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The finite element vibration analysis of plates has become one of the classical problems
over the past several decades. Different finite element plate models based on classical,
standard and improved shear deformable plate theories, three-dimensional elasticity
equations or their combinations have been developed. The ability and accuracy of each

other numerical models. In this paper, a comparative study of different plate finite
element models used for the free vibration analysis of homogeneous isotropic and
anisotropic, composite laminated and sandwich thin and thick plates with different
boundary conditions is presented. The aim of the study is to find out the weaknesses and
strengths of each model used and to pick out their interchangeability for the finite
element calculations. For comparisons, the plate models based on classical and first-order
shear deformation theories within the framework of both single-layer and layer-wise
concept and three-dimensional theory of elasticity are used. The models are created using
the finite element package ABAQUSTM. Natural frequencies obtained by the authors are
compared with results known in the literature from different analytical or approximate
solutions and, then, the correlation between them is discussed in detail. At the end,
conclusions are drawn concerning the utility of each model considered for vibration
predictions of plates.
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1. Introduction

Flat panels as design components have found applications in diverse fields of engineering, ranging from civil to
aeronautical industries. Because of this, much research has been devoted to develop effective analysis tools that may
combine easy usage and accurate predictive capability for evaluating their structural behavior. The vibration analysis of
panels dealing with predictions of natural frequencies and associated mode shapes is among significant research activities in
that sense. A good understanding of the free vibration behavior is of crucial importance toward reliable predictions of the
dynamic response of plate-like structures to time-dependent external excitations and for their optimal design from the
vibrational point of view.

The vibration analysis of plates has become one of the classical problems that researchers have been studying for over a
century. In this respect, different methods including analytical, semi-analytical and numerical approaches have been
developed. The most popular among them are Rayleigh–Ritz, Kantorovich, superposition-Galerkin, Navier and Lévy
techniques as well as finite difference, differential quadrature, finite strip, finite element, boundary element methods, etc.
A review of this topic can be found in various books and monographs, e.g. [1,2] among many others. Nevertheless, most
significant advances in vibrational modelling have been achieved by using the finite element method (FEM) due to its great
versatility and powerful capacity in solving multi-field tasks with complex geometry, boundary and loading conditions.
Herewith, a large number of finite element (FE) models have been developed by using appropriate plate theories, which, in
essence, are based on the through-the-thickness approximations of three-dimensional (3-D) displacement and stress fields
and have been developed either within the non-polar theory of linear elasticity [3] or using the hypotheses of the Cosserat
continuum [4]. Moreover, for flat panels made of modern composite materials, the plate theories developed can be applied
within the framework of either equivalent single-layer (ESL) or layer-wise (LW) concepts [5]. Some of the most relevant and
several recent works about finite element free vibration analysis of plates are mentioned below.

The first important contribution into the analysis of thin plates was the theory developed by Kirchhoff that is referred
now as the classical plate theory (CPT). A detailed literature search revealed that the FE models of plates employing the
assumptions of the CPT are accurate to analyze flexural vibrations of thin homogeneous plates, as shown in [6,7] and give
only acceptable results for laminated thin plates, defined within the ESL concept, as presented in [8,9]. Besides, it was
recognized, e.g. in [10] that the CPT, neglecting transverse shear deformations results in an overestimation of natural
frequencies for moderately thick homogeneous and composite plates.

To overcome the limitations of the classical theory, the first-order shear deformation theory (FSDT) of plates based on the
Reissner or Mindlin assumptions is commonly used. The literature overview showed that the FE models based on the FSDT
for studying the free vibration problem give sufficiently accurate results for homogeneous isotropic and anisotropic thick
plates, e.g. in [11,12] and provide an adequate description of the shear deformability of composite plates, which are
modelled as one-layer structures within the ESL approach, e.g. in [13,14]. Although these FE models are used in conjunction
with assumptions on the shear correction factor [15], upon which the accuracy of prediction with FSDT is very sensitive,
many researchers have found that FE models based on the Reissner–Mindlin finite element exhibit a shear-locking effect
in situations, when the plate thickness decreases. To avoid this parasitic effect and to keep advantages of the FSDT were
suggested different correction techniques, e.g. the reduced integration or selective integration schemes [16] as well as
different FE formulations such as an assumed-strain finite element, e.g. in [17].

Aiming to include partially or completely through-the-thickness C0 requirements in the FE formulation of layered plates
and to avoid the calculation of shear correction coefficients, finite elements based on the high-order shear deformation
theories (HSDT) have been also developed, e.g. in [18,19] for homogeneous thick plates and in [20–22] for laminated plates
assuming their single-layered structure within the ESL. According to the HSDT, the initial assumptions on the high order of
displacement polynomials do not lead to a constant shear stress distribution through the thickness and therefore the
artificial shear correction factor is not involved in analysis of composite laminated and sandwich plates [23]. Moreover,
these elements are free from locking phenomena. Nevertheless, the use of such finite elements is limited because they
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Fig. 1. Geometry of laminated composite plate.
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require C1 continuity in their FE formulations that is not simple to obtain for generalized finite elements [24]. Assumed
strain finite element based on Reddy's HSDT has been also developed to analyze free vibrations and buckling of composite
plates, e.g. in [25,26]. Recently, new sophisticated HSDTs have been proposed and applied for the free vibration analysis of
composite laminated and sandwich plates, e.g. in [27–29]. It should be mentioned that any HSDT has to be proved with
respect to the consistency demands as formulated, e.g. in [30].

