммы состояния систем на основе CeO₂ с оксидами РЗЭ представляют значительный научный и практический интерес для разработки материалов твердых электролитов для топливных ячеек, кислородных газовых датчиков, огнеупорной футеровки печей и защитных покрытий на сплавы [1 – 7]. Ранее были исследованы фазовые равновесия в указанной системе при 1500 °C [8].

Цель настоящей работы – изучение взаимодействия и физикохимических свойств образующихся фаз в двойной системе CeO₂ – Sm₂O₃ при температуре 1100 °C.

В качестве исходных веществ использовали азотнокислую соль церия Ce(NO₃)₃·6H₂O марки Ч, азотную кислоту марки ЧДА и Sm₂O₃ с содержанием основного компонента не менее 99,99 %. Образцы готовили с концентрационным шагом 1 – 5 мол. % из растворов нитратов выпариванием с последующим разложением нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. Образцы обжигали на воздухе в печи с нагревателями H23U5T (фехраль), (10813 ч). Обжиг был непрерывным. Скорость подъема температуры составляла 3,5 град/мин. Фазовый состав образцов исследовали методами рент-геновского и микроструктурного анализов.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-1,5 при комнатной температуре (Си K_{α} -излучение). Скорость сканирования составляла 1 – 4 град/мин в диапазоне углов 2 θ = 15 – 80°. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC, с погрешностью не ниже 0,0004 нм для кубической фазы. Состав образцов контролировали с помощью спектрального и химического анализов выборочно.

Исследование твердофазного взаимодействия CeO₂ (тип флюорита, F) и Sm₂O₃ (моноклинная модификация оксидов P3Э, B) показало, что в системе CeO₂ – Sm₂O₃ образуются три типа твердых растворов: кубической структуры на основе флюорита F – CeO₂ и C – Sm₂O₃, а также моноклинной модификации B – Sm₂O₃, которые разделены между собой двухфазными полями (F + C) и (C + B) (рисунок).

Рис. – Фазовые равновесия системе CeO₂ – Sm₂O₃ при 1100 °C: ○ - однофазные, **•** - двухфазные образцы

Исходный химический и фазовый состав образцов, обожженных при 1100 °С, периоды кристаллических решеток фаз, находящихся в равновесии при заданной температуре, приведены в таблице.

Границы области гомогенности твердых растворов на основе F – CeO₂, C – и B Sm₂O₃ определены составами, содержащими 20 – 25, 55 – 60, 99 мол. % Sm₂O₃ (1100 °C), соответственно (таблица).

Таблица

Фазовый состав и параметры элементарных ячеек фаз системы $CeO_2 - Sm_2O_3$
после обжига образцов при 1100 °C, 10813 ч (по данным РФА)

Химический Фазовый		Параметры элементарных ячеек фаз ни						
состав. мол. % состав		(a + 0.0002)						
CeO ₂	Sm ₂ O ₃		<f></f>	<c></c>	< <u>B></u>			
			a	a	a	6	С	в
0	100		_	_	1.3925	0.3632	0.8680	90.4
1	99	+<c>сл</c>	_	1,0938	1,3153	0,3670	0,8666	84,5
2	98	< <u>B>+</u> < <u>C</u> >↑	_	1,0938	1,4002	0,3653	0,8721	92,6
3	97	+<c>↑</c>	_	1,0928	1,6469	0,3679	0,8726	97,7
4	96	+<c>↑</c>	_	1,0938	1,7067	0,3702	0,8719	99,8
5	95	$\langle B \rangle \downarrow + \langle C \rangle \uparrow$	_	1,0919	1,4041	0,3398	0,8718	84,1
15	85	↓ + <c>↑</c>	_	1,0896	1,6291	0,3667	0,8734	96,7
20	80	$\langle B \rangle \downarrow + \langle C \rangle \uparrow$	_	1,0905	1,3113	0,3612	0,918	89,3
25	75	<В>↓ + <С>осн.	_	1,0909	1,3514	0,3660	0,5208	87,9
30	70	<В>сл.↓↓ + <С>осн.	_	1,0898	_	_	-	_
35	65	<c></c>	_	1,0903	_	-	-	_
40	60	<c></c>	_	1,0896	_	-	-	_
45	55	<c></c>	_	1,0904	_	_	-	_
50	50	<c></c>	_	1,0904	_	_	_	-
55	45	<c></c>	_	1,0905	_	_	_	-
60	40	<c>+<f></f></c>	0,5445	1,0892	_	_	_	-
65	35	<c>+<f></f></c>	0,5444	1,0888	_	-	_	-
70	30	<С>сл. + <f>осн.</f>	0,5444	1,0887	_	_	_	_
75	25	<С>сл.↓↓.+ <f>осн.</f>	0,5439	_	—	-	-	-
80	20	<f></f>	0,5431	_	_	-	-	_
85	15	<f></f>	0,5423	—	—	—	—	-
90	10	<f></f>	0,5423	-	—	—	-	-
95	5	<f></f>	0,5410	-	—	—	-	-
100	0	<f></f>	0,5409	_	_	—	_	-

