А.П. ОНАНКО, канд. фіз.-мат. наук, ст. наук. співроб., КНУ, Київ; *Г.Т. ПРОДАЙВОДА*, д-р фіз.-мат. наук, проф., КНУ, Київ; *С.А. ВИЖВА*, д-р геол. наук, проф., КНУ, Київ; *Ю.А. ОНАНКО*, асп., КНУ, Київ

МЕТОД ВИЗНАЧЕННЯ МЕХАНІЧНИХ ВЛАСТИВОСТЕЙ УЩІЛЬНЕНИХ МАТЕРІАЛІВ УЛЬТРАЗВУКОВИМ ВИМІРЮВАЧЕМ

Пропонується модифікований імпульсний метод вимірювання величин швидкостей V розповсюдження пружних хвиль в ущільнених матеріалах. Досліджено ефекти параметрів анізотропії за результатами ультразвукових вимірювань для складних напружено-деформаційних умов. Встановлено ромбічний тип акустичної анізотропії, що пов'язаний з текстурними особливостями, речовинним складом та складноупорядкованою мікротріщинуватістю ущільнених матеріалів.

Вступ. Експериментальні дослідження, чисельний аналіз і математичне моделювання параметрів анізотропії ультразвукових (УЗ) досліджень швидкостей пружних повздовжніх хвиль V_{\parallel} , характеристик акустичного тензору A_d дозволяють встановити особливості напружено-деформованого стану ущільнених матеріалів. Комплексний підхід до аналізу результатів вимірювання УЗ досліджень на зразках матеріалів, що полягає в оцінці акустичного тензору A_d при залученні інших характеристик, дозволить розв'язати ряд задач, пов'язаних із встановленням характеристик анізотропії пружних властивостей матеріалів [1, 2, 4 – 8].

Метод досліджень. В основі імпульсних методів покладено ідеї радіолокаційної техніки, що дали можливість використовувати методи радіоелектроніки для вимірювання швидкостей V розповсюдження коротких високочастотних імпульсів у пружному середовищі. Зразок, розміри якого у всіх напрямках у багато разів перевищують довжину хвилі $l_0 >> \lambda$, що розповсюджується може розглядатися як нескінченно протяжне середовище, а хвилі λ , що розповсюджуються, – як пласкі хвилі швидкості яких визначаються модулями пружності середовища C_{ik} . Таким чином, кристал з лінійними розмірами в декілька міліметрів може буде являти собою "необмежене середовище" для коливань, частоти яких лежать в діапазоні $f \approx 10$ МГц.

Якщо в зразок довжиною l_0 за допомогою п'єзоелектричного перетво-

рювача надіслати короткий УЗ імпульс тривалістю τ і частотою f, то пройшовши через зразок за час $t = \frac{l_0}{V}$, пружна хвиля буде прийнята приймачем УЗ на протилежній стороні зразка і частково відіб'ється від його торцевої поверхні. Універсальність імпульсного УЗ методу роблять його найбільш зручним для дослідження пружних властивостей. В останні роки цей метод стає переважаючим при дослідженнях твердих тіл. В усіх модифікаціях імпульсного методу вимірюваними величинами є швидкості V розповсюдження пружних хвиль в середовищі. Відбита хвиля піде у зворотному напрямку, знову відіб'ється і повернеться до приймача через інтервал часу 2t. Процес послідовних відбиттів пружної хвилі в плоскопаралельному зразку буде продовжуватися до повного затухання хвилі за рахунок втрат у зразку та інших причин. Імпульси УЗ, прийняті приймачем, після підсилення можуть спостерігатися на екрані осцилографу у вигляді послідовності імпульсів, що затухає, розділених інтервалами часу, що дорівнюють t і 2t.