Applying the equations of elasticity theory to a single-layer FE model of a plate is attractive for investigations of free
vibrations of homogeneous thick and composite laminated plates as shown in [31–33] and [31,34,35], respectively. However,
due to complexities in the FE formulation and difficulties in providing accurate boundary conditions corresponding to the
same 2-D plate models as well as a very high computational cost in comparison with the 2-D plate models have made 3-D
FE models rarely used in FE modelling. Alternatively, continuum-based (or degenerated) plate/shell finite elements
developed by discretizing the 3-D elasticity equations in terms of mid-surface nodal variables [36] have gained a wide
application for the FE modal analysis of thick homogeneous and composite plates. For example, in [37] the free vibration of
isotropic plates and shells has been studied with a nine-node degenerated shell element, whereas in [38] this element was
exploited for the free vibration of laminated plates.

The discrete layer-wise concept is potentially accurate for both displacements and transverse stress and strain
predictions in the case of composite plates with ply stacking sequences through the thickness. Consequently, such FE
models provide a correct representation of dynamic flexural behavior of laminated and sandwich plates, e.g. [39,40] and
more recently [41–43] among others. The disadvantage of discrete layer plate elements is connected with a huge number of
nodal unknowns and, as a result, a significant computational cost, which increases in direct proportion to the increasing
number of laminas. Thereby, although layer-wise FE models may be effective for predicting interlaminar properties of plates
in dynamic analysis, e.g. in [44,45], the high computational cost restricts their wide usage for many practical applications.

Significant improvements in the interlaminar response of laminated plate models without introducing additional
kinematic variables have been achieved by using a piece-wise linear (zig-zag) approximation of the in-plane displacements
through the laminate thickness [46]. Zig-zag FE models developed, for instance, in [47–49] for the free vibration analysis of
multilayered composite plates were favored against the ones based on the discrete layer-wise approach. They can be
considered as a reasonable compromise between accuracy and a low computational cost. However, finite elements based on
this theory require either C1 or even C2 continuity in their formulation, and on the other hand each zig-zag function added
to displacement components increases the number of degree of freedom (DOF) per node. Thereby, their implementation
into general-purpose finite element codes becomes inconvenient.

Most recently, a series of new high-order sandwich panel theories (HSAPT) have been developed within the layer-wise
concept to analyze three-layered sandwich plates with a flexible thick core, e.g. [50]. The main idea of the HSAPT is an
introduction of the kinematic assumptions based on any of the plate theories for the face sheets, while the behavior of the
core should be described by the equations of elasticity related to the plate equations through appropriate compatibility
conditions. A comparison of free vibration predictions for sandwich plates, performed with the HSAPT and resulting from
the use of the elasticity theory and experimental observations, has shown very good correlations between them [51,52].
Moreover, the HSAPT is suitable for analyzing debonding issue at the interface between the face sheet and the core in
sandwich plates, as shown, e.g. in [53–55]. Similar ideas of using different plate models for different constituent layers
within the layer-wise approach have been used for analyzing sandwich plates with flexible and thin cores in [56,57].

Due to growing interest in appropriate analysis tools, capable of carrying out effective and accurate modelling in
conjunction with versatility and easiness in use, researchers more and more utilize commercial finite element codes in
modern engineering practice. In this respect, notwithstanding the great amount of literature on the free vibration analysis of
homogeneous and composite laminated and sandwich plates, in the authors' opinion there is a need to classify
computational models based on the existing plate theories within their applicability to engineering tasks. This would
allow an engineer to understand the clear limits in using those theories for making a rational compromise between the
required precision of the analysis and computational costs. Hitherto, only a few papers have been devoted to comprehensive
numerical comparisons of the plate theories used for the vibrational analysis. In [58], the assessment of the plate theories
has been done without models based on layer-wise and three-dimensional approaches. The authors of [59] have presented a
comparison of different plate models utilized mainly for a static analysis. An assessment of dynamic plate models within the
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framework of Carrera's Unified Formulation was performed in [60], however, the comparisons were limited by the case of
simply supported plates only. Recently, comparisons between different shear deformation plate models used for the free
vibration analysis of simply supported plates have been done in [61], while in [62] 3-D plate models and plates endowed by
the FSDT have been compared for free vibration predictions.

