
Chapter 7
Dynamic Analysis of Debonded Sandwich Plates
with Flexible Core – Numerical Aspects and
Simulation

Vyacheslav N. Burlayenko and Tomasz Sadowski

Abstract Although significant work has been done in modeling sandwich panels,
models for debonded sandwich plates with a flexible core, especially the vibration
analysis, are at their infancy, and it will be the main focus of this paper. This study
deals with a finite element (FE) analysis of vibrations of flexible core sandwich
plates that are weakened by damage embedded along the face sheet-to-core inter-
face. The FE model developed is based on a refined general-purpose sandwich panel
theory, where the first order shear deformation theory and assumptions of the 3-D
elasticity theory are used for modeling the face sheets and the core, respectively.
The FE mesh contains continuum shell elements for each of the face sheet layers
and 3-D brick elements for the core. The comparison of the FE predictions to those
known experimental and analytical results allow us to estimate the accuracy of the
FE model developed, as well as to find the influence of the geometrical nonlinearity
of the flexible core in vibrating and the contact nonlinearity caused by debonding
on dynamics of sandwich plates.
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7.1 Introduction

Composite sandwich panels are increasingly being utilized as load-carrying com-
ponents in aircraft, aerospace and marine structures. A standard sandwich panel is
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commonly composed of two strong outer faces (face sheets) and a low-strength inner
core. In a continuing effort for attaining higher stiffness and strength to weight ratios,
the constituent sandwich materials have evolved from metallic face sheets and alu-
minum honeycomb core to composite materials for the face sheets, and non-metallic
honeycombs and plastic foams for the core [1]. Thereby, advanced sandwich-type
constructions imply the presence of a thick orthotropic core with bonded anisotropic
composite laminated face sheets, where the ratio of Young’s moduli of the face
sheets to the core lies between 500 and 1000.

According with the sandwich structural concept, the top and bottom face sheets
carry the in-plane and bending loads and are interacting through the core. The core
should be strong enough in order to keep the desired distance between the face
sheets and to prevent their sliding with respect to each other [2]. This ability of
the core is achieved by its transverse shear strength. However, the novel sandwich
panels made of the soft cores are flexible in the through-the-thickness direction.
This flexibility conduces to the core compressibility and, as a result, to the change
in the height of the core, Fig. 7.1. Such a transverse compression may arise due to
a locally distributed load on the face sheets or unequal displacements of the face
sheets from bending. Therefore, a normal transverse stress will appear apart from
transverse stresses in the core. So, the plane section of the core takes on a nonlinear
pattern, and a sandwich structure manifests a nonlinear response to a variety of load
conditions. Thereby, the classical sandwich panel theories are insufficient to capture
existing nonlinearities.

One of the topics, playing a major role in the design of flat and curved com-
posite sandwich-type panels is their vibration behavior. A good understanding of
the vibration behavior of such structures is of crucial importance toward a reliable
prediction of their dynamic response to time-dependent external excitations, preven-
tion of the occurrence of the resonance, and for optimal design from the vibrational
point of view [3]. Furthermore, during the service life sandwich panels often en-
counter low-velocity impacts, such as tool drop, runway stones, etc. Even though a
visual examination of the impacted surface may reveal very little damage, known
as barely visible impact damage, significant damage might exist between the face
sheet and the core [4]. Manufacturing defects such as an incomplete bonding of the
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constituent layers or the air entrapping into the resin reach layer during the curing
process may also lead to debonding existence as well. This type of damage invokes a
substantial reduction of the compressive and bending strengths of the sandwich con-
struction [5]. To ensure the structural integrity after the local striking or with the
local faults, the ability of the sandwich structure to retain the load carrying capacity
in the presence of the imperfections must be examined and quantified.

In general, to analyze sandwich structures with a perfect interface, one of two
approaches are commonly used, that is either the equivalent single layer (ESL) ap-
proach or the layer-wise (LW) one. Theories based on ESL are a straightforward
extension on a sandwich panel regarded as a 2-D equivalent single layer of either
the Kirchhoff’s classical theory (CPT) or the Reissner-Mindlin’s first-order shear
deformation theory (FSDT) or those higher order theories (HSDT), assuming the
displacements in form of continuously differentiable function of the thickness coor-
dinate [6]. However, though ESL models are able to predict well the global dynamic
behavior of thin and moderately thick sandwich panels, they still cannot account for
discontinuities in displacements field and stresses at the face sheet-to-core interface.
In this case the analysis of sandwich panels requires the use of layer-wise theories,
where each layer is considered separately. By assuming a unique displacement field
for each layer and fulfilling the interface kinematic continuity conditions, a sand-
wich panel is analyzed [7]. Recently, special theories, such as the high-order sand-
wich panel theory (HSAPT) [8] and the mixed layer-wise theory [9] have been
developed. Herewith, in these theories, the formulation uses either CPT or FSDT,
or HSDT for the face sheets and a 3-D elasticity theory or equivalent one for the
core. Different such theories are required to model any kind of flat, cylindrical and
spherical sandwich panels, because of using equilibrium approach [10].

Nevertheless, as expected, analytical modeling of sandwich-type panels with dis-
continues such that debonding is much more intricate than that of perfectly bonded
sandwich structures. In contrast to the case of perfect sandwich panels, for which
the assumptions are postulated for the structure as a whole, in the case of a sand-
wich panel with an imperfect interface such assumptions have to impose separately
on perfect and debonded its parts and involve both compatibility conditions be-
tween those parts and contact conditions associated with local interactions in the
debonding zone. Moreover, the dynamic analysis of sandwich panels with a flexible
core and containing debonding is complicated by the presence of various types of
nonlinearities, some of them are: (i) asymmetry with respect to the mid-surface of
the panel inducing global bending-stretching coupling; (ii) contact-impact problem,
which induces a local structural behavior along with a global one, and (iii) stress
concentration in the vicinity of the discontinuous promoting the debonding growth.
Thus, the actual dynamic behavior of such panels can be examined only by nonlin-
ear analysis techniques.

