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a b s t r a c t

A finite element model has been developed for analyzing of the dynamic response of sandwich plates

with partially damaged facesheet-to-core interface. The effect of intermittent dynamic contact between

the fragments detached at the damaged interface is taken into account for simulation of sandwich

plates’ vibrations. Transient and forced dynamic responses of the sandwich plates damaged by

debonding have been obtained by using the ABAQUS/Explicit code. The influence of the local strongly

nonlinear contact behavior on the global dynamics of the sandwich plates is examined.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The finite element method (FEM), developed in recent few
decades is most widely used for solving complex topological
problems of physical fields and multi-field problems. Nonlinear
finite element (FE) analyses are being now abundantly carried
out. There are some FE formulations and algorithms which are
well-established and known as accurate and reliable [1]. Such
numerical concepts are implemented into various commercial
and research FE codes as standard procedures. However, as a
successful development of new materials and manufacturing
processes is being reported, research problems become more
complex and they have to be analyzed as a multistep task joining
sequentially different subtasks. Consequently, although the stan-
dard procedures can be adopted for solving complex problems,
the connection between analysis steps and the compatibility of
the numerical procedures used in such steps are crucial in
obtaining robust and efficient solution algorithms. These issues
should be investigated and well-known in detail before perform-
ing of any analysis.

In this paper we consider, from the computational standpoint,
the dynamics of a sandwich plate in which a penny-shaped
segment of the facesheet is detached from the core in one of
the interface layers. The analysis developed herein for the
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numerical solution of the problem relies on a standard FE
model and on an explicit FE method. Its peculiarity and novelty
may be evaluated as follows: the efficiency of finite element
solutions based on the combination of the used numerical
procedures is demonstrated; the obtained results show real
life simulations, which allow us to investigate better such
phenomenon as nonlinear dynamics of the sandwich plate as
well as provide potentially useful data in their practical relevance.
In this respect, the vibration-based health monitoring technique
is one of possible fields where these simulations would be
implemented.

The engineering motivation of this study is provided primarily
by using panels made of sandwich materials as basic structural
components in aeronautical, aerospace and naval constructions.
From the structural point of view sandwich panels possess
much advantages over the conventional metallic counterparts,
but they are very prone to damaging. One of the most common
defects encountered in the sandwich panels is a partial separation
between the facesheet and the core along their interface, called as
facesheet-to-core debonding [2]. Because sandwich panels are
often considered as vibrating structures, they should be designed
so that to sustain in-service dynamic loads with the existing
interfacial damage. The physical model of a vibrating sandwich
panel is intrinsically nonlinear due to full coupling between
vibrations, intermittent contact in detached segments and possi-
ble fracture at the boundary of the debonded zone. Hence, to
analyze the complex dynamics of such panels, a nonlinear multi-
step FE analysis has to be performed. In the present work we limit
ourselves to nonlinear effects resulting from intermittent contact
only, and the debonding growth problem is not considered.

www.elsevier.com/locate/finel
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Various attempts have been made by many researchers to
describe in a unified manner the nonlinear free and forced
vibrations of delaminated or debonded composite beams, plates
and shells [3]. A considerable amount of previous theoretical
works have been carried out for studying the modal character-
istics of delaminated beams with an assumption that detached
surfaces at the delaminated interface do not interact with each
other during vibrations. Instead, researchers assumed that the
surfaces either are freely vibrating in ‘free mode’ models [4,5] or
are always closing in ‘constrained mode’ models [6–8]. Other
authors, to avoid the interpenetration between the detached
layers, inserted springs prescribing to them piecewise-linear
properties, e.g. [9]. Studies of free vibrations of delaminated
beams and plates using the FEM have been also broadly pre-
sented. For example, one-dimensional FE models were presented
in [10,11]. More complex two-dimensional FE models were
developed by applying either the first-order shear deformation
theory as in [12] or the higher-order shear deformation theory as
in [13] or the zig-zag theory as in [14] or the layerwise theory as
in [15]. The modal analysis using three-dimensional plate models
can be found, e.g. in [16] with the free mode formulation and in
[17] with the spring element model.

In contrast to the aforementioned works, investigations of the
dynamics of delaminated composite structures accounting for con-
tact between detached segments are less presented in the literature.
It is mainly because of the complexity of problem. One of the
possibilities to tackle such complex task is the use of the analytical
approach, replacing a continuous cracked structure with a single-
DOF or multi-DOF oscillator. Those models were successful to reveal
nonlinear response of composite beams with interfacial damage
such as super- and subharmonics resonances and period doubling
bifurcations, e.g. [18–20]. The influence of internal energy dissipa-
tion on the dynamic response of delaminated sandwich beams due
to impact-like contact in the detached parts is discussed on the basis
of discrete oscillator models within the framework of non-smooth
dynamics in [21,22]. Another class of modeling techniques for
studying nonlinear dynamics of composite structures damaged
along structural interfaces uses order reduction methods based on
nonlinear normal modes (NNM). In particular, the perturbation
method and NNMs were used in [23] to study nonlinear vibrations
of a delaminated beam. By using the proper orthogonal modes
computed from nonlinear forced responses and their approximation
by a truncated set of linear normal modes (LNM) with special
boundary conditions, forced oscillations of a delaminated plate with
the contact nonlinearity were modeled in [24].

Although the oscillator models, used in those studies have
thrown a light on nonlinear phenomena of cracked structures
they suffer from the lack of a spatial presentation of both
deformation modes and distributions of interlaminar stresses.
Thereby, continuum-based models of vibrating damaged struc-
tures, explicitly describing the interaction between detached
segments are still highly required. Several analytical one-
dimensional beam models for solving this problem have been
proposed. A nonlinear constraint spring model of the delaminated
interface of a composite beam was utilized in [25] for studying its
free and forced oscillations. Authors in [26] have employed the
Galerkin method and harmonic balance method to study non-
linear vibrations of composite beams with a through-width
delamination. A high-order semi-analytical approach, based on
the modified Galerkin method and the numerical implicit inte-
gration scheme was developed in [27] for studying free vibrations
and a transient response of a simply supported debonded sand-
wich beam with a compressible core. Aforementioned models
were able to capture the state of the delaminated interface in its
two limit cases, either full closing or opening, but no interactions
between the detached segments were possible to present.
In order to overcome the limitations of closed form solutions,
dynamics of composite panels with contact has been studied
using the FEM. FE modeling of such problems is not easy. It is
well-known that if contact in a simulation has to be accounted
for, many types of calculation difficulties occur, due to nonlinear-
ity and non-smoothness of the associated equations. The imple-
mentation of FE procedures for contact analysis involves three
principal aspects such as description of the contact interface
geometry, enforcement of the contact conditions and treatment
of the constraints imposed within a certain time integration
scheme. The combination thereof is not straightforward and a
number of different approaches have been proposed and
researched. For more details in this item we refer to the classical
books on contact mechanics, e.g. [28–30] as well as on new trends
in this field in [31]. Some FE models, proposed for studying
dynamics of composite panels accounting for contact at the
damaged interface are reviewed below.