With this in mind, numerical computations of natural frequencies and associated mode shapes of homogeneous isotropic
and anisotropic, laminated and sandwich rectangular plates with a variety of length to thickness ratios, boundary
conditions, lay-up sequences and core types, based on different FE models including CPT, FSDT within both the ESL and
LW concepts, and 3-D finite elements developed with the ABAQUSTM code [63] are presented in this paper. The obtained
results are compared with those earlier published in the literature and, therefore, could be useful as a benchmark for
researchers. The quantitative differences between FE models applied to the same plate are also discussed to show which one
would be preferable for engineering design.

2. General displacement-based kinematic assumptions

As far as FE modelling is concerned given that this subject of this paper we briefly recall, using the standard matrix
notations, the mentioned above two-dimensional Kirchhoff–Love, Reissner–Mindlin and common ideas of the high-order
shear deformation plate theories.

Let us consider an arbitrary plate composed of, in general, a number of dissimilar material layers. We will suppose that
along the thickness, the plate is divided into L sub-layers of constant thicknesses. The total domainΩ of the plate consists of
the mid-surface Ω0 and the thickness h. It should be noted that plates of constant thickness are only considered. The
geometry and reference system are shown in Fig. 1 and can be defined as

Ω¼ x; y; zð Þj x; yð ÞAΩ0; zA �h
2
;
h
2

� �� �
(1)

In this paper we assume that the displacements are master fields. The slave fields are strains and stresses, which can be
calculated by appropriate strain–displacement and stress–strain relations, respectively. Let the number of variables per node
qe of a finite element be determined by the kinematic assumptions imposed on the displacement field through the plate
thickness:

u¼Nqe (2)

where u¼ fuðr; tÞ; vðr; tÞ;wðr; tÞg is a displacement vector of in-plane displacements and deflection of any particle in a
multilayered plate located at Cartesian coordinate rðx; y; zÞ, and N denotes shape functions associated with the considered
element. The displacement components u, v and w are measured with respect to the plate reference surface Ω0.

The displacement field within each ith layer ði¼ 1;…; LÞ is commonly assumed to be of the form

uiðr; tÞ ¼ ui
0ðr0; tÞþUiðr; tÞ (3)

where ui
0 ¼ fui

0ðr0; tÞ; vi0ðr0; tÞ;wi
0ðr0; tÞg is a displacement vector of a point in the reference surface, Ui ¼ fUiðr; tÞ;

Viðr; tÞ;Wiðr; tÞg is a vector of position functions and r0 ¼ rðx; y;0Þ is a location vector of the reference surface.
In order to reduce the initial 3-D presentation to a 2-D one, it should be assumed that the variation of Ui relative to the

thickness coordinate z can be expected as the following linear combination:

Uiðr; tÞ ¼
Xn
k ¼ 1

½Φi
kðzÞ�Ui

kðr0; tÞ (4)

where Ui
kfUi

kðr0; tÞ;Vi
kðr0; tÞ;Wi

kðr0; tÞg is a vector of unknown coefficients and

½Φi
kðzÞ� ¼

ϕi
kðzÞ 0 0

0 ϕi
kðzÞ 0

0 0 φi
kðzÞ

0
BB@

1
CCA (5)

is a matrix of continuous functions of the coordinate z, which satisfies the conditions: ϕi
kð0Þ ¼ 0 and φi

kð0Þ ¼ 0, k¼ 1;2;…;n.
Herewith, an appropriate selection of the coefficients and functions of the matrix ½Φi

k� allows for the derivation of various
plate theories as special cases.

2.1. Classical Kirchhoff's model

In the Kirchhoff–Love theory of plates in bending it was assumed that the straight lines perpendicular to the undeformed
reference surface remain straight and perpendicular to it after deformation [23]. The displacement field expressed by (4)
may be written as

n¼ 1; Ui
1 ¼ �∂w0

∂x
; �∂w0

∂y
;0

� �
(6)
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½Φi
1ðzÞ� ¼

z 0 0
0 z 0
0 0 0

0
B@

1
CA (7)

Linear and constant variations through the thickness of the in-plane and transverse displacement components result in zero
transverse shear deformations. Moreover, from the six nodal kinematic variables qe, i.e. three reference-plane displacements
and three rotations around the appropriate coordinate axes, the two rotations caused by the plate bending depend on the
plate deflection.

2.2. Reissner–Mindlin's first-order shear deformation model

Reissner-Mindlin theory assumes that the straight lines, which are perpendicular to the reference surface before
deformation, remain straight but not necessarily perpendicular after deformation [23]. Thus, the line is permitted to rotate
relative to the normal of the reference surface. Hence, the displacement field can be obtained by accepting the following
setting in (4):

n¼ 1; Ui
1 ¼ fϑx;ϑy;0g (8)

½Φi
1ðzÞ� ¼

z 0 0
0 z 0
0 0 0

0
B@

1
CA (9)

Here ϑxðx; y; tÞ and ϑyðx; y; tÞ are the independent rotations of a normal to the reference surface with respect to x and y axes.
The inclusion of the independent bending rotations results in an average account of transverse shear deformation, thus
discarding the zero transverse shear assumption dictated by the classical Kirchhoff–Love hypothesis. The strains and
curvatures are expressed in terms of the first gradients of the kinematic variables, thus permitting simple C0-continuous
finite element approximations for these variables. Nevertheless, Reissner–Mindlin theory derived directly from the
displacement field yields a constant value of transverse shear strains and constant value of shear stresses through the
thickness. To account for the discrepancy between the strain energy of shear deformations caused by their constant state in
the FSDT theory and of their parabolic distribution in the elasticity theory, a shear correction factor is needed. In essence,
these factors are problem dependent [15,64].