A comprehensive summary on modeling techniques used to perform a dynamic
analysis of debonded (or delaminated in the case of laminated structures) composite
beams, plates and shells is done by Della and Shu [11]. In line with the authors’
comments, from a mathematical point of view, analytical solutions are possible only
for a limited class of idealized dynamic problems such 1-D sandwich beams or



90 Vyacheslav N. Burlayenko and Tomasz Sadowski

2-D plates with through-the-width debonding. Moreover, the nonlinear effects are
usually neglected because of linear models applied in most of those studies. There
have been only few papers studying dynamics of debonded beams including the
nonlinearity effects, e.g. [12]. The complexity of the problem have progressively
led to the predominance of numerical models based mainly on the finite element
method (FEM). Nonlinear FE dynamic analyses of laminated beams have been ac-
complished, e.g. in [13, 14], where beam elements and 2-D plate elements were
utilized, respectively. An analytical approach and FE model of a three-layered sand-
wich beam accounting for intermittent contact in the modal analysis have been de-
veloped in [15]. A further contribution to the nonlinear dynamic behavior of sand-
wich plates with imperfections can be found in [16], where the case of sandwich
plates containing post-impact zone was considered.

In this study, a FE modeling approach is used within the commercial package
ABAQUS, to develop models of both intact and damaged by debonding sand-
wich plates with a flexible core and simulate their dynamic responses. The mod-
els proposed utilize orthotropic shell/plate elements for the face sheets and con-
tinuum either isotropic or anisotropic solid elements for the core. The presence
of the transverse deformation and general material orthotropy, coupled with the
contact-impact interaction of detached surfaces, makes the dynamic FE analysis
rather computationally complex. In this regard, the use of the explicit integration
rule provides a benefit for solving the dynamic problem in a computationally cost
effective manner. Thereby, to simulate dynamic responses of sandwich plates in-
volving contact-impact conditions in the detached segments of the debonding zone,
the ABAQUS/Explicit code [17] is exploited.

7.2 FE Model Developments

In fact, in sandwich panels with a flexible core stresses have an inherent three-
dimensional nature, consequently, from the point of view of accuracy, usually the
best approach in terms of FE modeling is to utilize three-dimensional (3-D) ele-
ments for each sandwich layer (faces and core). However, this approach will lead
to severe problems of aspect ratio, and require an extremely refined mesh and, as a
result huge computational efforts. In practice such models are limited only to small
and particular tasks [18]. An alternative to such an approach is the employment of
finite elements based on partially 3-D models, where the core is represented by solid
elements and the face sheets by plate or shell elements [19]. In this case reasonable
computational cost is combined with the fidelity of strain-stress states associated
with HSAPT that provides a good trade-off between the level of accuracy and com-
putational efficiency. Thus, 3-D models were developed utilizing shell elements, em-
ploying the Reissner-Mindlin’s hypotheses in conjunction with the laminated plate
theory on the face sheets and solid brick elements, based on the 3-D elasticity theory
on the core, Fig. 7.2.
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7.2.1 Face sheet FE Model

In general, composite sandwich plates studied in this paper are made of two com-
posite laminated face sheets and a soft core. The faces are considered to be arbitrary
thickness and consist of an elastic orthotropic material. For the face sheets it was
utilized 8-node continuum shell reduced integrated SC8R finite elements. These el-
ements are positioned on the upper and lower core sides and are directly connected
to the core through their share nodes. Fig. 7.3 shows the node numbering, integration
point and faces of the used finite element.

The SC8R continuum shell elements discretize an entire three-dimensional body,
unlike conventional shells which discretize a reference surface. These elements have
displacement degrees of freedom u f = (u1,v1,w1, . . . ,u8,v8,w8)T only, use linear in-
terpolation, and allow mechanical loading for static and dynamic procedures. In
what follows, the usual definitions of the FEM are throughout used. The displace-
ment vector u at any point of the face sheet as a shell-like structure may be expressed

u f =

8∑
i=1

N f
i [I]u f

i , (7.1)

u f
i are the displacement vector corresponding to the ith node of the SC8R element,

N f
i are the shape functions associated with node i, and [I] is the 3×3 identity matrix.

For simplicity herein and further such equations may be written as

u f = [N] f u f (7.2)

From a modeling point of view continuum shell elements look like three-
dimensional continuum solids, but their kinematic and constitutive behavior is sim-

� 13

f

� 13

c

� 23

f

� 23

c

� 33

f

� 33

c

� 11

f

� 22

c

� 22

c

� 22

f
� 12

f

� 12

c � 12

c

� 12

f

core

top face

Nx NyNxy

Nx N dxx,x+

Ny N dyy,y+

Nxy

Nxy N dyxy,y+

Nxy N dxxy,x+

Mxy MxyMy

Mxy M dxxy,x+

Mxy M dyxy,y+

Mx

My M dyy,y+

Mx M dxx,x+

(a) (b)

Fig. 7.2 Details of the stress state at the face sheet-to-core interface: (a) core and face sheet
stresses; (b) force and moment resultants for face sheet
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Fig. 7.3 Node numbers, faces
and an integration point of a
SC8R element
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ilar to conventional shell elements. It is important to notice that the SC8R elements
are general-purpose elements that can provide solutions to both thin and thick shell
problems. Thereby, the hypotheses of Reissner-Mindlin’s shell theory, including the
effects of transverse shear deformation are assigned to the element’s kinematics as
the shell thickness increases, and the Kirchhoff’s assumptions are fulfilled within the
elements as the thickness decreases, herewith the transverse shear deformation tends
to be very small. Moreover, these elements account for finite membrane strains, ar-
bitrary large rotation, and allow for a thickness change, making them suitable for
nonlinear geometric analysis. In doing so, computation of the change in thickness
(is only valid in geometrically nonlinear analyses) is based on the element nodal dis-
placements, which in turn are computed from an effective elastic modulus defined
at the beginning of an analysis [17]. If the displacement vector u is known at all
points within the elements, the strain vector εεε at any point can be calculated in terms
of nodal variables as follows

εεε f = [B] f u f , (7.3)

where [B] f are the differential operators associated with the strain-displacement
relationships mentioned earlier.

In general, each of the two orthotropic face sheets is of composite laminate with
an arbitrary lay-up. When the material and reference coordinate systems coincide,
the constitutive relationship for the mth face sheet orthotropic lamina is represented
by

σσσ(m) = [Q](m)εεε(m), (7.4)

where σi j and εi j are the components of the stress and strain vectors, respectively,
and Qi j represents the stiffness matrix with nine independent material constants and
depend on the material properties and fiber orientation of the mth lamina.