To describe intermittent contact between delaminated seg-
ments of a composite beam, the node-to-node frictionless contact
formulation involving small deformation assumptions within the
FE approach was used in [32]. The contact constraints were
imposed by a modified Lagrange multiplier method. The New-
mark iterative algorithm was exploited for solving the dynamic
contact problem. Based on these numerical procedures dynamic
responses of a delaminated beam subjected to both impulse and
harmonic loads were simulated. Authors in [33,34] have investi-
gated the dynamic response of delaminated beams and a
debonded sandwich plate, respectively, using 2-D FE models in
conjunction with kinematic constraints governing contact–impact
conditions at the damaged interfaces. The node-to-node contact
constraints, imposed via the penalty method in the vibration
problem of a laminated plate were utilized in [35]. The transient
analysis of delaminated composite and smart composite plates
was studied in [36] using an improved layerwise laminate theory,
extended to include large deformation and the interlaminar
contact during ‘breathing’ phenomena in the delaminated zone.
The breathing phenomenon was described using two different
contact spring models and the associated equations were inte-
grated by using the Newmark-beta implicit algorithm with New-
ton–Raphson iteration, modified to be a predictor–corrector
method. A FE model of a composite plate with multiple delamina-
tions based on the higher-order zig-zag plate theory was devel-
oped in [37] for the dynamic analysis. The Lagrange multiplier
method to impose the unilateral contact conditions within dela-
minated interfaces was applied in that work. A further contribu-
tion into a nonlinear dynamic behavior of sandwich plates
with interfacial damage can be found in [38], where a sandwich
plate containing a post-impact zone was modeled by a three-
dimensional FE model within the ABAQUS code. Recent progress
in FE methodologies in the form of the extended finite element
method (XFEM) have been adopted for evolving dynamic pro-
blems of cracked plates, e.g. in [39,40] as well as crack growth
problems with contact, e.g. in [41–43]. Researches regarding
enforcements of contact constraints at a discontinuity interface
within the framework of the XFEM are done in [44]. It should be
notice that the XFEM have already become a standard algorithm
for the crack propagation analysis in several commercial FE codes,
e.g. [45].

The literature search showed that still a few three-dimensional
simulations of delaminated plates have been done, if there is
something similar, it is not taking into account the problem of
intermittent contact. Thus, the aim of this paper is to investigate a
dynamic behavior of sandwich plates with partially detached
facesheet-to-core interface by finite element simulations. We
intend to develop a model of a debonded sandwich plate, which
captures the dominant nonlinearities arising from the local
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contact phenomenon within the debonded zone, and to show
their influences on the global dynamics of the plate. Pursuing this
objective, to develop an appropriate computational model we first
formulate the weak form of the elastodynamic contact problem
involving non-smooth Signorini’s and Coulomb’s contact laws in
the usual formalism of continuum mechanics. Second, we make a
finite element discretization of the dynamic contact problem
within the explicit time-stepping scheme. Finally, on the basis
of these underlaying concepts the finite element model of the
debonded sandwich plate with a penny-shaped detached region
is developed using the general purpose FE code ABAQUS/Explicit,
where finite elements and numerical procedures available in the
code are used in simulations. Both a transient response and a
behavior under periodic loading of the sandwich plate are
simulated and results are discussed in detail.
2. Statement of the problem

For the sake of completeness, the mathematical aspects of the
general elastodynamic problem of a continuum with a disconti-
nuity, whose surfaces are able to interact with each other, are
briefly discussed in this section. In order to focus only on
nonlinear effects arising from dynamic contact, the simplest case
involving linear elasticity and small strains is considered. We
follow the works [28–30], to which we refer for more details in
this problem. Throughout this work we adopt the notations which
are usual in most of the books on continuum mechanics, e.g. [46].

2.1. Variational equality formulation

First a variational formulation of the problem under consid-
eration is presented. Let us consider a deformable body occupying
a domain OAR3 at time tA ½0,T� and GAR2 is its boundary such
that Gt [Gu ¼G and Gt \ Gu ¼ |, as shown in Fig. 1a. Herein Gt

and Gu stand for the boundaries with prescribed tractions t and
displacements u, respectively. We allow this domain to contain
an internal discontinuity, described by a surface Gc . Let ~O be the
open set, which excludes all discontinuities, i.e. ~O ¼O\Gc .

From a mathematical point of view, any problems involving
contact should be rigorously solved by using methods of varia-
tional inequalities [47–49]. Such approaches, however, are not
directly applicable for implementation in FE analyses. In practice
of the FEM, the active set method is used whereby the variational
formulation can be extended to the treatment of contact pro-
blems, e.g. [29,30]. Following this approach the contact surface Gc

and, consequently, an active set of constraints are presumed to be
known within an incremental solution step. Hence, contact forces
along with displacements are primary unknowns which can be
found in the specific instant of time. There are many strategies for
incorporating the active set concept in conjunction with calcula-
tions of the contact forces into FE algorithms, in particular,
the penalty method, the augmented Lagrangian technique, the
c
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Fig. 1. A body with a discontinuity: (a) representation of the body in the reference

and the current domains and (b) zoom of the discontinuity’s surfaces.
perturbed Lagrangian method, a form of barrier method, etc.
[29,30]. In the present work, the kinematic contact algorithm is
used for imposing contact constraints.

The principle of virtual work can provide the variational
formulation of the elastodynamic problem of the body with
taking into account contact between the crack faces as follows
[1,29]: for every time tA ½0,T� find uðtÞAU such thatZ
~O
du � r €u dOþ

Z
~O
du � c _u dOþ

Z
~O
de : r dO

¼

Z
~O
du � rb dOþ

Z
Gt

du � t dGþdWc , 8duAU0 ð1Þ

with given boundary conditions r � n¼ t on Gt and u¼ u on Gu

and contact interface conditions on Gc , and initial conditions
uð0Þ ¼ u0 and _uð0Þ ¼ vð0Þ ¼ v0 in ~O. Herein the trial solutions uðtÞ
and the test functions du reside in appropriate vector spaces for
the displacement fields defined as follows:

U ¼ fu9uAH1ð ~OÞ, u¼ u on Gu, discontinuous on Gcg ð2Þ

U0 ¼ fdu9duAH1ð ~OÞ, du¼ 0 on Gu [ Gcg ð3Þ

In Eq. (1) we stand for that r is the mass density, c is the linear
viscous damping parameter which represents the system material
damping, b are the body forces, n is the outward unit normal to O,
u are the displacements, and r and e denote the Cauchy stress
tensor and the infinitesimal strain tensor e¼ 1

2 ðruþðruÞT Þ,
respectively, which are related by the linear elastic constitutive
model r¼ C : e with the fourth-order stiffness tensor C.