2.3. Refined and layer-wise models

Refined shear deformation theories, based on series expansions of the displacement field in term of the plate thickness
coordinate, truncated at a required order of this coordinate, can be expressed by Eq. (4), choosing the appropriate matrices
within it. For instance, the well-known third-order shear deformation theory developed in [20] can be presented in this
unified manner as follows:

n¼ 3; Ui
1 ¼ fϑx;ϑy;0g; Ui

2 ¼ fφx;φy;0g and Ui
3 ¼ fψ x;ψ y;0g (10)

½Φi
1ðzÞ� ¼

z 0 0
0 z 0
0 0 0

0
B@

1
CA; ½Φi

2ðzÞ� ¼
z2 0 0
0 z2 0
0 0 0

0
B@

1
CAand ½Φi

3ðzÞ� ¼
z3 0 0
0 z3 0
0 0 0

0
B@

1
CA (11)

Here, the displacement components ϑx;ϑy;φx;φy;ψ x;ψ y are unknown functions of position (x,y) and time t, as presented
in [20].

Moreover, the value i¼1 means that single displacement expansions through the thickness of a multilayered plate
(equivalent single-layer approach) is used, and i41 corresponds to the layer-wise approach assuming independent
displacement variables in each layer. In this case, additional continuity conditions at the layer interfaces must be imposed on
the functions in (4) such that the displacements must be continuous, but, in general, their derivatives with respect to z can
be either discontinuous or continuous. Also zero transverse shear stresses on the bottom and top plate surfaces and their
continuity in the thickness direction should be fulfilled too. A detailed discussion of the available refined shear and layer-
wise theories as well as layer independent layer-wise theories using opportune zig-zag functions is out of the scope of this
paper and can be found elsewhere, e.g. in [23].

3. Finite element statement

The mathematical aspects of a general finite element statement of plate/shell problems are widely discussed and
presented in enormous number of publications. Thus, in the present paper only a brief formulation of this problem to the
extent that is needed just for basic FE procedures used is given below.
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3.1. The system of equations of motion

The principle of virtual work (PVW) presents the starting point of a FE formulation. We confine our analysis to free
vibrations. Then, according to standard finite element notations [16], when the total plate domain Ω is discretized into NE
finite elements (Fig. 1), one can write the equilibrium between the elastic internal and inertial forces within each finite
element as follows:

δAintþδAinr ¼ 0 (12)

Here, the internal and inertial works done by those forces can be expressed as

δAint ¼ δqT
eKeqe and (13)

δAinr ¼ δqT
eMe €qe (14)

where ‘e’ denotes the elemental division, qe and €qe are vectors of nodal displacements and accelerations, respectively. Me

and Ke are, respectively, mass and stiffness matrices that can be computed by integrating over the element area A and using
the known inertia matrix I and the strain–displacement B and elasticity E matrices of the element as follows:

Me ¼
Z
A
NT IN dA and (15)

Ke ¼
Z
A
BTDB dA (16)

As known, the formulation of the mass matrix (15) requires knowledge of the geometrical properties of the plate and the
density of its material. To define the stiffness matrix (16), the strain–displacement relation (kinematic assumptions) and the
strain–stress relationship (constitutive equations) of the linear dynamic behavior of plates must be known. The strains are
assumed to be small so that linear strain–displacement relations are adequate. Thereby, the strains associated with the
displacement field (3) in each ith layer can be expressed in term of the nodal unknowns in the form:

ϵ¼ Bqe; (17)

The stress–strain relationships based on the assumptions of orthotopic layered material (ith layer) having any fiber
orientation with respect to the global coordinate system xOy (see Fig. 1) can be expressed by Hooke's law as the following:

σ ¼Dϵ (18)

Here, the stress vector σ consists of the stress resultants, which are calculated by integrating the appropriate stress tensor
components over the plate thickness h. The elasticity matrix D is, in fact, a block matrix, sub-matrices of which define the
relations between the stress resultants and strains combined into different vectors depending on their mechanical meaning.
For instance, assuming that the strain vector ϵ includes in-plane strains {ε}, transverse shear strains {γ} and curvatures {κ},
the corresponding stress resultants such that membrane {N} and transverse shear {Q} forces and bending moments {M},
respectively, can be related as the following:

fNg
fMg
fQg

8><
>:

9>=
>;¼

½A� ½B� 0
½B�T ½D� 0
0 0 ½H�

2
64

3
75

fεg
fκg
fγg

8><
>:

9>=
>; (19)

It should be noted that Aij, Bij, Dij and Hij are extensional, bending, bending-extensional coupling and transverse shear
stiffness matrix terms, respectively. The detailed definition of each matrix can be found in the literature, e.g. [23].