In accordance with the FSDT, the five components of the strain vector are taken
into account such as the in-plane normal and shearing strains (ε 1, ε2 and γ12) varying
linearly, and the transverse shearing strains ( γ13 and γ23) being constant trough the
thickness of the laminate. This assumption necessitates the use of shear correction
factors. The transverse shear stiffness is computed by matching the shear response
for the shell to that of a three-dimensional solid for the case of bending about one
axis and assuming a parabolic variation of transverse shear stress in shell each layer.
Then the shear strain energy, expressed in terms of section resultants and strains,
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is equated to the strain energy of this distribution of transverse shear stresses [17].
Moreover, the stress in the thickness direction may not be zero in the continuum
shell element and may cause additional strain beyond that due to Poisson’s effect.
This stress is computed by penalizing the effective thickness strain with a constant
’thickness modulus’ [17].

The shell elements use bending strain measures that are approximations to those
of Koiter-Sanders shell theory, i.e. the displacement field normal to the shell surface
does not produce any bending moments. The section force and moment resultants
per unit length in the normal basis directions in a given laminate section of thickness
h can be defined on this basis as

(N1,N2,N12) =
ˆ + h

2

− h
2

(σ1,σ2, τ12)dz

(M1,M2,M12) =
ˆ + h

2

− h
2

(σ1,σ2, τ12)zdz

(V1,V2) =
ˆ + h

2

− h
2

(τ13, τ23)dz

(7.5)

This leads to the constitutive relationships related the resultants and the general-
ized strain vectors ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N f

M f

V f

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B 0
B D 0
0 0 H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εεε

f
p

εεε
f
b
εεε

f
s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (7.6)

where εεεp, εεεb and εεεs are the in-plane, bending and transverse shear strain vectors and
Ai j, Bi j, Di j and Hi j are the components of the in-plane, bending-in-plane, bending
and transverse shear stiffness matrices of this section and are given by

(
Ai j,Bi j,Di j

)
=

ˆ + h
2

− h
2

Qm
i j

(
1,z,z2

)
dz, (i, j = 1,2,3)

Hi j =

ˆ + h
2

− h
2

Qm
αβkik jdz, (i, j = 1,2,α,β = i+4, j+4)

(7.7)

Here the k1, k2 parameters are the shear correction coefficients as defined above.
If there are n laminae in the lay-up, we can rewrite the above equations as a sum-
mation of integrals over the n laminae. The material coefficients will then take the
form
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Ai j =

n∑
m=1

Qm
i j (hm−hm−1)

Bi j =
1
2

n∑
m=1

Qm
i j

(
h2

m−h2
m−1

)

Di j =
1
3

n∑
m=1

Qm
i j

(
h3

m−h3
m−1

)

Hi j =

n∑
m=1

Qm
αβ (hm−hm−1)kik j,

(7.8)

where the hm and hm−1 in these equations indicate that the mth lamina is bounded by
surfaces z = hm and z = hm−1. In the matrix notations the constitutive relationships
(7.6) can be written as

σσσ f = [E] fεεε f , (7.9)

where σσσ f and εεε f are generalized stress and strain vectors, respectively, and [E] f is
the matrix of the elastic material constants associated with equations defined above.

It should be mentioned that in the case of laminated structures, continuum shell
elements can be also stacked to provide more refined through-the-thickness re-
sponses of transverse shear stresses and forces [17].

7.2.2 Core FE Model

Because, continuum shell elements can be connected directly to first-order con-
tinuum solids without any kinematic transition, 8-node isoparametric linear solid
’brick’ elements with incompatible mode C3D8I are chosen for core modeling. In
addition to the standard displacement degrees of freedom (three translations in each
a node), incompatible deformation modes are added internally to the elements. The
primary effect of these modes is to eliminate the parasitic shear stresses that cause
the response of the regular first-order displacement elements to be too stiff in bend-
ing [17]. The incompatible mode elements use full integration and, thus, have no
hourglass modes. An effective (equivalent) core material is considered as a homo-
geneous continuum either isotropic for plastic foams or orthotropic for non-metallic
honeycomb structures. In the latter, the material constants of the equivalent mate-
rial, related to the cell geometry and actual parent material properties of the cells
were calculated by using either the analytical homogenization formulae [20] or
numerical FEM techniques, e.g. [21]. Although brick elements provide accurate re-
sults just for the cases when transverse shear effects are predominant and when the
normal stress cannot be ignored, they have a deficiency in modeling the transverse
shear stress through the thickness. It should be acknowledged in the context of the
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stress/displacement solution that the transverse shear stresses in solid elements usu-
ally do not vanish at the free surfaces of the structure and are usually discontinuous
at layer interfaces.

Isoparametric interpolation adopted for the elements C3D8I is defined in terms of
the isoparametric element coordinates (g,h,r) shown in Fig. 7.4. These are material
coordinates. They each span the range -1 to +1 in an element. For instance, the
interpolation function defined the translation in the first direction is as follows [17]

u =
1
8

(1−g)(1−h)(1− r)u1+
1
8

(1+g)(1−h)(1− r)u2

+
1
8

(1+g)(1+h)(1− r)u3+
1
8

(1−g)(1+h)(1− r)u4

+
1
8

(1−g)(1−h)(1+ r)u5+
1
8

(1+g)(1−h)(1+ r)u6

+
1
8

(1+g)(1+h)(1+ r)u7+
1
8

(1−g)(1+h)(1+ r)u8,

(7.10)
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where ui, i = 1, . . . ,8 are nodal translations in the first direction. Analogously, one
can write the interpolation functions for the translations in other directions (v,w). In
general, the translations through the interpolation functions and nodal variables can
be expressed as follows

uc = [N]cuc (7.11)

Here the matrix [N]c includes the isoparametric shape functions Ni associated
with node i and uc is the vector of the nodal displacements.

