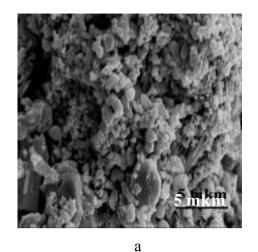
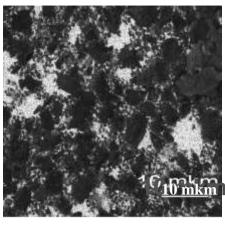
- **Д.А. СТРАТИЙЧУК**, канд. техн. наук, ст. науч. сотр., ИСМ НАНУ, Киев,
- **В.З. ТУРКЕВИЧ**, д-р хим. наук, проф., ИСМ НАНУ, Киев,
- **Т.В. КОЛАБЫЛИНА**, асп., инж., ИСМ НАНУ, Киев,
- **А.С. ОСИПОВ**, канд. техн. наук, ст. научн. сотр., ИСМ НАНУ, Киев,
- *Т.И. СМИРНОВА*, канд. техн. наук, ст. научн. сотр., ИСМ НАНУ, Киев

ВЛИЯНИЕ ВЫСОКОГО ДАВЛЕНИЯ НА ПОЛУЧЕНИЕ МЕЛКОДИСПЕРСНЫХ КОМПОЗИТОВ В СИСТЕМЕ $C_{AJIM.} - Ti_4WC_5$

В данном исследовании в условиях высоких давлений (7,7 $\Gamma\Pi a$) и температур (1700 – 2100 °C) изучены процессы фазового взаимодействия в квазибинарной системе $C_{AJIM.}$ – Ti_4WC_5 . Оптимальной температурой формирования прочных связей алмаз- Ti_4WC_5 является 1800 °C. При этой температуре двойной карбид Ti_4WC_5 является стабильным и не распадается согласно данным XRD-анализа. Композит, который показал наиболее высокие физико-механические свойства, содержит около 8 % об. Ti_4WC_5 и может быть рекомендован для использования при камнеобработке.

Ключевые слова: высокие давления, сверхтвёрдая керамика, алмаз, двойные карбиды.


В современной промышленности большую часть сверхтвёрдых композитов на основе алмаза получают в условиях высоких давлений и температур с использованием жидкофазного спекания. Среди наиболее распространённых систем следует выделить: $C_{AЛM.}$ – Co, $C_{AЛM.}$ – Si, $C_{AЛM.}$ – $Ca(Mg)CO_3$ [1, 2]. Ранее также были предприняты попытки получать высокопрочные керамики в системах $C_{AЛM.}$ –TiC [3], $C_{AЛM.}$ –WC [4, 5] и пр. Во всех случаях основное внимание уделялось формированию прочных границ алмаз-алмаз и алмаз-связующая фаза.


В представленной работе в условиях высоких давлений (7,7 ГПа) и температур (1700 – 2100 °C) были исследованы процессы формирования высокопрочных алмазсодержащих композитов в системе $C_{AЛM.}$ – Ti_4WC_5 . В работе также представлены некоторые физико-механические свойства композитов. Твёрдофазное спекание в указанной системе было проведено в аппарате высокого давления типа "тороид-20" в танталовой капсуле, что позволило значительно снизить риск загрязнения образцов.

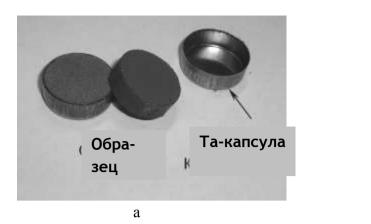
В качестве исходных компонентов в работе были использованы микропорошки алмаза марок ACM 28/20 и ACM 7/5 и двойного карбида Ti_4WC_5 со

© Д.А. Стратийчук, В.З. Туркевич, Т.В. Колабылина, А.С. Осипов, Т.И. Смирнова, 2014

средним размером частиц 3 мкм (рис. 1а).

6

Рис. 1-SEM-изображение: a-исходного порошка Ti_4WC_5 , $\delta-$ полученного сверхтвёрдого композита, содержащего 8% об. Ti_4WC_5 .


Исходные смеси готовились в 2 этапа путём ситового и мокрого барабанного смешивания.

На первом этапе была приготовлена полидисперсная смесь микропорошков ACM 28/20 и ACM 7/5, в которой массовая доля ACM 7/5 составляла 25 %.

На втором этапе, используя низкоэнергетический смеситель с барабаном, имеющим тефлоновое покрытие, в среде обезвоженного ацетона была приготовлена исходная смесь $C_{AЛM.} + Ti_4WC_5$ (18 масс. %). Рабочими телами служили шары из керамики на основе SiC. Согласно данным элементного микроанализа, конечная смесь содержала не более 0,5 масс. % материала размольных тел.