It follows from (1) that the total energy in the body with crack
contains two parts, where the first part comprises the terms
widely recognized such as inertial, damping, internal and external
works, and the second one comes from contribution of a contact
traction tc ¼ r � nc at contact points of the discontinuity Gc , where
nc is the outward unit normal at these points. With this at hand,
the virtual work equation (1) can be recast into such form that
each of the terms will reflect its physical meaning mentioned
above. Thereby, in the order of declaration of the quantities we
can write down the algebraic sum of the virtual works as follows:

dWinert
þdWdamp

þdWint
�dWext

�dWc
ðtcÞ ¼ 0 ð4Þ

As mentioned above, the contact virtual work in (4) is only
contributed to by points xAGc where contact constraints are
active. A general form of this term at the instant of time when
contact is active can be defined by the expression

dWc
¼

Z
Gc

ðtNdgNþtT � dgT Þ dG ð5Þ

Here, in terms of the ‘master–slave’ approach used usually in FE
contact formulations, gN ¼ ðx

��xþ Þ � nþ is a gap function defin-
ing a minimal distance between a node of the slave surface
x�AG�c and its orthogonal projection on the master surface
xþ ðx

1
,x

2
ÞAGþc with the unit normal nþ , where xa with a¼ 1,2

denotes the parametrization of the surface (see Fig. 1b).
Analogously, gT stands for a tangential gap function describing a

relative tangential movement of the surfaces with respect to each
other and associated with a friction phenomenon. This vector-
function can be defined by gT ¼ gTaaþ

a
with gTa

¼ ðx��xþ Þ � aþa ,
where aa with a¼ 1,2 are tangent base vectors at the point xþ (see
Fig. 1b) such that n þ ¼ a þ1 � aþ2 =Jaþ1 � aþ2 J.

In the tangential direction, one needs to differ between
sticking and sliding states on the contact surfaces [50]. As long
as sticking takes place, no tangent sliding between contact
surfaces occurs, consequently, no difference between the
normal and tangent behavior, i.e. the gap function vanishes,
_gT ¼ 03gT ¼ 0. Otherwise, the contacting surfaces slide with
respect to each other fulfilling impenetrability condition exactly
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ðgN ¼ 0Þ. In this case the projection point moves on the master
surface by forming a path which is not known a priori. Hence in a
frictional sliding situation, one has to integrate the relative
tangential velocities to obtain the path of xþ on the master
surface. In the geometrically linear case, the rate of tangential gap
function at the contact point can be found as _gT ¼

_x
a
aþa ¼ _gTa

aþ
a

with _gTa ¼ ð
_x�� _x

þ
Þ � aþa ¼ aab

_x
b
, where aab ¼ aþa � a

þ

b is the
metric tensor at xþ on Gþc .

The contact traction tc at the contact point xþ is decomposed
into normal and tangential components, i.e. tc ¼ tNþtT , where
tN ¼ tNnþ and tT ¼ tTaaþ

a
with a¼ 1,2. The scalars tN and tTa

represent the normal and tangential quantities of the contact
pressure, respectively. Herewith, the normal traction (a compres-
sive force) always points inward and the tangent traction (the
frictional force) opposes to the relative sliding direction. More-
over, at the contact point the interior continuity conditions on the
stresses should be met accordingly with Newton’s third law as
rþ � nþ ¼�r� � n� ¼ tc.

With notations introduced we formulate the normal contact
conditions enforcing the physical requirements of impenetrability
and compressive character of interactions, as shown in Fig. 2a, in
the following form:

tN r0, gN Z0 and tNgN ¼ 0, ð6Þ

which are known as Karush–Kuhn–Tucker conditions.
The contact conditions in tangential directions associated with

the frictional behavior can also be given in the form of inequal-
ities as follows [50]:

JtTJrtcrit , JgTJZ0, ðJtTJ�tcritÞJgTJ¼ 0 ð7Þ

where tcrit is a threshold of tangential contact traction for
tangential slip, Fig. 2b. If the frictional model is characterized by
Coulomb’s law, we have tcrit ¼ mtN , where m is the coefficient of
friction.

Because of the analogy between the friction phenomenon and
plasticity, the plasticity framework has often been used to
Coulomb’s friction law [29,30]. In this case the total tangential
gap gT is split into an ‘elastic’ stick part and a ‘plastic’ slip part
gT ¼ gstick

T þgslip
T . For sticking an elastic constitutive relation

tT ¼ ET gstick
T is applied, where ET denotes the penalty parameter.

The regularization of Coulomb’s friction law is portrayed by the
dotted line in Fig. 2b. An evolution law for the slip part is based on
a slip potential function taking the form FðtT Þ ¼ JtTJ�mtN . Finally,
for slipping we have

_gslip
T ¼ _g

@FðtT Þ

@tT
¼ _g tT

JtTJ
ð8Þ

along with loading–unloading conditions in Kuhn–Tucker form

Fr0, _gZ0 and F _g ¼ 0 ð9Þ

In the case F40 the sticking takes place.
tN

gN
crit

tT

gT

crit

T

Fig. 2. (a) Normal contact conditions and (b) tangential contact conditions.
2.2. Finite element formulation

Following the FE approach, the variational equation (1) should
be discretized. Let the current domain O be subdivided into a
number of element subdomains Oe so that the union of the
elements comprises the total discretized domain Oh

¼
S

eOe and
the domain O is replaced by Oh. Due to the concept of a finite-
dimensional approximation of a space, the finite-dimensional
vector spaces Uh and Uh

0 can be defined as subsets of the
corresponding infinite counterparts, i.e. Uh

�U and Uh
0 �U0,

respectively. Then, approximate displacement fields uhðtÞ and
their variations duh within each finite element are functions
pertaining to these finite-dimensional spaces and can be
expressed in terms of nodal values as follows:

uhðtÞ ¼ uIðtÞNI and duh ¼ duINI , ð10Þ

where NI are the shape functions associated with the Ith node,
uIðtÞ and duI are the nodal quantities at node I. Summation over
repeated indices is implied. It should be recalled that in the
spatial discretization of the displacements in (10) their temporal
continuity at nodes is maintained. The velocities and accelera-
tions can be found as the material derivatives of the displace-
ments,

vhðtÞ ¼ _uh
ðtÞ ¼ _uIðtÞNI and €uh

ðtÞ ¼ €u IðtÞNI ð11Þ

Substituting of these finite dimensional quantities into the
variational principle (1), an approximate FE solution of the
problem stated above in the continuum form can be formulated
as follows: for given the boundary conditions t on Gh

t , u on Gh
u, the

initial conditions u0 and v0 in ~O
h
, the distributed body forces b in ~O

h

and the contact conditions on Gh
c find uhðtÞAUh for every time

tA ½0,T� such thatZ
~O

h
duh � r €uh

dOþ
Z
~O

h
duh � c _uh dOþ

Z
~O

h
deh : rh dO

¼

Z
~O

h
duh � rb dOþ

Z
Gh

t

duh � t dGþ
Z
Gh

c

ðth
Ndgh

Nþth
T � dgh

T Þ dG,

ð12Þ

for all admissible duhAUh
0. All quantities in (12) are finite-

dimensional counterparts of those given for the continuous case
in (1). In particular, rh refers to the stress field obtained by
substitution of the approximate solution uh into Hooke’s law and
the virtual strain field deh by substitution of the variation of the
approximate solution duh into the small strain–displacement
relationships. The integrand of the contact integral deserves
special consideration since its discretization is not trivial. First,
the components of contact traction tN

h and th
T , related via the

constraint conditions (6) and (7) to gN
h and gh

T on the discretized
surface Gh

c , have definitions that depend upon the solution
method utilized. Consequently, their explicit descriptions are
deferred until the solution algorithm applied is presented. In
turn, the kinematic variables dgh