In the core all the six components of the strain vector are taken into account.
The strain-displacement equations allowing for finite strains and rotations in large-
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displacement analysis in conjunction with the displacement fields are applied to
calculate these components as

εεεc = [B]cuc, (7.12)

where [B]c is the corresponding differential operator.
The stress-strain relationships based on the 3-D elasticity theory give the compo-

nents of the stress vector as follows

σσσc = [E]cεεεc, (7.13)

where [E]c is the matrix of the elastic material constants associated with either
an isotropic or orthotropic homogeneous material.

7.2.3 General 3-D FE Model

The dimensions of the elements for the 2-D continuum shell and 3-D brick ele-
ments are identical on the panel plane directions. For the case of perfect bonding
the links between them are provided by means of share nodes, since both the solid
elements and shell elements have only the translation degree-of-freedom (DOF).
Thus, the deformation compatibility between the faces and the core elements is ful-
filled. In the case of the debonding presence an actual small gap is introduced in
a certain zone between the face sheet and core finite elements. Because it was as-
sumed that debonding may be placed arbitrarily within the face-to-core interface,
the finite elements of the general 3-D FE mesh were generated by partition of the
total model onto several parts, which were connected with each other through share
nodes, Fig. 7.5. An additional adjustment was not used. The general mesh contained
three different zones meshed by applying different mesh methods and mesh densities
such as a fine mesh for the debonding zone, the next zone surrounding debonding
with decreased mesh density, and coarse mesh that was introduced to minimize a
CPU time in calculations, Fig. 7.5. No artificial adjustment of either the material
or geometrical properties was made at the debonding region to ensure as close as
possible a physically real case.

7.3 Aspects of FE Modeling

A finite element model based on the aforementioned assumptions is derived to ana-
lyze dynamics of sandwich plates. In order to be consequent, a brief presentation of
the main steps of this finite element procedure is described in the following subsec-
tions.
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Fig. 7.5 3-D modeling of a
sandwich plate with a circular
debonding zone

7.3.1 FE Equations of Motion

A solution of the problem, to which solid mechanics is applied, implies finding
displacements, deformations, stresses, forces, and other variables in a solid body,
which have to obey the equilibrium requirement for both force and moment at all
times over any arbitrary volume of the body. The FEM is based on approximating
this equilibrium requirement by replacing it with a weaker requirement, that equi-
librium must be maintained in an average sense over a finite number of divisions of
the volume of the body [22]. This equilibrium statement is usually derived in the
form of the virtual work statement for later reduction to the approximate form of
equilibrium used in a finite element model.

For a finite element as a body at a time instance t, occupying in the current con-
figuration a volume V with the surface S, bounding this volume and subjected at any
point on S to the force t per unit of current area and at any point within V to the
body force f per unit of current volume the equilibrium statement, in the form of the
virtual work principle, can be written as

ˆ
V
σσσ · ·δεεεdV =

ˆ
S

tT · δudS +
ˆ

V
fT · δudV, (7.14)

where t, f, and Cauchy stress matrixσσσ are an equilibrium set

t = n ·σσσ, ∂

∂x
·σσσ+ f = 0, σσσ =σσσT ,

and δεεε = 1
2

(
∂δu
∂x +

[
∂δu
∂x

]T )
is the virtual strain, and δu is an arbitrary vector-valued

admissible function, compatible with all kinematic constraints.
To discuss the dynamic behavior, the d’Alembert force is introduced into the

overall equilibrium equation. Then, body force at a point f, can be written as an
externally prescribed body force F, and a d’Alembert force, i.e. f = F−ρ ü where ρ
is the current density of the material at this point and ü is the acceleration filed of
the point. The virtual work equation (7.14) can be rewritten as
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ˆ
V
σσσ · ·δεεεdV =

ˆ
S

tT · δudS +
ˆ

V
FT · δudV −

ˆ
V
ρüT · δudV (7.15)

In the general case, the finite element interpolator can be written as

u = [N]u, (7.16)

where [N] are interpolation functions that depend on some material coordinate sys-
tem and u are nodal variables of the finite element.

The virtual field δu must be compatible with all kinematic constraints. Introduc-
ing the above interpolations the displacement will have a certain spatial variation,
then, δu must also have the same spatial form

δu = [N]δu (7.17)

Thereby, the continuum variational statement is approximated by a variation over
the finite set of nodal variables δu. Then, the virtual material strain associated with
δu is

δεεε = [B]δu (7.18)

Following the well-known FEM procedure the equilibrium equation, related to
as the equations of motion for each a finite element will be approximated as

[
Me] ü+ [Ke]u = Fe, (7.19)

where
[
Me] = ´V0

ρ0 [N]T [N]dV0 is the mass matrix of the element,[
Ke] = ´V0

[B]T [E] [B]dV0 is the stiffness matrix of the element, [E] is the elasticity
matrix in stress-strain relationships, and V0 is the element volume in its reference
state.

Including into the equations of motion the Rayleigh damping, defined through
a damping matrix such that it is a linear combination of the mass and the stiffness
matrices, the finite element equations of motion one can read as follows

[
Me] ü+ [Ce] u̇+ [Ke]u = Fe (7.20)

Thereafter the assembling matrix procedure, usual in the FEM is performed and
the final discretized equations of motion are the following

[M]Ü(t)+ [C] U̇(t)+ [K]U(t) = F(t), (7.21)

where [M], [C] and [K] are the global mass, damping and stiffness matrices obtained
by the assembly procedure, U(t), U̇(t) and Ü(t) are the global vectors of unknown
nodal displacements, velocities and accelerations, respectively, F(t) is the global
vector of nodal external forces. The boundary conditions are imposed to the initial
boundary (its position is known), giving the statement of the boundary problem at
the given initial conditions of the equations of motion consistently closed. Thus, the
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position of any point of the body, including the boundary will be known once the
system of equations is solved.

7.3.2 Contact Model

In general, the vibration of a structure containing detached fragments is accompa-
nied by intermittent contact between them. The dynamic response of the structure
depends on such a contact which is a function of both space and time domains.
Therefore, the extent of the contact region and the contact pressure arising between
the contactable interfaces should be also determined as part of the solution. To ad-
dress the contact-impact problem, the contact analysis between two deformable bod-
ies has to be incorporated into the general FE formulation.