Вимірювання швидкості розповсюдження УЗ коливань у зразках твердих тіл, приладом УЗВШ-ЛЕТІ, засновано на порівнянні часу розповсюдження УЗ у зразку і в еталонній рідині, для якої відома швидкість розповсюдження УЗ [3]. Час розповсюдження імпульсу в зразку з заданими розмірами може визначатися, наприклад, шляхом введення в схему приладу другого каналу 3, де УЗ розповсюджується в середовищі з відомим значенням швидкості УЗ V_{em} , на рис. 1.

Рис. 1 – Блок-схема модифікованого приладу УЗВШ-ЛЕТІ: 1 – зразок, 2 – вимірювальна лінія, 3 – еталонна лінія, 4 – генератор коротких імпульсів, 5 – задаючий мультивібратор, 6 – чекаючий мультивібратор, 7 – генератор розгортки, 8 – електронно-променева трубка, 9 – підсилювач, 10 – блок живлення.

Процес вимірювання полягає у суміщенні імпульсів а і б на екрані осци-

лографа зі зразком без зразка. За різницею шляху у рідині визначається швидкість звуку у зразку V_{3p} . Тоді t визначається з двох вимірів – без зразка і з зразком. При цьому імпульси обох каналів суміщаються на екрані осцилографу, а в другому каналі шлях УЗ може змінюватись. Так у приладі УЗВШ, що працює на частотах $f_1 \approx 1,67$ МГц і $f_2 \approx 5$ МГц, забезпечувалась точність вимірювань $\frac{\Delta V}{V} = 0,5 \div 1,5$ % в залежності від довжини зразка l_0 [3].

В іншому різновиді методу для посилання і прийому імпульсів використовуються окремі перетворювачі. Імпульс, що пройшов через зразок, виявляється і за допомого ланцюга зворотного зв'язку запускає генератор, що виробляє новий високочастотний імпульс. Частота повторення серія імпульсів, що отримується таким чином, може бути точно виміряна і використана для визначення часу Т і швидкості розповсюдження хвиль. Інша модифікація цього методу, що також придатна для вимірювань малих змін швидкості розповсюдження пружних хвиль, тобто особливо зручна при дослідженні залежності v = f(T) *i* v = f(P), де *T* i *P* – температура i тиск відповідно. Ідея цього методу полягає в підборі періоду повторення імпульсів посилання так, щоб він був кратним часу проходження УЗ через зразок. Метод достатньо простий і зручний в експериментальному відношенні, а використання великих за розмірами зразків, необхідних в цьому методі, забезпечує високу точність вимірювань $\frac{\Delta V}{V} \approx 0.02$ %. Сучасні серійні радіоелектронні прилади за допомогою міток часу дозволяють проводити безпосередні вимірювання часових інтервалів, забезпечуючи точність вимірювань швидкостей звуку $\frac{\Delta V}{V} \approx 0.01$ %.

Мета і задачі досліджень. Використання чутливого методу використання вимірювань параметрів анізотропії швидкостей пружних хвиль V дає змогу встановити основні риси розвитку акустичної анізотропії в умовах напружено-деформованого стану ущільнених матеріалів. Тому задачею цього дослідження є показ ефективності застосування методу використання вимірювань параметрів анізотропії швидкостей пружних хвиль V з точки зору встановлення основних типів акустичної анізотропії.

Результати досліджень та їх аналіз. Мікроструктура Si орієнтації (111) після опромінення іонами В⁺ дозою $D \approx 1.10^{15}$ іон/см² з енергією $W \approx 130$ КеВ зображена на рис. 2.

Спостерігається мілкодисперсна гладка поверхня, зрощення малих островків, їх форма стає круглястою. Атомна силова мікроскопія свідчить про 66 *ISSN 2079-0821*. Вісник НТУ «ХПІ». 2012. № 59 (965) наявність рельєфу підкладки. Монокристалічні ділянки мають сильно фрагментарну структуру, яка складається з слабо разорієнтованих один відносно другого островків.

Рис. 2 – Мікроструктура Si орієнтації (111) після опромінення іонами В⁺ дозою $D \approx 1.10^{15}$ іон/см² з енергією $W \approx 130$ КеВ при T = 293 К (3D, 1x1 мкм).