N and dgh
T , which are functions of

the approximate solution uh, are calculated depending on the
discretization approach used on Gh

c . One of the approaches either
node-to-node or node-to-surface or surface-to-surface should be
chosen. Finally, before any contact model can be utilized the
contact surface Gh

c must firstly be identified. The active constraint
set is located by the iterative process called as contact detection
(searching). Briefly this algorithm involves the following two
phases: the first search (global) locates segments that are close
to each other, whereas the second one (local) is applied to the
segments being found for calculating the discrete gap functions gN

h

and gh
T on Gh

c being known.
Using the definitions of the physical names to each of the

terms in (12) given by (4), the set of finite element equations of
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motion via the corresponding nodal forces takes the form

M €UðtÞþC _UðtÞþKUðtÞ ¼ Fext
ðUðtÞÞ�Fcont

ðUðtÞÞ ð13Þ

In (13) €UðtÞ, _UðtÞ and UðtÞ are the global vectors of unknown
accelerations, velocities and displacements, Fext and Fcont are the
global vectors of external and contact forces resulting from the
definitions of virtual external and contact works in (4), and
M, C and K are the global mass, damping and stiffness matrices
derived by manipulations with the virtual inertial, damping and
internal works in the same expression. These global vectors and
matrices are typically calculated as an assembly of element level
contributions.

As shown by many investigations in the field of dynamics, it is
difficult to derive explicit expressions related to dissipation of the
vibrating energy in a structure. Instead, simplified models, based
rather on mathematical convenience than physical representa-
tion, are used which, in many cases, have been found to be
adequate [51]. The most common form of viscous damping,
associated with system material damping is the Rayleigh-type,
when damping forces are proportional to the velocities of oscilla-
tion via the following damping matrix:

C¼ aMþbK ð14Þ

The factors a and b can be determined on the basis of the modal
damping ratio:

xn ¼
a

2on
þ
bon

2
ð15Þ

by specifying any desirable ratio for any two selected frequencies
on of the undamped system with the given M and K.

Thus, the motion at any time is fully defined by (13) and by
initial conditions on UðtÞ and _UðtÞ. In (13) we have presented the
spatially discretized form of the problem with the time dimension
kept continuous. Next a time-stepping procedure to complete a
total discretization has to be applied. For this the time interval
½0,T� is divided into non-overlapping subintervals such that
½0,T� ¼

SL�1
i ¼ 0½ti,tiþ1�, where tiotiþ1, and t0 ¼ 0, tL ¼ T . Hence, the

solution satisfying (13) can only be found in a finite number of
time steps. Let the time increment be Dtiþ1 ¼ tiþ1�ti and for the
simplicity accelerations, velocities and displacements referring to
this time increment are denoted by €U iþ1, _Uiþ1 and Uiþ1, respec-
tively. Then the totally discretized dynamic equilibrium equation
at a certain time tiþ1 ¼ tiþDtiþ1 reads as follows:

M €Uiþ1þC _Uiþ1þKUiþ1 ¼ Fext
iþ1�Fcont

iþ1

with given U0 ¼U and _U0 ¼ V ð16Þ

There are a wide range of time-stepping algorithms that have
been employed for solving the incremental problem posed by the
equation-type (16). These algorithms can commonly be categor-
ized into two schemes: implicit methods and explicit methods. In
an implicit time-stepping scheme at each time increment a
system of simultaneous equations has to be solved iteratively to
find an approximate equilibrium state at this increment. Thus, it
is a combination of incremental and iterative procedures. Such
schemes work independently of a time increment size and are
thus unconditionally stable [1]. But due to solving the system of
simultaneous equations at each iteration implicit methods
require significant computational efforts in particular for strongly
nonlinear dynamic problems.

Unlike the implicit schemes, explicit time-stepping algorithms
determine the solution of equations like (16) without iterations
and tangent stiffness matrix by explicit advancing of the kine-
matic state known from a previous increment to the next one. To
introduce the concept of the explicit algorithm, the central-
difference formulation can be exploited [1,46]. First, accelerations
at the beginning of each increment Dtiþ1 are calculated by using
Eq. (16) reexpressed in the form

€Ui ¼M�1
ðFext

i �FiÞ, ð17Þ

where Fext
i is the vector of the given external nodal forces at time

ti and Fi is the sum of nodal internal Fint
i ¼KUi, damping

Fdamp
i ¼ C _U i and contact Fcont

i forces which are updated during
the previous time increment Dti. Thereafter, the central difference
operator uses the accelerations calculated at ti to advance the
velocity solution to time tiþ

1
2Dtiþ1 and the displacement solu-

tion to time tiþDtiþ1 as follows:

_Uiþ1=2 ¼
_U i�1=2þ

Dtiþ1þDti

2
€Ui

Uiþ1 ¼UiþDtiþ1
_Uiþ1=2 ð18Þ

The initial half-step lagging velocity ð _U�1=2Þ is calculated from the
initial velocity assuming the initial acceleration to have been
constant over the lagging half-step.

The key to the computational efficiency of the explicit proce-
dure is the use of diagonal element mass matrices because the
inversion of the mass matrix that is used in the computation for
the accelerations in (17). Thus, using the explicit time integration
to solve (16) the lumped mass matrix M is used. The procedures
for reducing the consistent mass matrix to its diagonal form are
well-known, e.g. [1,46]. Because the accelerations of any node is
completely defined by its mass and the nodal forces, there are no
equations to be solved simultaneously. Thus the explicit scheme
is less computationally expensive for each time increment than
the implicit one. Moreover, the computational cost for the explicit
method is approximately proportional to the size of a FE model
and does not change as dramatically as for implicit methods.

The disadvantage of the explicit procedure is that the time
increment used in an analysis must be smaller than the stability
limit of the central-difference operator. An estimation of this limit
is the transit time of a dilatational wave (cd) across the length of
the smallest element in a FE mesh (Le):

Dtcrit �
Le

cd
ð19Þ

3. Finite element modeling

The FE approach, described in the previous section to model a
nonlinear dynamic behavior accounting for contact conditions is
being applied for simulating dynamics of a sandwich plate
containing a penny-shaped zone detached between the core-to-
facesheet interface. The simulations are carried out with the
ABAQUS/Explicit code [45]. The finite element model of the
sandwich plate is shown in Fig. 3a. It takes the sandwich plate
modeling idea of [53], where the facesheets are represented as
Reissner–Mindlin plates whereas the core is modeled as a three-
dimensional continuum. That modeling capability enables to give
accurate results at less computational cost, compared with a fully
three-dimensional model, for analyzing a broad range of sand-
wich plate problems. Especially whenever the sandwich core is
flexible and localized effects such as intermittent contact between
detached segments occur.