For a body with a contactable interface Γ, the two surfaces called Γ + and Γ− are
assumed, Fig. 7.6. In fact, the interaction between them is associated with the ap-
propriate constraints. The contact constraints add the following Kuhn-Tucker condi-
tions: the surfaces cannot interpenetrate, and the contact traction (contact pressure)
must satisfy momentum conservation on the interface [23]. Using finite element
discretization, one of two contacting surfaces is defined as the slave and another one
is called as the master. The non-penetration conditions, usually represented by the
normal component of displacement and stress, are given a gap (or ’overclosure’)
function gN(x) defining the length of the orthogonal projection of a typical slave
node s on the master surface:

gN(x, t) = n · (xs −x
)
, (7.22)

where n is the outward unit vector orthogonal to the master segment, while x s and
x are the vectors identifying the current positions of the salve node s and the closest
nodes on the master segment, respectively. The expression has to be checked for
all candidate contact nodes s, which are elements of the finite set Γ−. The normal
contact pressure acting on the node s is tN = tc · n, where tc is a contact traction
vector. For gN ≤ 0 the constraint equation for a node s becomes active, that is x s ∈
Γ+∩Γ− and tN ≥ 0, otherwise the constraint is inactive, i.e. x s ∈ Γ− and the surfaces
are separated. The relationship between the gap function and contact pressure is
referred to as a constitutive contact model.

Analogously, the tangential contact constraints can be enforced, where a tan-
gential gap function, called as a slip function gT (x, t) and a tangential traction
tT = tc · (I−n⊗n) can be related by the classical Coulomb friction law [24].

The enforcement of the contact constraints is achieved by appending the addi-
tional term into the virtual work principle (7.15). The virtual work done by the con-
tact forces including the contribution from both the normal and tangential contact
responses can be written as

δWc =

ˆ
Γ
δ (tNgN + tTgT )dΓ (7.23)
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Fig. 7.6 FE contact dis-
cretization
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Herewith, the integral over the contact surface Γ consists of two surface integrals
over Γ+ and Γ−. The gap functions gN and gT are functions of the displacement
vector u(x,t), and following the FE approximation (7.16), they are functions of the
nodal variables u.

The contact traction components can be expressed to be proportional to sur-
face penetrations (gap functions) in the penalty method, or treated as additional
unknowns in the Lagrange multipliers method. These two methods can also be com-
bined in the augmented Lagrangian formulation. Thereby, the discrete weak form
of the dynamic problem involving contact-impact conditions in terms of the global
nodal displacements has been formed as follows

[M] Ü(t)+ [C] U̇(t)+ [K]U(t) = F(t)+FN(t)+FT (t), (7.24)

where FN(t) and FT (t) are the generalized global normal and shear contact force
vectors, respectively, generated so that eliminate all having penetrations between
surfaces of the detached segments during oscillations, Fig. 7.6. It should be noticed
that the contact forces do not depend on the shape functions [N], but instead on the
approximation of the surface, that is the gap functions approximation.

7.3.3 Integration Rule

The most computationally efficient way for solving the discrete equations of motion
(7.24) is the use of the explicit integration rule together with diagonal lumped ele-
ment mass matrices. The explicit central difference integration operator used can be
written in the following form

U̇(i+ 1
2 )
= U̇(i− 1

2 )
+
Δt(i+1) +Δt(i)

2
Ü(i)

U(i+1) = U(i)+Δt(i+1)U̇(i+ 1
2 )
,

(7.25)

where the superscript (i) refers to the increment number and
(
i− 1

2

)
and

(
i+ 1

2

)
refer

to midincrement values. The explicit procedure requires no iterations and no tangent
stiffness matrix, because the accelerations at the beginning of the each increment can
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be calculated quite simple by the inversion of the lumped mass matrix diagonalized
in advance as follows

Ü(i)
= [M]−1

(
F(i) − I(i)

)
, (7.26)

where F(i) is the vector of external nodal forces, and I (i) is the general vector of
internal nodal forces. In the case of dynamic contact existing along with global
dynamic motion, the general vector of internal nodal forces will include contact
forces as well, when the surfaces come into contact at a defined time increment (i).

The explicit procedure integrates the equation (7.24) through time by using many
small time increments. The time increment used in the analysis must be smaller than
the stability limit of the central-difference operator applied. An approximation to the
stability limit is defined by the smallest transit time of a dilatational wave across any
of the elements in the mesh as the following [17]

Δt =min

(
le
cd

)
, (7.27)

where le is the characteristic element dimension and cd is dilatational wave speed of
the material.

7.3.4 FE Analyses

Using the FE code ABAQUS static bending, free vibration, dynamic transient and
dynamic steady-state analyses of sandwich plates containing the debonding zone
along the face sheet-to-core interface were carried out. The static and free vibration
analyses were run by using ABAQUS/Standard with a linear model for debonded
sandwich plates developed in [25]. The other two analyses exploited the nonlinear
finite element model based on the abovementioned modeling approach and were run
by utilizing ABAQUS/Explicit. It is important to notice that the nonlinear FE model
does not assume the advance of the debonding zone during oscillations.

To provide during the dynamic forced analyses the contact-impact behavior of the
face sheet and the core within the debonding zone of the vibrating sandwich plate,
the interaction option was activated in the FE code [17]. The contactable parts were
simulated by using their surface-to-surface discretization in terms of slave and mas-
ter surfaces. Such a contact formulation enforces contact conditions in an average
sense over the regions nearby slave nodes rather than only at an individual slave
node. Thereby, surface-to-surface contact will provide more accurate contact stress
resultants, which are being used to form with greater precision the right hand side
of the equations of motion (7.24).

The relative motion of the interacting surfaces in the contact simulation was de-
scribed with finite sliding kinematic assumptions that are the most general case, and
which allow any arbitrary motion of the surfaces involving their separation, sliding
and rotation. The constitutive behavior of the surfaces coming into contact in the
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Fig. 7.7 Graphical inter-
pretation of the pressure-
overclosure relationship used
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normal direction was assumed to be governed by the ’hard contact’ model, whereas,
for the sake of reducing the computational cost and because the sliding in the con-
tacting surfaces is small, frictionless conditions were accepted between them in the
tangential direction. It is worthwhile to notice that ’hard contact’ implies that the in-
teracting surfaces transmit no contact pressure unless the nodes of the slave surface
contact the master surface and no penetration is allowed at each constraint location,
Fig. 7.7. Thus, the hard contact model will minimize a measure of overclosure of
nodes of the slave surface into the master surface at the constraint locations in the
best way.