By assembling the element mass and element stiffness matrices, transformed into the global coordinate system, the finite
element equations of motion, representing free vibrations of the plate without damping, can be expressed as

M €qþKq¼ 0; (20)

where M and K are the global mass and stiffness matrices of the plate, q and €q are the global nodal displacement and
acceleration vectors, respectively. Moreover, prescribed boundary conditions can be additionally defined as in (20).

3.2. The eigenvalue problem

To determine natural frequencies and associated normal modes of a plate, the solution of the system (20), which is
referred to as the linear eigenvalue problem [16] is required. Assuming that q can be presented in the form:

q¼Φ expðiωtÞ or q¼Φ cos ðωtÞþ isinðωtÞð Þ; (21)

whereΦ is an eigenvector or normal mode, then after introducing (21) into (20) the free vibration analysis is reduced to the
standard eigenvalue extraction problem:

K�λM
� �Φ¼ 0 (22)
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Here λ¼ω2 is an eigenvalue. This set of equations has a non-trivial solution only if the dynamic matrix K�λM
� �

is singular.
It can be shown that this takes place for a finite number of ωi

2
depending on the order n of the dynamic matrix. The discrete

set of values ωi
2
or f i ¼ωi=2π, i¼ 1;…;n are called natural frequencies. Each frequency corresponds to a vector ϕ

!
i, called the

eigenvector, which is the solution of the system of equations:

K�ω2
i M

� �
ϕ
!

i ¼ 0; i¼ 1;…;n (23)

The natural frequencies fi and vectors ϕ
!

i define a free vibration mode of a structure. In the case of absence of damping and
physical or geometrical nonlinearity, the structure will vibrate indefinitely at modal frequency fi and with mode shape ϕ

!
i.

Note that the eigenvectors ϕ
!

i are usually scaled by a multiplier.

4. Discussion of finite element models used for the calculations

The free vibration analysis of plates based on different plate theories is carried out by applying the displacement-based
FEM within the ABAQUSTM [63] code. Appropriate finite element models have been developed for homogeneous isotropic
and anisotropic and composite laminated and sandwich plates. The equivalent single-layer and layer-wise theories within
the framework of both the CPT and FSDT formulations as well as the three-dimensional approach are embedded into those
models. Natural frequencies computed by these models are compared between themselves and with the known results. A
more detailed description of each FE model developed will be given later. Before this, it should be noted that for all the FE
models the following simplifying assumptions are made:
�
 linear modal analysis is considered;

�
 laminated plates are made up of layers of equal thickness and the same material, and the layers are perfectly bonded

together;

�
 sandwich plates are modelled as three-layer plates, where average material properties of different kinds of cores

are used.

All the FE models were created using the pre-processor ABAQUS/CAE and only in some rare cases was the input file
manually modified. The eigenvalue problem (22) for finding natural frequencies and mode shapes was solved by means of
the ABAQUS/Standard solver, where either subspace iterations or the Lanczos method is implemented. A mesh of each FE
model was accepted as suitable for calculations on the basis that a desired accuracy for the results at a reasonable
computational effort using an Intels Core™ 2 T5200 CPU processor (1.60 GHz) could be reached, and there were only
insignificant differences between the calculated values of natural frequencies after the mesh refinement. Such mesh-
sensitivity analysis of the FE models was carried out in preliminary studies. Some of the convergence studies will be shown
in the paper, but a wide discussion of the convergence of finite element solutions is behind the aims of this paper.

4.1. Models based on conventional shell elements

For the finite element analysis of three-dimensional structures in which one of the dimensions – thickness is much smaller
than the other two dimensions is commonly employed plate/shell finite elements. These elements can be subdivided into two
distinct groups: conventional shell elements and continuum-based shell elements (continuum shell elements), which are
derived from a three-dimensional solid element via appropriate kinematic constraints imposed on the displacement field.