Since the facesheets refer to structures in which one dimen-
sion, the thickness, is significantly smaller than the other dimen-
sions, structural shell finite elements are used to model them. In
this respect either conventional or continuum shell elements are
possible. The conventional shell elements discretize a body by
defining the geometry at a reference surface. In this case the
thickness is defined through the section property definition. In
contrast, the continuum shell elements discretize an entire three-
dimensional body. The thickness is determined from the element
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Fig. 3. (a) Three-dimensional FE model of the sandwich plate with penny-shaped debonding and (b) details of modeling at the debonding zone.
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nodal geometry. From a modeling point of view the continuum
shell elements look like three-dimensional continuum solids, but
their kinematic and constitutive behavior is similar to the con-
ventional shell elements. The reduced-integration 8-node con-
tinuum shell finite elements, SC8R are utilized in the current
work. These elements are linear with translational degrees of
freedom only. They are related to general-purpose elements that
can provide solutions to both thin and thick shell problems. It
means that the hypotheses of Reissner–Mindlin’s shell theory are
assigned to the elements kinematics as the shell thickness
increases, and Kirchhoff’s assumptions are fulfilled within the
elements as the thickness decreases. In the case of laminated
facesheets, the continuum shell elements can be stacked to
recover a more refined through-the-thickness response of trans-
verse shear stresses and forces. Moreover, the elements allow
two-sided contact with changes in the thickness that is a useful
capacity for the contact modeling [45].

The continuum shell elements can be directly connected to
first-order continuum solids without any kinematic transition. On
the other hand the Explicit code is limited by using the first-order
brick elements only. Thus, 8-node isoparametric linear reduced-
integration solid ‘brick’ elements C3D8R are exploited for
discretizing the core. These elements have the advantage of
alleviating difficulties of shear-locking inherent in fully integrated
linear elements when bending loads are applied. However, they
tend to suffer from hourglass modes under bending. Existence of
these modes may lead to severe mesh distortion, with no stresses
resisting the deformation. To minimize this problem, a hourglass
control is introduced into these elements. The artificial stiffness
method available by default in ABAQUS is used to calculate the
hourglass-resisting forces. Moreover, in order to get the best
results in an efficient manner, the improved ‘Centroidal Strain’
formulation to compute strains at the elements is utilized in
simulations. Due to good performance and versatility these brick
elements (C3D8R) can be used in models from simple linear
analyses to complex nonlinear ones involving contact also. For
more detailed information concerning element technology one
can refer to [45].

The general three-dimensional FE mesh is generated by parti-
tion of the total model onto several parts, which are connected
with each other through share nodes, Fig. 3a. The continuum shell
elements are positioned on the upper and lower core sides and
directly connected to the core. The penny-shaped debonded zone
is presented by an actual small gap between the finite elements of
the facesheet and core at the center of plate. The mesh density of
the FE model is higher in portions, where the debonded zone is
introduced and it decreases gradually from the penny-shaped
debonded zone to the edges of plate. In doing so, the
discretization of the surfaces of the facesheet and core coming
in contact at the debonded interface is performed with non-
conforming but approximately equal mesh densities. No artificial
adjustment of either the material or geometrical properties is
made at the non-bonded region to ensure as close as possible a
physically real case.

The surface-to-surface contact approach is used for discretiz-
ing the contacting surfaces between the facesheet and the core at
the damaged interface. Due to this a planar approximation of the
master surface per averaging region of the slave surface is
performed. Thereby, the approach can handle non-matching
grids. Since the surfaces coming into contact have high dissimilar
mechanical properties, a pure master–slave contact pair formula-
tion in ABAQUS/Explicit is used, Fig. 3b. Assuming small oscilla-
tions of the plates being studied, we accept a small-sliding
displacement kinematics for describing the motion of the inter-
acting surfaces with respect to each other. In the small-sliding
formulation for an active contact pair every slave node interacts
with its own local tangent plane on the master surface. Hence,
ABAQUS does not have to monitor slave nodes for possible
contact along the entire master surface [45]. Therefore, small-
sliding contact is less expensive computationally than finite-
sliding contact. The cost savings are most dramatic in three-
dimensional contact problems.

The contact behavior of the surfaces interacting with each
other in the normal direction is accepted to be governed by the
‘hard contact’ model, as shown in Fig. 2a. The model implies that
in contact the surfaces transmit no contact pressure unless the
nodes of the slave surface contact the master surface and no
penetration is allowed at each constraint location. While the
contact behavior in the tangential directions is given by the
isotropic Coulomb friction model, Fig. 2b. The penalty parameter
ET is computed by ABAQUS automatically so that to satisfy some
portion of a reversible tangential motion specified by a user and
in order its effect on the time increment was minimal.

The kinematic contact algorithm available in ABAQUS/Explicit
is used to enforce the contact constraints defined by (6) and
(8) and (9). It is a predictor/corrector method enabling to impose
exactly the constraints on the global equations by modifying the
accelerations, velocities and displacements of nodes, at which
contact is active in the current time increment. The method is
based on the algorithm developed in [52] to which we refer for
more details. The calculation of contact forces imposed on a
master surface by a slave node within this algorithm can briefly
be presented as follows:
�
 predictor phase: A kinematic state at the beginning of the
increment Dt is calculated without regard to the constraints
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required by the contact surfaces. For each node I the predicted
acceleration can be found as

€U
pred

I ¼m�1
I RI

where RI is the residual nodal force without a nodal contact
force Fcont

I , mI is the nodal mass. Then, predicted velocities and
displacements for each node I are updated.
The predicted configuration can result in penetration, as
shown by the configuration of a slave node in Fig. 4. Each
node contacting with or penetrating through the master sur-
face is included into a set of active contact, A. For a slave node
S from this set, the contact force resisting to penetration in the
direction n is calculated by using the penetration depth of the
slave node dpred

¼ dðgh
NÞ, its mass mS and the time increment:

f cont
NS
¼

msd
pred

ðDtÞ2
�
 corrector phase: The corrected acceleration of each node SAA
is calculated as

€U
corr

S ¼ €U
pred

S þ €UNS

where €UNS
is an acceleration correction reflecting the response

of the master surface to the corresponding contact forces f cont
NS

.
In this way, the vector of normal contact forces Fcont

Niþ 1
is

computed in the current time step.
The corrected accelerations are used to update the velocities
and displacements to a final configuration in the current
increment in which each slave node is exactly in compliance
with the master surface, Fig. 4.

As it can be seen that the kinematic algorithm is essentially
implicit, i.e. it seeks to eliminate the contact penetration at the
end of each time increment. Due to this the kinematic algorithm
has no effect on the ongoing calculation of the stable time
increment during the analysis. It is unlike the penalty algorithm,
which may have the effect of reducing the stable time increment,
since the penalty springs increase the overall stiffness acting on
the interface nodes.