To resolve in the dynamic analysis the normal contact constraints imposed by the
physical pressure-overclosure relationship corresponding to the hard contact model
applied, the penalty constraint enforcement algorithm is used. This method was cho-
sen because it does not increase the cost of the analysis compared with the Lagrange
multipliers algorithm.

7.4 Numerical Results

The developed finite element model has been employed for the analysis of both
perfect and debonded sandwich plates with a flexible core. Both static and dynamic
loading cases have been considered. The numerical results, obtained with ABAQUS
were compared to known analytical or numerical solutions whenever it was possible.
Some new results for soft-cored sandwich plates are below presented as well.

7.4.1 Validation

In order to demonstrate the accuracy and performance of the developed FE model,
several examples of undamaged sandwich composite plates subjected to static and
dynamic loading have been analyzed using the package ABAQUS and the results
obtained have been compared with the results published in the literature.
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Example 7.1. A symmetric simply supported square sandwich plate with planar di-
mensions a× b = 200× 200 mm2 subjected to bi-directional sinusoidal transverse
load on its top surface with the intensity of 100 Nmm−2 has been considered. The
3-D elasticity solution obtained by Pagano [26] has been used for comparison of the
FEM results. The total thickness of the plate is h = 50 mm, the thickness of each
face sheet is one tenth of the total thickness. The performance of several different
models of discretization was assessed. A mesh-sensitivity analysis was performed
for all models. A suitable mesh was established once a plateau with a deviation less
than 2% in the calculated values of deflections and stresses was found. As many
as 80 elements along the length and 10 elements across the width were used. One
SC8R element per ply across the thickness of the face sheet with seven cross-section
integration points and eight C3D8I elements across the thickness of the core were
utilized, as it is important to keep these first-order solid elements cubic in shape. The
materials of the elements were modeled as orthotropic solids with constants listed
in Table 7.1.

Table 7.1 Material properties of sandwich plates

Example Source Components
Face sheet

E1, GPa E2 = E3, GPa G12 =G13, GPa G23, GPa ν12 = ν13 ν23
172.4 6.89 3.45 1.378 0.25 0.25

1 [26] Core
E1 = E2 E3 G13 =G23 G12 ν12 ν13 = ν23
0.276 3.45 0.414 0.1104 0.25 0.1

Face sheet, ρ = 1627 kgm−3

E1, GPa E2 = E3, GPa G12 =G13, GPa G23, GPa ν12 = ν13 ν23
131.0 10.34 6.895 6.205 0.22 0.49

2 [9] Core, ρ = 97 kgm−3

E1 = E2 E3 G13 =G23 G12 ν12 ν13 = ν23

6.89 ·10−3 6.89 ·10−3 3.45 ·10−3 3.45 ·10−3 0.0 0.0

Face sheet, ρ = 4400 kgm−3

E1 = E2 = E3, GPa G12 =G13 =G23, GPa ν12 = ν13 = ν23
36.0 14.0 0.3

3 [15] Core, ρ = 52 kgm−3

E1 = E2 = E3, GPa G12 =G13 =G23, GPa ν12 = ν13 = ν23

50.0 ·10−3 21.0 ·10−3 0.29

The comparative results of the analysis are shown in Table 7.2, where the follow-
ing normalization coefficients were utilized: (σ̄11, σ̄22, σ̄12) = h2

q0a2 (σ11,σ22,σ12),

(τ̄13, τ̄23) = h
q0a (τ13, τ23) and w̄ =

100E f
2 h3

q0a4 w. The stresses were calculated at the ele-
ment integration points, but the values of stresses in the output file were determined
at the nodes by extrapolating the stresses from the integration points [17]. As can
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Fig. 7.8 Through-the-
thickness variation of the
maximum normalized deflec-
tion
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be seen from Table 7.2, the results of the present ABAQUS model are in a good
agreement with the analytical results.

Table 7.2 Deflection and stresses in square sandwich plate under bi-directional sinusoidal load

Source σ̄11

(
a
2 ,

b
2 , z
)

σ̄22

(
a
2 ,

b
2 , z
)
τ̄13

(
0, b

2 ,0
)
τ̄23

(
a
2 ,0,0

)
τ̄12 (0,0, z) w̄

+ h
2 − h

2 +
hc
2 − hc

2 + h
2 − h

2 + h
2 − h

2

[26] 1.556 -1.512 -0.233 0.196 0.259 -0.253 0.239 0.107 -0.144 0.148 7.425
FEA 1.268 -1.302 -0.255 0.219 0.233 -0.282 0.237 0.113 -0.137 0.140 7.367

Fig. 7.8 showing through-the-thickness variation of the maximum normalized
deflection has also presented to pay attention the necessity of using the layer-wise
model for the analysis of the sandwich plate with a low strength core material. One
can see the differences in the value of deflections between the top and bottom face
sheets that means the change of the core height. As well the through-the-thickness
variation of normalized transverse shear stresses calculated at the points

(
a
12 ,

b
2 ,z
)

and
(

a
2 ,

b
12 ,z
)
, respectively, have been presented in Figs. 7.9a and 7.9b to have an

insight into the strength of sandwich plates and demonstrate the interaction between
the strong face sheet and the low density core.

Example 7.2. For further validation, the free vibration analysis of sandwich panel
with a flexible core is carried out using the ABAQUS software. A 20 mm thick, five-
layer (0/90/core/0/90) simply supported square of 200 mm by 200 mm sandwich
plate is herein analyzed. The plate was made of composite anisotropic face sheets
and an isotropic core, where the ratio of the face sheet thickness to the core thickness
was 10. Material properties of the sandwich plate are given in Table 7.1. In a FE
mesh one SC8R element per each ply across the thickness of the face sheet with five
cross-section integration points and five C3D8I elements across the thickness of the
core were used. The planar dimensions of the plate were discretized by 50 elements
along each edge.
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Fig. 7.9 Through-the-thickness variation of the normalized transverse shear stresses

The computed with ABAQUS results are compared with those predictions ob-
tained in [9]. Natural frequencies have been normalized by using the relation

Ω = ω

√
a4ρ f

h2E f
2

, where h is the total plate thickness and ω is natural cyclic frequency.