Обчислення швидкості розповсюдження ультразвукових коливань в зразку $V_{_{3p}}$ виконується за допомогою формули:

$$V_{3p} = V_{em} \times \frac{l_0}{P_1 - P_2}, \qquad (1)$$

де V_{ет} – відома швидкість розповсюдження УЗ коливань в еталонної ріди-

ISSN 2079-0821. Вісник НТУ «ХПІ». 2012. № 59 (965)

ні, яка визначається в залежності від температури $V_{em}(300 \text{ K}) = 1598 \text{ м/сек для}$ 22 % розчину етилового спирту у воді, l_0 – довжина зразка, P_1 – перший відлік по шкалі мікрометричного гвинта без зразка, P_2 – другий відлік по шкалі мікрометричного гвинта із зразком. Швидкості повздовжніх V_I і швидкості поперечних V_⊥ хвиль в матеріалах вказано в табл. 1.

Матеріал	Густина,	Швидкість по- вздовжньої хвилі V _I I, м/сек	Модуль пружності Е, ГПа	Швидкість поперечної хвилі V⊥, м/сек	Модуль зсуву G, ГПа
Al	2,70	6260	105,81	3080	25,613
Fe	7,80	5850	266,94	3230	81,377
Cu	8,93	4730	199,79	2298	47,158
Pb	11,4	2160	53,188	700	5,5860
латунь	8,10	4430	158,96	2120	36,405
трансформаторне масло	0,895	1425	1,8174	0	0

Таблиця 1 — Швидкості повздовжніх V $_{\|}$ і швидкості поперечних V $_{\perp}$ хвиль в матеріалах

Мікроструктура рутилу TiO₂ товщиною $h_{\text{TiO2}} = 200 \div 400$ нм розміром $2r_{\text{TiO2}} = 5 \div 25$ нм на підкладці Si (100) після опромінення іонами Ti⁺ флюенсом $\Phi \approx 1.10^{12}$ іон/см² з енергією $W \approx 140$ КеВ представлена на рис. 3.

На межи підкладка-плівка розташовуються однаково орієнтовані островці-зародки. У деяких випадках вони зростаються у більш крупні ділянці поміж якими є межи. Коефіцієнт Пуассону µ (табл. 2) рівний [1, 2]:

$$\mu = \frac{\frac{1}{2} V_{II}^{2} - V_{\perp}^{2}}{V_{II}^{2} - V_{\perp}^{2}}.$$
(2)

Матеріал	V∥,м/сек	V⊥,м/сек	μ				
Ti(BT1-0)	6210	3201	0,3191				
Д16	6290	3024	0,3497				
Al	6260	3080	0,3403				
Fe45	5899	3275	0,2772				
Fe	6070	3230	0,3025				
Cu	4730	2298	0,3455				
Pb	2160	700	0,4413				

Таблиця 2 – Коефіцієнт Пуассону µ матеріалів

Рис. 3 – Мікроструктура рутилу TiO₂ товщиною $h_{TiO2} = 200 \div 400$ нм розміром $2r_{TiO2} = 5 \div 25$ нм на підкладці Si (100) після опромінення іонами Ti⁺ флюенсом $\Phi \approx 1.10^{12}$ іон/см² з енергією $W \approx 140$ КеВ при T = 293 К (3D, 15x15 мкм).

Мікроструктура титанокремнезему SiO₂ + TiO₂ + ZrO₂ товщиною $h_{\text{TiO2}} = 800 \div 1000$ нм розміром $2r_{\text{TiO2}} = 5 \div 25$ нм на підкладці Fe зображена на рис. 4. У об'єми плівки окрім структурних дефектів, обумовлених впливом підкладки, є велика кількість дефектів, які утворюються при зростанні острівків. Основними є мікродвійники та деформаційні дефекти упаковки. Щільність дефектів упаковки $N_{\text{ду}} \approx 10^9$ см⁻². Така висока дефектність об'єму обумовлена великої невідповідністю параметрів гратці плівки та підкладки. При малої товщині плівки $h \le 1000$ нм структурні дефекти, які виникають на перших стадіях росту плівки, не встигають заліковуватися.