For nodes which remain in contact in the increment Dt the
tangential forces have to be evaluated according to Coulomb’s
frictional model. To include the friction into the algorithm
mentioned above the following steps should additionally be done:
�
 in the predictor phase, after the update of the kinematic state
to the predicted configuration the relative tangential velocity
of each slave node SAA with respect to the master surface is
calculated. Let its magnitude be defined by vpred ¼ vð _gTa

Þ. Then,
a predicted tangential force that will cancel the velocity
tangential to the master surface in direction aa is computed as

f pred
TS
¼�

msvpred

Dt
i

i+1 n

d pred

Predicted
Configuration

Corrected
Configuration

fNS
cont

fTS
cont

a

Fig. 4. Kinematic contact constraint algorithm.
Fig
tim
Therefore the slip potential function (9) is defined by

Fpred
¼ f pred

TS
�mf cont

NS
�
 in the corrector phase the tangential contact force is calculated
depending on the slip potential as follows:

f corr
TS
¼ f pred

TS
if Fpredr0 ðstickÞ

f corr
TS
¼ mf cont

NS

f pred
TS

9f pred
TS

9
if Fpred40 ðslipÞ

Taking into account the correction of the tangential compo-
nent of the nodal acceleration for each slave nodes €UTS

depending on f corr
TS

, the final corrected acceleration of the slave
nodes with friction is calculated as

€U
corr

S ¼ €U
pred

S þ €UNS
þ €UTS

Finally, the vector of contact forces includes both the normal
and tangential components, and the updated configuration
accounts for the tangential movement of surfaces in contact
due to slipping.

An overview of the explicit scheme used for the contact
problem stated within the kinematic constraint approach is given
in Fig. 5. For the first time step, the internal and external forces
are determined based on the initial state. From this information
the predictor calculates the accelerations without accounting for
the contact constraints given and updates the velocities and
displacement to the predicted kinematic state. Then, the algo-
rithm evaluates which nodes are in contact by performing contact
searching. The nodes in contact are included into a set of active
constraints. These nodes are used by the corrector to apply to
them contact forces and to calculate the corrected accelerations.
For nodes in contact the vector of contact forces is a sum of the
normal and tangential contact forces. The latter components are
evaluated according to isotropic Coulomb’s law. The slip is
tracked by updating the velocities and displacements of nodes
satisfying to the slip criterion. The accelerations updated over all
nodes are used to calculate the final configuration in which the
surfaces in contact are enforced to follow exactly the constraints
applied.
. 5. Algorithmic setting for the dynamic contact problem within the explicit

e-stepping.
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The described process continues until the last time step is
being reached. ABAQUS/Explicit integrates the set of equations of
motion through time very quickly by using many small time
increments. The time increment is controlled by the code based
on the stability limit. Hence, the time incrementation scheme is
fully automatic and requires no user intervention.
4. Numerical results

The free vibration, dynamic transient and dynamic forced
analyses of sandwich plates with a circular debonded zone are
carried out using the ABAQUS code. One configuration of the
sandwich plate is used throughout this study. A simply supported
rectangular sandwich plate of 180 mm by 270 mm consisting of a
50 mm-thick WF51 foam core and 2.4 mm-thick GFRP face sheets
and containing the penny-shaped debonded zone of a 39.3 mm
radius at its center is analyzed. Material properties of the
constituent materials are given in Table 1. The dimensions and
mechanical parameters of the sandwich plate under consideration
are adopted as those in [54].
Table 1
Material properties of the foam-cored sandwich plate.

Components Elastic constants

Foam core Ec¼85 MPa, Gc¼30 MPa,

rc ¼ 52 kg m�3

Face sheet Exx ¼ Ezz ¼ 19:3 GPa,

Eyy ¼ 3:48 GPa,

Gzx ¼ 7:7 GPa,

Gxy ¼Gyz ¼ 1:65 GPa,

r¼ 1650 kg m�3

Table 2
Natural frequencies (Hz) of the intact and debonded

foam-cored sandwich plates.

Mode Intact Debonded

1 1066.2 937.19

2 1584.2 1246.6

3 1771.3 1440.2

4 1906.5 1640.9

5 2192.9 1697.6

6 2245.1 2011.6

7 2636.8 2086.8

8 2699.4 2098.9

9 2822.8 2396.0

10 2825.5 2430.4

Fig. 6. Deformed shapes of the debonded zone: (a) fully closed at t¼ 0:1 ms and t ¼

t¼ 0:5 ms and t¼ 5:1 ms.
Natural frequencies of both the intact sandwich plate and the
plate with debonding were preliminary extracted using the modal
analysis without contact in ABAQUS/Standard. The comparison of
the first 10 natural frequencies are presented in Table 2. The
essential differences between the frequencies can be seen. Due to
the decreasing the stiffness of the plate with debonding its
frequencies are considerably lower than those of the intact plate.
Along with this, the changes in the order of vibration modes were
also observed. The associated mode shapes are not presented
here. More detailed studies on the influence of debonding on
natural frequencies and associated mode shapes of sandwich
plates can be found in [17].

4.1. Transient dynamic analysis

To examine the transient response of the debonded sandwich
plate, the simply supported plate is subjected to an impulse
concentrated force at the central point of the bottom facesheet.
The duration of the applied force is chosen much shorter than the
analysis time such that

FðtÞ ¼
F0, 0rtrtn

0, t4tn

(

with tn ¼ 1 ms and F0 ¼ 10 kN.
Most of the experimental works reported that real structures

have critical damping ratios in the range from 0 to 10% with
values of 1–5% as the typical range [51]. Because no experimental
data concerning the damping phenomenon in the plate under
consideration are known, the modal damping ratio is assumed
equal to 1% of the critical damping ratio throughout this study.
This assumption is used to determine the global damping matrix
C by specifying the appropriate damping parameters in (15).
Herewith, because the stiffness proportional damping drastically
decreases the stability limit in the explicit time stepping, the
stiffness damping parameter is set equal to zero. While, the mass
damping parameter is calculated so that the desirable damping
ratio is reached for the given vibration mode. The coefficient of
friction is accepted equal to m¼ 0:1 that corresponds to the lower
boundary of the range of friction coefficients for plastic–plastic
material pairs. A detailed examination of the influence of damp-
ing and friction on the dynamics of debonded sandwich plates is
behind of this study and it can be a goal of future investigations.

Since the behavior of the detached segments of the sandwich
plate is assumed to be studied in detail, several deformed shapes of
the debonded region corresponding to its ‘breathing’, i.e. closing,
opening and partial closing, when some portions are opened, but
others are closed, are shown in Fig. 6 at different moments of time.
As one can see, during the oscillations the debonding passes from
closed to open status and vice versa in a smooth way, encompassing
variety of intermediate configurations. Thus, the assumption that
1:1 ms; (b) fully opened at t¼ 0:3 ms and t ¼ 2:2 ms; and (c) partially closed at
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the detached segments are either completely open or fully closed,
commonly used in the modeling practice, is, in fact, improper and can
be considered as an over-simplification of the real behavior. These
results are in good accordance with experimental evidences in [22].

It is obvious that when the debonded zone is completely open,
stress-free boundary conditions are realized at the damaged
interface and no contact forces arise in this region. In the cases
of either fully or partially closed debonded zone, the distributed
contact forces appear at the local area due to fulfilling of the
stress continuity requirements. As mentioned above, the different
transition forms between the open and closed statuses in the
detached segments occur. Consequently, a variety of contact
stress distributions exist. Several such distributions of contact-
induced normal stresses on the deformable core target are
presented in Fig. 7 at different moments of time. The instants of
time at which the stress distributions are presented were chosen
so that the more representative contact-induced stress states
existing within the debonded zone would be depicted.