Conventional shell elements discretize a shell-like structure by defining the nodal geometry at reference surface and
have displacement and rotational degrees of freedom. The thickness and material properties of such elements are defined
through their cross-section properties. In this respect, the option GENERAL is used to define the total characteristics of a
homogeneous structure, whereas the option COMPOSITE can be activated to specify thickness, orientation and material for
each layer of a structure with a given lay-up. ABAQUS/Standard library of conventional shell elements uses linear (first-
order) or quadratic (second-order) interpolation polynomials and allows in accordance with the FSDT or neglects due to the
CPT transverse shear flexibility. To avoid shear locking, typically arising when the element thickness goes to zero a reduced
(low-order) integration technique is used to form the stiffness matrix of such elements. The finite elements with reduced
integration are denoted by the letter R in their label in what follows. Additionally, first-order elements with reduced
integration are supplemented by an hourglass control for stabilizing solutions [63]. Three different types of conventional
shell elements, distinguished by their applicability to ‘thin’ and ‘thick’ plate/shell problems, are used in the paper for
simulations:
�
 S8R5/S9R5 are isoparametric thin quadrilateral shell elements using quadratic element shape forms. They represent the
assumptions of the CPT that can usually be applied in cases, where transverse shear flexibility is negligible and the
Kirchhoff constraint must be satisfied accurately. Herewith, the Kirchhoff constraints are imposed either analytically or
numerically, where the transverse shear stiffness acts as a penalty;
�
 S8R is a second-order iso-parametric eight-node quadrilateral thick shell element endowed by the functionalities of the
FSDT. The element is required in cases when the transverse shear deformations would be taken into account in the thick
shell/plate problem;
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�
 S4/S4R are general-purpose linear quadrilateral shell elements. They can provide solutions for both ‘thick’ and ‘thin’
plate/shell problems, i.e. the thick shell theory is used as the shell thickness increases and becomes defined as a Kirchhoff
thin shell elements as the thickness decreases. The S4 element's membrane response is treated with an assumed strain
formulation that gives accurate solutions to in-plane bending problems, is not sensitive to element distortion, and avoids
parasitic locking, while the element S4R is enhanced by hourglassing control.

Therefore, in our calculations, thin homogeneous and composite plates are modelled with the eight-node 40-DOF
quadrilateral reduced integrated shell elements, S8R5, which typify the use of the CPT. The eight-node 48-DOF quadrilateral
reduced integrated shell elements S8R are applied for thick plates and FE models composed of these elements correspond to
using the FSDT. The four-node 24-DOF quadrilateral fully or reduced integrated linear elements, S4 or S4R are also adopted
for calculations and they can be used in those both cases mainly for checking results. It is important to notice that in the
shell elements relying on the FSDT, the shear flexibility is estimated by matching the shear response for the case of the shell
bending about one axis, using a parabolic variation of transverse shear stress through the shell thickness based on the 3-D
elasticity theory. Moreover, for modelling multilayered plates with all types of conventional shell elements, the equivalent
single-layer concept is used. According to this a plate cross-section, presented by stacking layers of different properties, is
treated as a statically equivalent homogeneous material. Thereby, in-plane and transverse displacement components of such
plate models will be assumed equal through the entire laminate thickness.

4.2. Models based on continuum shell elements

Unlike conventional shell elements, continuum shell elements resemble three-dimensional solid elements, which have
only displacement degrees of freedom. Thereby, the total number of unknowns of this shell element is identical to that of
the solid element as well as the element thickness similar to the solid element, being defined from the nodal geometry.
However the kinematic assumptions and the constitutive equations of these elements are similar to conventional shell
elements given at the plate/shell reference surface. This allows one to express all the nodal unknowns of the solid element
in terms of those defined at the reference surface of the shell element.

The eight-node 24-DOF quadrilateral continuum shell elements, SC8R with reduced integration and hourglass control are
utilized for free vibration analysis of moderately thick homogeneous and composite laminated and sandwich plates. SC8R is
a general-purpose first-order interpolation element incorporating both the GENERAL and COMPOSITE shell section options
and including the effect of transverse shear deformation on the basis of the FSDT kinematic assumptions. Thereby, FE
models elaborated with those elements will symbolize the use of the FSDT within the equivalent single-layer approach in
calculations along with other FSDT finite elements mentioned earlier.

Besides, to achieve a higher resolution in the prediction of the transverse shear flexibility of composite layered plates the
SC8R elements can be stacked through the plate thickness and that will mean the use of the layer-wise approach. Herewith,
it is important to notice that the LWT concept implemented into the free vibration analysis of plates via a stacking sequence
of continuum shell elements implies the FSDT kinematics at each layer. Typically, one element per layer across the thickness
of laminates or face sheets of sandwich, and more than one element through the thickness of a sandwich core will be
employed in such models.

4.3. Models based on 3D solid elements

While homogeneous and laminated composite plates are typically modelled using appropriate shell elements, some
cases can require three-dimensional solid elements with one or several solid elements through the thickness. The plate
models, based on 3-D finite elements, are a discrete presentation of the 3-D elasticity theory applied for plates. Of course,
the use of such elements may be preferable, when transverse shear effects are predominant and the normal transverse
stress cannot be ignored, as well accurate magnitudes of stresses at layer interfaces being necessary. In this respect, 3-D
solid elements allow the application of a fully three-dimensional material law for plate/shell-like structures. Thus, the
transverse shear stiffness as well as transverse shear stresses in this case will be calculated directly from the equilibrium
equations of the stress tensor components. This provides a real distribution through the thickness of transverse shear
stresses and, in turn, real behavior of plates/shells.