Исходя из результатов гранулометрического анализа при выбранном режиме смешивания: скорость 60 об/мин, время смешивания 3 ч, объём барабана 200 мл, заполненность шарами из SiC 33 % объема — видимого уменьшения среднего размера частиц не наблюдалось. Полученный таким образом микропорошок подвергался дегазации в условиях вакуума от адсорбированных молекул ацетона и остаточной воды, компактировался и размещался в ячейке высокого давления (рис. 2).

В результате воздействия высоких давлений и температур были получены хорошо сформированные цилиндрические образцы. В соответствии с данным XRD-анализа (рис. 3) в выбранном температурном интервале не обнаружено образование новых соединений, а двойной карбид Ti_4WC_5 не испытывает термической диссоциации.

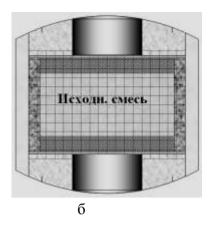


Рис. 2 — Внешний вид смеси: a — в защитной Та-капсуле, б — размещение образца в ячейке высокого давления перед проведением экспериментов.

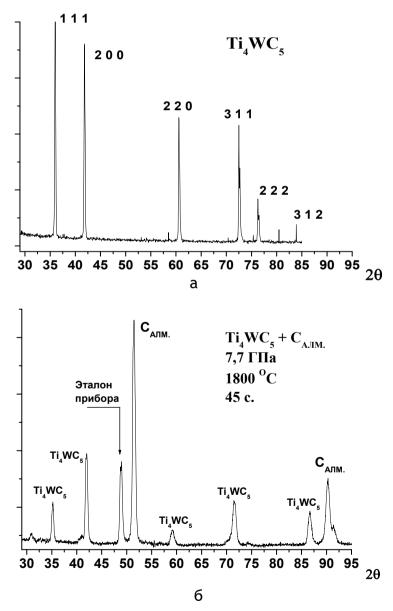


Рис. 3 — Результаты XRD- анализа (Cuk α излучение): а — для исходного Ti_4WC_5 , δ — для керамической пластины, содержащей 8 % об. Ti_4WC_5 .

При температурах выше 1900 °C зафиксирована незначительная графитизация алмаза, что является характерным для твёрдофазных алмазсодержащих систем. Согласно данным электронной микроскопии (рис. 16), для полученного композита удалось достигнуть довольно хорошего распределения связующей фазы $\text{Тi}_4\text{WC}_5$ между зёрнами алмаза, а также обеспечить в процессе спекания образование прочных межфазных границ. Для изучения физико-механических свойств из спечённого при $\text{T}=1800\,^{\circ}\text{C}$ образца были изготовлены пластины диаметром 7,0 мм и высотой 3,18 мм. Согласно данным ультразвуковой диагностики образцы плотностью 3,6 г/см³ обладают следующими характеристиками: модуль Юнга — 902 ГПа, модуль всестороннего сжатия — 340 ГПа, коэффициент Пуассона — 0,082. Микротвёрдость композита составляла HV10=51 ГПа, а $\text{K}_{\text{IC}}=5,2$ МПа · м^{1/2}. Термостойкость на воздухе была оценена как ~ 1100 °C.

Таблица — Некоторые физические характеристики сверхтвёрдого композита, полученного при $p = 7.7~\Gamma\Pi a$ и $T = 1800~^{\circ}C$

HV10, ГПа	51,2
K_{1C} , МПа · м ^{1/2}	7,1
Плотность, г/см ³	3,1
Модуль Юнга, ГПа	920,7
Термостойкость, °С	~ 1200
Средний размер частиц, мкм	15

Вывод.

Таким образом, было показано, что при условии достаточной гомогенизации исходной смеси двойные карбиды тугоплавких металлов являются перспективной связкой для получения высокопрочных алмазсодержащих композитов. В дальнейшем планируется более детальное изучение микроструктуры материала, а также рассматривается возможность использования других тугоплавких соединений III и IV групп d-металлов.