The comparative results of the normalized natural frequencies are presented in Ta-
ble 7.3. A good agreement between the results one can be observed.

Table 7.3 Comparison of non-dimensional natural frequencies for the intact sandwich plates

Source (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)

[9] 1.8480 3.2196 5.2234 4.2894 6.0942 7.6721
FEA 1.7952 3.1445 5.2235 4.1985 5.9945 7.5653

To make evident the effect of ’soft’ core on the considered kinematics of the sand-
wich plate, the frequency spectrum containing fifty its natural frequencies have been
analyzed. The results showed that high frequencies of the plate exhibit symmetric
out-of-plane movements of the face sheets, so-called pumping modes, relating to
the changes of the plate height. Several of such modes are presented in Fig. 7.10,
where the core was excluded from the contour plot for the sake of clearness. There-
fore, the linear assumptions for modeling sandwich plates with a flexible core are
suitable only for describing low vibration modes, and the current model is capable
to capture such new nonclassical effects.

Example 7.3. The free vibration analysis of a sandwich beam with a damaged re-
gion was considered in [15], where natural frequencies and relevant mode shapes
were analytically calculated. That model was developed with ABAQUS to make a
comparison between the predictions and assess the applicability of the FE model
developed for taking into account an interfacial damage. A 300 mm long sandwich
beam cored by a foam with a rectangular cross-section of 20 mm by 21 mm, con-
taining damage of a 20 mm long at the middle span of the beam was simulated by 60
elements along the beam length and eight elements through its thickness. One ele-
ment per thickness of each the face sheet and six elements across the core thickness
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Fig. 7.10 Contour plots of the pumping modes

were used. The thickness of the upper face sheet was of 0.5 mm and the lower one
was 1 mm. Material properties of the sandwich beam were the same as described
in [15] and they are listed in Table 7.1. The comparative values of the six first nat-
ural frequencies are shown in Table 7.4. As one can be seen, the close results are
demonstrated.

Table 7.4 Comparison of natural frequencies (Hz) between the intact and debonded sandwich
plates

Intact Debonded
Mode [15] FEA [15] FEA

1 289.3 293.46 288.98 293.07
2 683.3 707.09 388.32 433.67
3 1096.9 1106.7 1093.2 1093.2
4 1151.6 1495.8 1146.9 1132.0
5 1778.2 1818.7 1771.3 1769.9
6 1895.3 1918.1 1842.2 2080.2

7.4.2 Free Vibration Analysis

A free vibration of a sandwich plate containing a debonding zone of the circular
shape between the upper face sheet and the core is further studied. The plate was
simply supported with planar dimensions of 270 mm by 180 mm and was made of a
50 mm thick foam core and a 2.4 mm thick each of the face sheets. The debonding
zone’s diameter, d was of 30 mm. The material properties of the constituent layers
of the plate are showed in Table 7.5.

Pursuing the purpose, to assess the influence of the debonding presence on the
modal parameters of the sandwich plate, the free vibration analysis of the same
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Table 7.5 Material properties of the sandwich plate

Source Components
Face sheet, ρ = 1650 kgm−3

E1 = E3, GPa E2, GPa G12 =G23, GPa G13, GPa ν12 ν13 = ν23
3.48 19.3 1.65 7.7 0.05 0.25

[27] Core, ρ = 52 kgm−3

E1 = E2 = E3, GPa G12 =G13 =G23, GPa ν12 = ν13 = ν23

92.1 ·10−3 27.3 ·10−3 0.42

intact sandwich plate was performed too. The natural frequencies obtained with
ABAQUS for these two plates are presented in Table 7.6. The comparative results
demonstrate that debonding, firstly, changes the order of frequencies in the spectrum
and, primarily, leads to reduction of magnitudes of the natural frequencies for bend-
ing modes in the low part of the frequency spectrum. Secondly, it does not almost
change the natural frequencies associated with in-plane modes. Finally, debonding
significantly affects the high frequencies making their values even higher than those
for the intact plate, so-called thickening phenomenon appears.

Table 7.6 Comparison of natural frequencies (Hz) between the intact and debonded sandwich
plates

Bending
modes

INTa DBDb Bending
modes

INT DBD In-plane
modes

INT DBD Pumping
modes

INT DBD

(1,1) 1078.5 995.4 (3,3) 3424.4 3461.6 1 1772.1 1771.7 1 4012.3 4035.3
(1,2) 1938.5 1818.6 (4,3) 3844.9 3895.8 2 2637.8 2637.4 – – –
(2,1) 1600.5 1567.2 (2,4) 3907.9 3946.7 3 3517.5 3517.1 – – –
(2,2) 2274.9 2267.1 (3,4) 4183.9 4220.1 – – – – – –

a is the intact sandwich plate; b is the debonded sandwich plate

The above results imply that the debonding region exerts specific effects on the
relevant mode shapes. Several numerically calculated mode shapes are shown in
Fig. 7.11. For the better presentation the core was excluded from the contour plots.
One can see that debonding is visualized as a local separation between the consti-
tutive layers. Herewith, these local interactions can be seen in all mode shapes, but
they in certain modes are larger than in others. Hence, the effect of debonding on the
sandwich plate’s free response will be more pronounced for such modes. Moreover,
the mode shapes in the frequency spectrum will include both only a local deforma-
tion within the detached zone of the face sheet (Figs. 7.11c and 7.11d) and mixed
modes, which are a combination of debonding zone deformations along with the
globally deformed pattern of the sandwich plate (Figs. 7.11e and 7.11f). Thereby,
one may conclude that the permutation in the order of modes, inversion of the mode
shapes and thickening phenomenon are a result of complex local interaction phe-
nomenon within the sandwich plate, induced by the debonding region.
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Fig. 7.11 Contour plots of the free vibration modes of the debonded sandwich plate

7.4.3 Forced Vibration Analysis

The flexibility of the low strength core affects the overall structural behavior and
may lead to stress concentration in the vicinity of the discontinuities and support
regions, in terms of shear and transverse normal stresses at the face sheet-to-core.
To provide a deeper insight into dynamics of plates sandwiched by a flexible core
and containing debonding, their general dynamic response is examined. Herewith,
contact-impact conditions for describing interactions of surfaces coming into con-
tact during oscillations are taken into account. The forced vibration analysis of sand-
wich plate with a flexible core is carried out using the explicit solver of the ABAQUS
commercial software, as it was described in Section 7.3.3. Simplifying assumptions
were formulated and adopted for calculations as the following

• Elastic deformation was present.
• Debonding was assumed exists before vibration started and was constant during

oscillations.