The linear eight-node 20-DOF first-order and the quadratic twenty-node 60-DOF second-order 3-D hexahedral (brick)
elements, marked as C3D8 and C3D20, respectively, are utilized for performing the free vibration analysis of plates. The
elements are optionally supplemented by the reduced-integration technique and the incompatible mode (assumed strain)
assumptions. In the latter case, the letter ‘I’ appears in the element label. Besides, to ensure stability and accuracy of
calculations with 3-D elements, techniques eliminating shear- and volumetric-locking and hourglass modes are imple-
mented into the formulations of the elements. Additionally, it is worth noting that to reach a desirable accuracy in
calculation with 3-D elements, it is necessary to monitor the element aspect ratio, which should be retained as close as
possible to a regular cubic form. As a result, the number of 3-D elements used through the thickness will increase with
decreasing the element in-plane dimensions. Moreover, the number of elements in the thickness direction plays a critical
role for solution accuracy in thick plates and sandwich plates with a thick core. In the numerical examples presented below
more than one through-the-thickness layer of the solid elements will be employed for modelling.



V.N. Burlayenko et al. / Journal of Sound and Vibration 358 (2015) 152–175160
However, in the case of composite sandwich plates with thin face sheets a rather fine mesh of 3-D elements is required
that leads to a considerable or even prohibitively expensive computational efforts. As an alleviation of this issue, FE models
combining shell elements endowed by either CPT or FSDT assumptions for representing the upper and lower face sheets and
3-D solid elements for discretizing the core of sandwich plates are utilized also. These ‘mixed’models embody the HSAPT for
sandwich plates. In doing so, the conventional shell elements are joined to solid ones through the shell-to-solid coupling
constraints that couple displacement and rotation of each shell node to average displacement and rotation of the solid
surface in the vicinity of the shell node [63], while the continuum elements can be directly coupled with adjacent solid
elements.

5. Numerical results and discussion

In order to evaluate the effectiveness of different types of finite element models for free vibration analysis, homogeneous
isotropic and anisotropic plates, composite laminated plates with arbitrary lay-ups, and stiff- and soft-cored sandwich plates
are examined herein. The numerical examples considered in the paper are chosen in correspondence with the existing
analytical and numerical solutions that are available in the literature. This allows a comparison to be made between results
obtained by the FEM and other methods for the same plates. The numerical results obtained and validated in this way could
be considered as benchmark solutions in what follows for isotropic and anisotropic homogeneous plates, composite
laminated and sandwich plates.

5.1. Isotropic plates

Firstly, isotropic square plates with all edges simply supported or clamped having length-to-thickness aspect ratios a=h of
100 and 5 corresponding to ‘thin’ and ‘thick’ plate problems, respectively, are analyzed. The material of the plates has
Young's modulus of 206.8 GPa, Poisson coefficient of 0.3 and mass density of 7827 kg/m3. The convergence study for the
different mesh sizes for the simply supported and clamped thin plates is presented in Fig. 2a and b, respectively. The
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fundamental frequency, calculated with different finite elements, is validated by the exact solution for a simply supported
plate, whereas the solution of the Rayleigh–Ritz method based on the beam functions in [65] is used for assessment of the
fundamental frequency of the clamped plate. One can see an excellent convergence of all the elements used for the free
vibration analysis with increasing mesh divisions of the plate, i.e. a number of elements n per the plate edge. The second-
order element S8R5 implementing the CPT gives the most accurate solution even with the coarse mesh at both the types of
boundary conditions, whereas the solutions with the first-order general purpose elements S4(R) tend toward the exact one
only with increasing mesh density, but quickly enough. Herewith, the convergence rate with these elements for the clamped
plate is a bit slower than for the simply supported one. To acquire the frequencies with an acceptable accuracy, a mesh with
n¼10 is needed for almost all those cases. The maximum discrepancy between the results obtained using the mesh 10�10
and the test results is less than 2.5 percent.

The convergence analysis of the FE solutions obtained for the isotropic thick plates with simply supported and clamped
boundary conditions is shown in Fig. 3a and b, respectively. The numerical results for the simply supported plate are
compared with the exact 3-D solution in [31], whereas the frequencies of the clamped plate are tested with respect to the 3-
D solution based on Chebyshev polynomials within the Ritz method in [33]. It is should be noted that in the case of the 3-D
elements, the plate was meshed in such a way that the length-to-thickness element aspect ratio was as close as possible to
1:1. As seen, all finite elements are accurate enough to predict the fundamental frequency. Herewith, the second-order shell
Table 1
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffi
ρh=D

p
of the simply supported square isotropic plate.

a=h Source Mode

(1,1) (1,2) (2,1) (2,2) (1,3)

100 Leissa [65] 19.739 49.348 49.348 78.957 98.696
Bhat [66] 19.739 49.348 49.348 78.957 99.304
Liew et al. [67] 19.740 49.350 49.350 79.030 99.250
Present, CPT S8R5 19.734 49.323 49.323 78.869 98.644

S4R 19.899 51.121 51.121 81.531 108.61
S4 19.951 51.337 51.337 82.424 109.12

5 Srinivas et al. [31] 17.328 38.483 38.483 55.790 –

Zhou et al. [33] 17.329 38.483 38.483 55.787 65.996
Wu et al. [68] 17.148 38.267 38.133 55.185 64.204
Shufrin et al. [69] 17.452 38.189 38.189 55.254 65.313
Present FSDT (S8R) 17.449 38.158 38.158 55.156 65.201

FSDT (S4R) 17.571 39.161 39.161 56.288 67.079
FSDT (S4) 17.609 39.274 39.274 56.645 65.928
LWT (SC8R) 17.221 37.876 37.876 54.092 66.587
3-D (C3D20R) 17.327 38.493 38.493 55.796 66.060

D¼ Eh3=12ð1�ν2Þ.