Обозначения фаз: $\langle B \rangle$ – твердые растворы на основе моноклинной модификации Sm₂O₃; $\langle C \rangle$ – твердые растворы на основе кубической модификации оксидов редкоземельных элементов Sm₂O₃; $\langle F \rangle$ – твердые растворы на основе кубической модификации ос структурой типа флюорита CeO₂. Другие условные обозначения: осн. – фаза, которая составляет основу, сл. – следы фазы, \uparrow – количество фазы увеличивается, \downarrow – количество фазы уменьшается.

Из приведенных данных следует, что растворимость Sm_2O_3 в F-модификации CeO₂ составляет 20 мол. % (1100 °C). Параметры элементарной ячейки увеличиваются от a = 0,5409 нм для чистого CeO₂ до a = 0,5431 нм для образца, содержащего 20 мол. % Sm₂O₃ при 1100 °C.

Растворимость CeO₂ в моноклинной В-модификации оксида самария составляет 0,5 мол. % CeO₂. На дифрактограмме двухфазного образца (B + C), содержащего 1 мол. % CeO₂ – 99 мол. % Sm₂O₃ четко видны линии характерные для C фазы Sm₂O₃, наряду с линиями B-Sm₂O₃, также отмечено присутствие незначительного количества пиков принадлежащих моноклинной модификации гидроксида самария Sm(OH)₃.

Параметры элементарной ячейки В фазы изменяются от a = 1,3925 нм, e = 0,3632 нм, c = 0,8680 нм, $\gamma = 90,42$ для чистого Sm₂O₃ до a = 1,3153 нм, e = 0,3670 нм, c = 0,8666 нм, $\gamma = 84,5$ (1100 °C) для предельного состава твердого раствора. С увеличением содержания оксида церия при 1100 °C на дифрактограммах наблюдали рост интенсивности линий С-модификации Sm₂O₃, которая для состава, содержащего 3 мол. % CeO₂ заметно больше по сравнению с моноклинной В-модификацией оксида самария.

Параметры элементарной ячейки С-фазы изменяются от a = 1,0892 нм до a = 1,0898 нм (1100 °C) для двухфазного образца (C + B), содержащего 30 мол. % CeO₂ – 70 мол. % Sm₂O₃.

Выводы: Изучены фазовые равновесия в системе CeO₂ – Sm₂O₃ во всем концентрационном интервале при 1100 °C. Для исследованной системы характерно образование ограниченных твердых растворов на основе различных кристаллических модификаций исходных компонентов. Полученные данные могут быть использованы для выбора оптимальных составов и разработки твердого электролита в кислородных газовых датчиках и топливных ячейках, функционирующих при умеренных температурах.