In turn, the contact forces arisen due to the contact behavior
between the detached segments contribute to the global dynamic
stress state of the sandwich plate. The contour plots of the
distributions of Mises stress within the debonded region and a
small zone surrounding it at different moments of time for both
the intact (on the left hand) and debonded (on the right hand)
sandwich plates are compared in Fig. 8. The instants of time are
selected in such a way that the differences between the both
distributions would clearly be seen.

Fig. 8 shows that the Mises stress in the debonded plate is
mainly concentrated within the damaged interface where its level
is higher than in the same area of the intact plate. This is caused
by both the presence of the boundary of debonded zone, where
stresses are concentrated and the contribution of the contact
forces within the debonded area. Thus, accurate modeling of the
local behavior in the damaged interface is important to under-
stand the global dynamic stress state of the debonded sandwich
plate.

Pursuing the aim to find out how the existence of debonding at
the facesheet-to-core interface affects the global dynamics of the
Fig. 7. Distributions of the normal contact stresses within the debonded zone at differ

(e) t¼ 4:9 ms; and (f) t¼ 6:0 ms.
sandwich plate, the transient responses of sandwich plates with
and without debonding are computed and analyzed further. The
comparison of transverse displacements and accelerations calcu-
lated at the central point of the upper facesheet (point N 1 in
Fig. 3a) for the both plates is shown in Fig. 9. As seen, the presence
of the interfacial damage in the sandwich plate significantly
changes the transient time histories of displacement and accel-
eration. The amplitudes of the time histories of the debonded
plate are higher than those in the intact sandwich plate. Espe-
cially, the biggest difference occurs between the acceleration time
histories of the plates, Fig. 9b. Much higher acceleration ampli-
tude of the debonded plate indicates that impact-like contacts
between the interacting segments take place. In this kind of
motion, when the segments collide each other, the accelerations
are the most sensitive means to indicate it. After each hit the
magnitude of the acceleration changes in a fast and abrupt way,
as shown in Fig. 9b. Similar results were obtained using experi-
mental tests in [21]. Moreover, during the transient motion the
debonded sandwich plate oscillates with the longer period of free
decay vibrations and with the faster decreasing of vibration
amplitudes than those for the intact plate, Fig. 9a. These results
are an evidence of the damping effect related to the contact
interactions between the detached facesheet and the core. As a
result of intermittent contacts additional energy dissipation
occurs in the debonded plate.

The fast Fourier transform technique was applied to obtain
frequency properties of the both previous transient time histories
in Fig. 9. The signals of the response spectrum of amplitudes
corresponding to each time-dependent curve in Fig. 9 are illu-
strated in Fig. 10. By analyzing the displacement curves in the
frequency domain in Fig. 10a, two main distinctive features of the
signal of the debonded sandwich plate with respect to the signal
of the intact sandwich plate can be seen. First, the shift of the
fundamental frequency and, second, the appearance of additional
peaks before and after the peak of fundamental frequency. The
first feature reflects the stiffness reduction due to debonding,
whereas the second one evidences the existence of contact
interactions between the detached segments. The segments
ent moments of time: (a) t¼ 0:1 ms; (b) t¼ 0:6 ms; (c) t¼ 1:1 ms; (d) t¼ 3:0 ms;
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Fig. 8. Comparison of the distributions of Mises stress within the debonded zone between the intact (left side) and debonded (right side) sandwich plates at the instants of
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coming in contact at the local region generate additional frequen-
cies which superpose with the frequency spectrum excited by the
external transient load. Also due to local contact the vibration
energy at the fundamental frequency of the debonded plate is
greater than that of the intact plate. By comparing the accelera-
tion frequency curves in Fig. 10b, the existence of additional
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frequencies in the response spectrum of the debonded plate and
changes in the distribution of the vibration energy along the
frequency spectrum can be more clearly seen. Besides, Fig. 10b
demonstrates that the biggest amplitudes of the vibration energy
belong to the frequencies ranged in the middle of the frequency
interval, whereas the higher frequencies accumulate the biggest
vibration energy in the case of the intact plate. Thereby, the main
features of the behavior within the partially debonded interface of
real structures such as stiffness reduction, additional inertness
and energy dissipation during vibrations that influence on the
global dynamics are well simulated with the FE model adopted in
this study.

The transient time histories of the Mises stress calculated at
the different points of the upper facesheet (points N 1, 2, 3
and 4 in Fig. 3a) of the intact and debonded sandwich plates are
compared in Fig. 11. As shown in Fig. 11a and b, the Mises stresses
for the both plates at the points of the debonded area (N 1 and N
2) vary with completely different amplitudes. The amplitude of
the Mises stress of the debonded plate exceeds the same para-
meter of the intact plate in several times. While, the amplitudes of
the Mises stresses computed at the point far away from the
debonded zone (N 3 and N 4) have almost equal values, Fig. 11c
and d. Hence, the region of the high level stress within the
debonded sandwich plate is confined by the area of the damaged
facesheet-to-core interface. But on the other hand this region,
where there exist the concentration of the maximum Mises stress,
is dangerous to fracture under dynamic loading and debonding
propagation is prone to take place at this region. It should be
mentioned that the contribution of the contact-induced stresses
into the high level of the dynamic stress state within the
debonded area was shown earlier as the contour plots of the
Mises stress in Fig. 7 and 8.
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Fig. 11. Transient time history of the Mises stress calculated at
4.2. Forced dynamic analysis

The forced dynamic analysis of a linear system can be
accurately obtained by using the assumption that if the loading
is a harmonic function, then the response of the system is also
expressed as a harmonic function with the same frequency as the
forcing one. However, this assumption is no longer valid for
nonlinear systems. Instead of the steady-state analysis, the
response of nonlinear systems should be considered within a
general dynamic analysis with a loading given by a periodic
function [55]. Therefore, to examine the effect of the debonded
area on the dynamic response of the sandwich plate when a
periodic load is applied, the explicit FE dynamic analysis based on
the model described above is carried out further.

The intact and debonded sandwich plates, considered in the
previous transient analysis are subjected to a transverse sinusoidal
concentrated force with the amplitude of 10 kN applied to the
central point of the bottom facesheet. Cases when the driving
frequency does not coincide with the fundamental frequency of a
system are important from the practical point of view. In this
respect, three regimes of forced oscillations are considered in
simulations of the sandwich plates. The first two driving frequencies
are accepted as fractions of the fundamental frequency such that 1

3 f 1

and 1
2 f 1, and the last forcing frequency is considered as a multiplier

of the fundamental frequency 2f 1. Here f1 denotes the fundamental
frequency of the intact plate. Time histories of transverse displace-
ments and velocities calculated at the central point of the top
facesheet (point N 1 in Fig. 3a) and phase portraits plotted at the
different points N 1, 2 and 3 in Fig. 3a were chosen for presenting
the forced dynamics of each of the both plates at the three different
frequencies of excitation. The initial displacements and velocities are
assumed to be zero. In the forced dynamics a transient motion is
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encountered before a steady state motion can be reached. Thus, the
analysis time interval was chosen so that the transition to the
stationary motion would be observed within a reasonable computa-
tional time of calculations. From 3 to 5 h were spent for the
simulations presented below. The analysis time interval depends
on the type of motion to be computed.