Температура Дебая θ_D визначалась за формулою [2]:

$$\theta_{\rm D} = \frac{h}{k_B} \times \left(\frac{9N_{\rm A}\rho}{4\pi A}\right)^{1/3} \times \left(\frac{1}{V_{II}^{3}} + \frac{2}{V_{\perp}^{3}}\right)^{1/3}, \qquad (3)$$

ISSN 2079-0821. Вісник НТУ «ХПІ». 2012. № 59 (965)

де $k_{e} = 1,38066 \cdot 10^{-23}$ дж/К стала Больцмана, $h = 6,62617 \cdot 10^{-34}$ дж сек стала Планка, $N_{A} = 6,02209 \cdot 10^{23}$ моль⁻¹ число Авогадро, A – середня молярна маса, ρ – густина, V_{\parallel} – повздовжня УЗ швидкість, V_{\perp} – поперечна УЗ швидкість, μ – коефіцієнт Пуассону. $\varphi_{\vec{E}} = (\vec{V}_{\Pi}, \vec{n})$ – кут знесення енергії – відхилення векторів променевих \vec{V}_{Π} швидкостей пружних хвиль від напрямку хвильової нормалі \vec{n} . Також $\varphi_{\vec{E}} = (\vec{V}_{\Pi}, \vec{n})$, $\varphi_{\vec{P}} = (\vec{U}, \vec{n})$ – кута поляризації – відхилення векторів пружних зміщень \vec{U} від напрямку хвильової нормалі \vec{n} .

Рис. 4 – Мікроструктура титанокремнезему SiO₂ + TiO₂ + ZrO₂ товщиною $h_{\text{TiO2}} = 800 \div 1000$ нм розміром $2r_{\text{TiO2}} = 5 \div 25$ нм на підкладці Fe (3D, 15x15 мкм)

Обговорення результатів. Інтегральний коефіцієнт акустичної анізотропії досліджуваних зразків змінюється в широких межах: 6,25 % $< A_{\mu} <$ 19,48 % і становить у середньому $A_{\mu} \approx$ 9,99 %. Всі зразки мають планальний тип симетрії акустичного тензора; зразок із аксіальною симетрієкю акустичного тензора має один із найнижчих коефіцієнтів інтегральної акустичної анізотропії A_{μ} . Ромбічна симетрія чітко проявляється при розгляді стереопроекції диференціального коефіцієнта пружної анізотропії A_d на рис. 10.

Матеріал	V∥, м/сек	V⊥, м/сек	р, кг/м ³	А, г/моль; [.] 10 ⁻³ , кг/моль	θ _D , K	θ _D , K [2, 4]
Ti(BT1-0)	6210	3201	4420	0,0479	407,2101	-
Д16	6290	3024	2700	0,02698154	396,8371	398
Al	6260	3080	2700	0,02698154	403,6777	398
Fe45	5899	3275	7800	0,055847	475,8289	400
Fe	6070	3230	7800	0,055847	470,7731	400
Cu	4730	2298	8930	0,063546	337,5145	310
Pb	2160	700	11400	0,2072	76,19375	88

Таблиця 3 – Температура Дебая θ_D матеріалів

Рис. 5 – Джерело збурень та приймач – п'єзокварци (датчик УЗВШ), прозвучування звукопроводів: $\frac{U_c}{U_{u}} = 15:1.$

Рис. 7. Джерело збурень – п'єзокварц (датчик УЗВШ), приймач – п'єзокераміка: $\frac{U_c}{U_{uu}} = 150:1$

Рис. 8 – Стереопроекція азимутальної залежності фазової швидкості *V*∥ SiO₂

Рис. 10 – Стереопроекція диференціального коефіцієнта пружної анізотропії A_d SiO₂

Рис. 9 – Стереопроекція різниці квазіпоперечних швидкостей ⊿V⊥ SiO₂

Рис. 11 – Стереопроекція $\varphi_{\vec{p}} = (\vec{U}, \vec{n})$ – кута поляризації – відхилення векторів пружних зміщень \vec{U} від напрямку хвильової нормалі \vec{n} SiO₂

Висновки.