Список литературы: 1. *Mlungwane K*. The development of a diamond-silicon carbide composite material / *K. Mlungwane*, *I.J. Sigalas*, *M. Hermann* // Industrial diamond Review. – 2005. – № 4. – P. 62 – 65. 2. *Zhao J.* Enhancement of fracture toughness in nanostructured diamond – SiC composites / [*J. Zhao*, *L. Qian*, *C. Daemen et all.*] // Appl. Phys. Lett. – 2004. – № 84. – P. 1356 – 1361. 3. *Haikuo Wang* Nanostructured diamond – TiC composites with high fracture toughness / *Haikuo Wang*, *Duanwei He* // J. of Appl. Physics. – 2013. – Vol. 113. – P. 043505–(1) – 043505–(4). 4. *Rudy E*. Constitution of Ternary Titanium–Tungsten–Carbon Alloys / *E. Rudy* // J. Less-Common Met. – 1984. – Vol. 33. – P. 245 – 273.

Referens: 1. *Mlungwane K.* The development of a diamond-silicon carbide composite material / *K. Mlungwane, I.J. Sigalas, M. Hermann* // Industrial diamond Review. – 2005. – № 4. – P. 62 – 65. **2.** *Zhao J.* Enhancement of fracture toughness in nanostructured diamond–SiC composites / [*J. Zhao, L. Qian, C. Daemen et all.*] // Appl. Phys. Lett. – 2004. – № 84. – P. 1356 – 1361. **3.** *Haikuo Wang* Nanostructured diamond – TiC composites with high fracture toughness / *Haikuo Wang, Duanwei He* // J. of Appl. Physics. – 2013. – Vol. 113. – P. 043505–(1) – 043505–(4). **4.** *Rudy E.* Constitution of Ternary Titanium–Tungsten–Carbon Alloys / *E. Rudy* // J. Less-Common Met. – 1984. – Vol. 33. – P. 245 – 273.

Поступила в редколлегию (Received by the editorial board) 01.07.14

УДК 621.762

Влияние высокого давления на получение мелкодисперсных композитов в системе $C_{AJM.}$ — Ti_4WC_5 / Д.А. СТРАТИЙЧУК, В.З. ТУРКЕВИЧ, Т.В. КОЛАБЫЛИНА, А.С. ОСИПОВ, Т.И. СМИРНОВА // Вісник НТУ «ХПІ». — 2014. — № 52 (1094). — (Серія: Хімія, хімічна технологія та екологія). — С. 136 — 140. — Бібліогр.: 4 назв. — ISSN 2079-0821.

В даному дослідженні в умовах високих тисків (7,7 ГПа) і температур (1700 – 2100 °C) вивчено процеси фазової взаємодії в квазібінарній системі $C_{AЛM.}$ – Ti_4WC_5 . Оптимальною температурою формування міцних зв'язків алмаз – Ti_4WC_5 є 1800 °C. За даної температури подвійний карбід Ti_4WC_5 є стабільним і не розпадається згідно даних XRD—аналізу. Композит, який показав найбільш високі фізико-механічні властивості, містить близько 8 об. % Ti_4WC_5 і може бути рекомендований для використання при каменеобробці.

Ключові слова: високий тиск, надтверда кераміка, алмаз, подвійні карбіди.

UDC 621.762

Effect of high-pressure on the preparation of fine composites in the C_{DIAM.} − Ti₄WC₅ system / D.A. STRATIICHUK, V.Z. TURKEVICH, T.V. KOLLABYLINA, A.S. OSIPOV, T.I. SMIRNOVA // Visnyk NTU «KhPI». − 2014. − № 52 (1094). − (Series: Khimiya, khimichna tekhnolohiya ta ecolohiya). − P. 136 − 140. − Bibliogr.: 4 names. − ISSN 2079-0821.

In this study, the processes of phase interaction in quasi-binary $C_{Diam} - Ti_4WC_5$ system was studied under high pressure (7.7 GPa) at temperatures (1700 – 2100 °C). The optimum temperature of forming of strong bonds of diamond with Ti_4WC_5 is 1800 °C. At this temperature binary carbide Ti_4WC_5 is stable and doesn't decomposed according to data of the XRD-analysis. According to the ultrasound diagnosis data, the samples of 3.6 g/cm³ density have the following characteristics: Young's modulus of 902 GPa, the bulk modulus of 340 GPa, Poisson's ratio of 0.082. Microhardness of the composite was $HV_{10} = 51$ GPa and $K_{IC} = 5.2$ MPa·m¹¹². Thermal stability in air was estimated to be about 1100 °C. Thus, it was shown that the binary carbides of refractory metals, in the case of sufficient homogenization of the starting mixture, are promising binders for obtaining of high-strength diamond-containing composites. The ceramic, which shows the highest physical-mechanical properties, comprises about 8 vol. % Ti_4WC_5 , and, it can be recommended for use in stone processing.

Keywords: high-pressure superhard ceramics, diamond, binary carbides.