The transient response of the debonded sandwich plate, the same as in previous
Section 7.4.2 was studied. The simply supported rectangular sandwich plate was
excited by an impulse force at the central point of the bottom face sheet to simulate
a hammer hit. The duration of the applied force was much shorter than the analysis
time, i.e.

F(t) =

{
F0, 0 ≤ t ≤ t0

0, t > t0

with t0 = 1 ms and F0 = 1 kN.
Fig. 7.12 presents the deformed forms of the sandwich plate during its transient

movement at the different discrete time moments for first 10 ms. For the sake of
clearness half the plate is presented. It can be clearly seen the intermittent contact
of the detached surfaces in the vibrating sandwich plate.

The comparison of results calculated for both the debonded sandwich plate and
the same intact plate gives a way to assess an influence of debonding on the sand-



7 Dynamic Analysis of Debonded Sandwich Plates with Flexible Core 109

(a) (b) (c)
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Fig. 7.12 Contour plots of deformed shapes of the debonded sandwich plate subjected to the im-
pulse force: (a) t = 1 ms; (b) t = 3 ms; (c) t = 5 ms; (d) t = 7 ms; (e) t = 9 ms; (f) t = 10 ms

wich plate’s transient response. The finite element results such as displacements,
strains and stresses can be computed at different points as time histories. As one can
see from Fig. 7.13 the displacement time histories, calculated at the central points
A and B are quite different for the intact (INT) and debonded (DBD) plates. In the
case of the debonded plate the displacements of both the face sheet (DBD-f) and
core (DBD-c) at the point A are shown, Fig. 7.13a. It is important to notice that the
local interaction in the detached segments, located between the upper face sheet and
the core of the plate changes significantly the transient response of the sandwich
plate at its lower points, Fig. 7.13b. Such different deformation patterns in the top
and bottom face sheets are expected due to the compressibility of the soft core.
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While the flexibility of the low strength core affects the overall structural behav-
ior, it also leads to stress concentrations in the vicinity of the discontinuity. Fig. 7.14
demonstrates the contour plot of the Mises stress at the face sheet-to-core interface
separately for the core and the face sheet at such a time moment (t = 3 ms), when it
is maximum. One can see that the maximum value of the stress has been attained,
as expected, on the boundary points of the debonding zone.

As mentioned above, the degraded interface will generate higher in-plane stresses
in the face sheet and transverse shear and normal stresses in the core, which may
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(a)
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Fig. 7.14 Contour plot of Mises stress within: (a) the core; (b) the face sheet

make the damaged face sheet-to-core interface vulnerable to debonding propaga-
tion. For analyzing the stress states in the interface with a time, variations of the
stresses at a boundary point of the debonding zone, C

(
a+d

2 , b
2 ,

hc
2

)
calculated for

both the intact and debonded plates are compared in Fig. 7.15.
It can be seen that the transient stress time histories of the intact and debonded

plates are obviously different. Besides, the amplitudes of the stress variations for
the debonded sandwich plate are significantly larger than those for the intact one.
Thus, the assumption of debonding not propagation during oscillations is doubtful
and may be used for the sake of model simplification as preliminary strength infor-
mation. Although this assertion should be considered in more details involving the
crack mechanics approaches and it may be an objective of our future investigations.

7.5 Conclusions

In the paper is explored a way of predicting the dynamic behavior of debonded
sandwich plates with flexible core using free vibration analysis and dynamic tran-
sient analysis, and is examined the influence of the soft core and debonding on
modal characteristics and transient response of the sandwich plates. The FE model
involving continuum shell elements for each of the face sheet layers and 3-D brick
elements for the core is developed within the ABAQUS code. The free vibration
analysis is performed with an implicit version of ABAQUS whereas the dynamic
transient analysis is carried out by using its explicit version. Contact conditions,
which are available in ABAQUS/Explicit only, are applied in detached segments of
the debonded sandwich plates to avoid a physical unreal penetration of the surfaces
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Fig. 7.15 Transient stress time histories of the: (a) transverse shear stress in direction 1;
(b)transverse shear stress in direction 2; (c) transverse normal stress; (d) in-plane normal stress
in direction 1; (e) in-plane normal stress in direction 2; (f) in-plane shear stress
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coming into contact during oscillations and to simulate as close as possible the dy-
namic behavior of the sandwich plates in order to gain a better understanding of
their performance. From results obtained in the paper the following conclusions can
be drawn:

• The core flexibility in the through-the-thickness direction leads to highly nonlin-
ear responses of sandwich plates under both static and dynamic loading. Unequal
deflections of the top and bottom face sheets and jumps of the transverse shear
stresses at the face sheet-to-core interfaces were observed in the case of plate
bending. The appearance of the pumping modes in the frequency spectrum re-
sulted from the free vibration analysis.

• Natural frequencies of a debonded sandwich plate usually decreases, compared to
those for the same intact plate. The associated mode shapes along with global de-
formed forms contain local deformation modes induced by debonding and such
local deformations are highly dependent on the mode number. As well, the high
natural frequencies and mode shapes are more disturbed by the debonding pres-
ence.

• Taking into account contact interactions in detached fragments for modeling
debonded sandwich plates is very important to properly describe their dynamic
forced response. The neglect of contact-impact conditions in predicting of their
dynamic behavior will lead to the incorrect results.

• The intermittent contact in detached segments of the debonding region signifi-
cantly changes the dynamic transient response of the sandwich plate. Finite ele-
ment results calculated have shown completely different deformed shapes of the
debonded plate in comparison with those for the same intact sandwich plate.

• The flexible core produces the high stress level at the boundary points of the
debonding region such that may promote debonging to the propagation. Although
this conclusion demands of a further study.
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