Таким чином, перший фактор анізотропії формується за рахунок речовинного складу, орієнтованого розташування зерен у ущільнених матеріалах, тріщин, текстурних особливостей.

Максимальні величини інтегрального коефіцієнта пружної анізотропії А_µ мають зразки матеріалів з ромбічною симетрією акустичного тензора.

Причиною такої варіації є, насамперед, структурно-текстурні особливості матеріалів (пружні константи, величина та орієнтація тріщиних систем, наявність чи відсутність заповнювача тріщин тощо). Другий фактор анізотропії зв'язаний переважно з умовами ущільненого матеріалу.

Список літератури: 1. Никаноров С.П. Упругость и дислокационная неупругость кристаллов / С.П. Никаноров, Б.К. Кардашев. – М.: Наука, 1985. – 253 с. 2. Новик А. Релаксационные явления в кристаллах / А. Новик, Б. Берри. – М.: Атомиздат, 1975. – 472 с. 3. Онанко А.П. Вплив водню на вказівну поверхню непружньо-пружнього тіла стопу Ti_{0.5}Al_{0.5} / А.П. Онанко // Металлофизика и новейшие технологии. – 2011. – № 2. – С. 253 – 261. 4. Шпак А.П. Кластерные и наноструктурные материалы / А.П. Шпак, Ю.А. Куницкий, В.Л. Карбовский. – К.: Академпериодика, 2001. – 588 с. 5. Молодкин В.Б. Дифрактометрия наноразмерных дефектов и гетерослоев кристаллов / [В.Б. Молодкин, А.И. Низкова, А.П. Шпак и др.]. – К.: Академпериодика, 2005. – 364 с. 6. Азаренков Н.А. Структура и свойства защитных покрытий и модифицированных слоев материалов / Н.А. Азаренков, В.М. Береснев, А.Д. Погребняк. – Х.: ХНУ, 2007. – 560 с. 7. Власкіна С.І. Плівки карбіду кремнію / С.І. Власкіна, Г.С. Свечников, В.А. Сминтина. – Одеса: Астропринт, 2007. – 104 с. 8. Сминтина В.А. Фізико-хімічні явища на поверхні твердих тіл / В.А. Сминтина. – Одеса: Астропринт, 2009. – 191 с.

Поступила в редколлегию 01.08.12

УДК 539.375; 548.0:539.3; 548.4; 534.222.2

Метод визначення механічних властивостей ущільнених матеріалів ультразвуковим вимірювачем / А.П. ОНАНКО, Г.Т. ПРОДАЙВОДА, С.А. ВИЖВА, Ю.А. ОНАНКО // Вісник НТУ «ХПІ». – 2012. – № 59 (965). – (Серія: Хімія, хімічна технологія та екологія). – С. 64 – 73. – Бібліогр.: 8 назв.

Предлагается модифицированный импульсный метод измерения величин скоростей V распространения упругих волн в уплотненных материалах. Исследованы эффекты параметров анизотропии по результатам ультразвуковых измерений для сложных напряженно-деформационных условий. Определен ромбический тип акустической анизотропии, который обусловлен текстурными особенностями, вещественным составом и сложноупорядоченной микротрещиноватостью уплотненных материалов.

The modified pulse measuring method of elastic waves velocities V in compact materials is proposed. The effects of anisotropy parameters are explored from the results ultrasound measurements for the complicated tense-deformed conditions. For compact materials specimens is discovered orthorhombic type of acoustic anisotropy this is determined with texture, composition and compound-ordered microfracturing.