Список литературы: 1. Yen-Pei Fu. Aqueous processing of Ce_{0.8}Sm_{0.2}O_{1.9} green tapes / Yen-Pei Fu, Sih-Hong // Chen Ceramics International. – 2009. – Vol. 35. – P. 821 – 825. 2. Shinsuke Suzuki. Watanabe Interaction of samaria-doped ceria anode with highly dispersed Ni catalysts in a mediumtemperature solid oxide fuel cell during long-term operation / Shinsuke Suzuki, Hiroyuki Uchida, Masahiro // Solid State Ionics. – 2006. – Vol. 177. – P. 359 – 365. 3. Yarong Wang Synthesis, characterization and sinterablity of 10 mol. % Sm₂O₃-doped CeO₂ nanopowders via carbonate precipitation / [Yarong Wang , Toshiyuki Mori , Ji-Guang Li at al.] // Journal of the European Ceramic Society. – 2006. – Vol. 26. – P. 417 – 422. 4. John B. Goodenough Alternative anode materials for solid oxide fuel cells / John B. Goodenough, Yun-Hui Huang // Journal of Power Sources. – 2007. – Vol. 173. P. 1 – 10. 5. Dan XU Study on rare earth electrolyte of SDC-LSGM / [XU Dan, LIU Xiaomei, ZHU Chengjun at al.] // Journal of rare earths. – 2008. – Vol. 26, № 2. – P. 241 – 244. 5. Riess I. Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors / I. Riess, M. Gödickemeier, L.J. Gauckler // Solid State Ionics. – 1996. – Vol. 90. – P. 91 – 10. 6. Mogens Mogensen. Physical, chemical and electrochemical properties of pure and doped ceria / Mogensen Mogens, Nigel M. Sammes, Geoff A. Tompsett // Solid State Ionics. – 2000. – Vol. 129. – Р. 63 – 94. **7.** Ranløv J. Comment on "The characterization of doped CeO₂ electrodes in solid oxide fuel cells" by B.G. Pound / J. Ranløv, F W. Poulsen, M. Mogensen // Solid State Ionics. – 1993. – Vol. 61. – Р. 277 – 279. **8.** Андриевская Е.Р. Фазовые соотношения в системе CeO₂ – Sm₂O₃ при температуре 1500 °C / [E.P. Андриевская, O. A. Корниенко, B.C. Городо и др.] // Современные проблемы физического материаловедения. – 2008. – С. 25 – 28.

Поступила в редколлегию 24.06.11

УДК 504.064.4:691.32

Л.С. САВИН, докт. техн. наук, проф., ГВУЗ «ПГАСА», Днепропетровск, *В.Н. МАКАРОВА*, аспирант, ГВУЗ «ПГАСА», Днепропетровск

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ ПРОМЫШЛЕННЫХ ОТХОДОВ В ПРОИЗВОДСТВЕ БЕТОНА

В статті пропонується комплексне використання відходів металургійної та гірничодобувної промисловості в виробництві бетону. Аніліз даних отриманих в результаті лабораторного експерименту дозволяє зробити висновок про таку характеристику як міцність в'яжучого і внаслідок міцність бетону.

В статье предлагается комплексное использование отходов металлургической и горнодобывающей промышленности в производстве бетона. Анализ данных полученных в результате лабораторного эксперимента позволяет сделать вывод о прочностных характеристиках вяжущего и в последствии прочность бетона.

The article proposes complex use of metallurgical and mining industry waste in the production of concrete. The analysis of data obtained from laboratory experiments allows to make a conclusion on the binder and concrete strength.

В условиях значительного роста стоимости энергетических ресурсов значение приобретает производство строительных материалов, технология изготовления которых отличается пониженной энергоемкостью, а также применение высокоэффективных теплоизоляционных материалов в ограждающих конструкциях.

Главная причина сложившейся ситуации – возникшая необходимость всемерной экономии энергии [1].

Несмотря на высокую технико-экономическую эффективность, объем отходов, применяемых при изготовлении ячеистых бетонов в настоящее вре-