Fig. 12 illustrates time histories of the both plates excited with
the driving frequency 1

3 f 1. As shown, the displacement and
velocity time histories of the intact plate are periodic with a pure
sinusoidal waveform that corresponds to its steady-state motion.
While, the debonded plate has periodic oscillations with the
sinusoidal waveform for the displacement, Fig. 12a, but the
waveform of the velocity signal is a little bit modulated,
Fig. 12b. The latter fact points out on the existence of a small
nonlinearity in a system. In our case it means the presence of
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Fig. 12. Time history responses with the exciting frequency 1
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Fig. 13. Phase portraits for the exciting frequency 1
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periodic contact between the detached facesheet and the core
within the debonded region. In order to investigate this result in
more detail, phase portraits of motion at the different points of
the upper facesheet surface are shown in Fig. 13. About 20
excitation periods are used for each phase plot. One can see that
all phase portraits of the intact plate vibrating harmonically are
elliptical. While, the phase curve of the central point of the
debonded zone has a form that is significantly disturbed with
respect to the elliptical one, Fig. 13a. The phase plots in the points
at the boundary of the debonded zone and outside this region
show trajectories that are close to elliptical forms, Fig. 13b and c,
respectively. Hence, one can conclude that the whole debonded
sandwich plate oscillates periodically and harmonically with the
forcing frequency, but its local region, where debonding exists,
experiences a general periodic motion. This motion is a result of
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superposing of the driving frequency and additional harmonics
excited by periodic contacts. Thus, at this driving frequency the
influence of the local behavior within the debonded region on the
global dynamics of the plate is confined by the zone of
imperfection only.

When the plates are driven at the frequency of 1
2 f 1 the

response of the intact plate is a steady state motion with the
forcing frequency again, but the dynamics of the debonded
sandwich plate is much more complicated than in the previous
case. As shown in Fig. 14, the signal of the transverse displace-
ment in the debonded plate is a periodic function with a
modulated waveform, Fig. 14a, whereas the transverse velocity
of this point varies as a quasi-periodic function with a fully
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distorted waveform, Fig. 14b. The phase portrait of this point is
shown in Fig. 15a. One can see the irregular trajectory with a part
resembling an additional loop. Thus, the detached surfaces within
the debonded zone are coming into contact in an aperiodic
manner as a result of such interactions additional frequencies
that may be incommensurate with the driving frequency are
generated. One incommensurate frequency (one loop in Fig. 15a)
is seen in this case. Furthermore, the quasi-periodic motion at the
local debonded zone affects the global dynamics of the whole
plate. Fig. 15b and c present the quasi-periodic motion of the
plate at the points which are not residing in the debonded zone.
Thereby, the quasi-periodic motion is revealed at the driving
frequency 1

2 f 1.
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Finally, at the highest driving frequency 2f 1, which falls down
between the 5th and 6th natural frequencies of the debonded plate
(Table 2), the dynamics of the debonded sandwich plate differs from
the both previous cases of the forced oscillations, Figs. 16 and 17.
Comparing the transverse displacements at the central point of the
plates with and without debonding, one can see that the signal,
extracted from the debonded plate, varies as a quasi-periodic
function with large amplitudes and a waveform distorted by the
presence of the higher harmonic components, Fig. 16a. However, the
velocity time history of this point with respect to the same signal of
the intact plate is characterized by the remarkably large amplitudes,
considerable distortions of the waveform and losing of the periodi-
city, Fig. 16b. Such complicated global dynamics of the debonded
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Fig. 17. Phase portraits for the exciting frequency 2f 1 which are ca
sandwich plate results in a conclusion that the detached parts
within the plate interact with each other through impact-like
irregular contacts. To prove this assertion, phase curves at different
points are plotted in Fig. 17. The trajectory of the phase plan at the
point N1 is significantly distorted and does not repeat itself exactly,
Fig. 17a. Thus, the motion at the central point of the debonded zone
is irregular and includes a set of frequencies excited by intermittent
contacts. The same conclusion can be drawn for the boundary point
of the debonded zone, Fig. 17b. The dynamic behavior of the point
far away from the debonding zone reveals a quasi-periodic type of
motion, Fig. 17c.

The last two forced analyses can evidence that the application
of the steady-state analysis involving the conventional vibration
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techniques based on linear modes would lead to incorrect results
for studying dynamic behaviors of debonded plates. The complex
interactions between the detached segments at the damaged
facesheet-to-core interface result in remarkable changes in the
oscillation character of the whole sandwich plate. The higher
is a driving frequency, the more indicatively this effect is
expressed. These results clearly demonstrate the strongly non-
linear dynamics of the debonded sandwich plate.
5. Conclusions

The finite element formulation is applied to study a dynamic
behavior of debonded sandwich plates. The three-dimensional
finite element model of the sandwich plate with penny-shaped
debonded zone located at the plate center has been developed. To
gain understanding of the dynamics of this plate, both the
transient dynamic analysis under an impulse force and the forced
dynamic analysis under a harmonic force were modeled using the
ABAQUS/Explicit code. The numerical results showed that both
the transient motion and the forced response of the debonded
sandwich plate are significantly affected by the presence of the
partially detached zone. The transient motion of the debonded
plate is accompanied by impact-like contact interactions, which
damp the oscillations making them slower and faster decaying
than those in the case of the intact plate. Moreover, the local
contact behavior changes the frequency properties of the tran-
sient signals extracted from the debonded plate in comparing
with those for the same intact plate. The debonded plate shows
the shift for the fundamental frequency and the presence of
several additional frequencies in the response spectrum of ampli-
tudes. It should be mentioned that the intact plate excites
predominantly the fundamental mode under such loading. Also,
in contrast to the intact plate the magnitude of the frequency
response of the debonded plate is significantly higher. Finally, the
resulting dynamic stress state in the debonded plate is directly
linked to contact stresses arising from the intermittent contact
phenomenon. As a consequence, the debonded zone is prone to be
the onset of fracture.

Typical features of motion of the debonded plate subjected to a
harmonic loading strongly depend on the character of intermit-
tent contacts. This fact is illustrated by analyzing time histories
and phase portraits, calculated in the different points of the intact
and debonded plates at three different frequencies of excitation. A
broad variety of the behavior within the debonded zone such as
periodic, quasi-periodic and irregular motions were observed.
Besides, it was found that the existence of the quasi-periodicity
or the losing of the periodicity in the dynamics of the local
imperfect zone resulted in a quasi-periodic motion of the whole
sandwich plate.

Finally, from the modeling point of view one can conclude
that, first, a steady-state dynamic analysis based on modal
approaches is no longer valid for debonded plates, and, second,
for an accurate simulation of dynamics of debonded sandwich
plates, the contact phenomenon within the debonded region must
be taken into account.
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