Table 2
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffi
ρh=D

p
of the clamped square isotropic plate.

a=h Source Mode

(1,1) (1,2) (2,1) (2,2) (1,3)

100 Leissa [65] 35.992 73.413 73.413 108.27 131.64
Bhat [66] 35.986 73.395 73.395 108.22 131.78
Liew et al. [67] 35.990 73.410 73.410 108.26 131.66
Present, CPT S8R5 35.955 73.302 73.302 107.96 131.44

S4R 36.714 78.027 78.027 114.08 151.72
S4 36.898 78.554 78.554 115.98 152.76

5 Zhou et al. [33] 26.886 47.074 47.074 61.904 72.253
Liew et al. [32] 26.932 47.139 47.139 61.936 72.299
Wu et al. [68] 26.320 46.032 46.032 61.475 70.605
Shufrin et al. [69] 26.817 47.128 47.128 63.504 73.112
Present FSDT (S8R) 26.525 46.307 46.307 62.177 70.904

FSDT (S4R) 26.888 47.802 47.802 63.736 75.340
FSDT (S4) 26.957 47.937 47.937 64.099 74.755
LWT (SC8R) 26.514 46.420 46.420 62.900 72.048
3-D (C3D20R) 26.998 47.284 47.284 63.575 72.624

D¼ Eh3=12ð1�ν2Þ.
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element S8R with the FSDT and the second-order 3-D element C3D20(R) are the most accurate among them. However, the
latter is the most computationally expensive because of a high density mesh required to ensure the element aspect ratio
requirement. The optimal meshes for those elements can be considered as 20�20 and 10� 10� 2, respectively. The first-
order 3-D element C3D8(R) converges to the accurate solution quickly only with the activated incompatible mode,
otherwise its convergence is rather slow. In this case, the continuum shell element SC8R with the mesh 20� 20� 4 may be
more preferable for calculations. One can notice again that the convergence rate for the plate with simply supported edges is
faster than that for the plate with clamped sides.

Further, the first five non-dimensional frequencies of both the thin and thick isotropic square plates with simply
supported and clamped boundary conditions are presented in Tables 1 and 2. The results are compared with analytical and
numerical solutions available in the literature. One can see that the predicted natural frequencies of these thin plates agree
very well with those in [65], where the existing well-known exact solution is presented for the plate having simply
supported edges and the Ritz method is used to calculate the frequencies of the clamped plate. Also, the results are found to
be in very good agreement with solutions obtained by using the Rayleigh–Ritz method employing a set of beam
characteristic orthogonal polynomials in [66] and with plate orthogonal functions in [67]. For the thick plates, one can
clearly see that the calculated frequencies are in good accordance with solutions in [68], where the differential cubature
method with the FSDT assumptions has been utilized, and results obtained by the Kantorovich solution procedure within
the HSDT assumptions in [69]. Moreover, they are close to the 3-D solutions presented in [31] for simply supported edges
and in [32,33] for clamped edges of the thick plate.

Analyzing the results obtained by different computational models in Tables 1 and 2 it is obvious that the CPT models
presented by either the S8R5 or the S4(R) elements are accurate in the case of the thin plates only. Herewith, the accuracy of
the second-order shell element is higher than that of the linear shell elements at the same mesh. While, either FSDT models
developed with the elements S8R and SC8R or 3-D models exploiting the solid elements C3D20(R) have to be used to
provide accurate results for the thick plates, when the transverse shear flexibility and second-order interpolation are
desired. One needs to note that the 3-D FE models demand a more refined mesh with 3795 DOF against 600 DOF for the
second-order conventional shell elements and this may make the predictions with 3-D elements computationally very
expensive in practical applications.

5.2. Orthotropic plates

The free vibration analysis of orthotropic homogeneous plates has been performed for the cases when the principal
orthotropic directions can coincide or not coincide with the reference coordinate system of the plate. Both thin and thick
orthotropic plates are examined. At the beginning, a square orthotropic thin plate with completely free edges is considered.
The material properties having the principal orthotropic directions coinciding with the global coordinate system and
geometrical dimensions of the plate are listed in Table 3. The FE models are developed using the CPT assumptions
implemented into both the second-order thin shell element S8R5 and the first-order general-purpose shell elements S4(R).
The convergence analysis similar to that in the previous Section is carried out too. The convergence rate of the finite element
Table 3
Dimensions and material properties of the orthotropic thin plate.

a¼b (m) h (m) E1 (MPa) E2 (MPa) G12 ¼ G13 ¼G23 (MPa) ρ (kg/m3) ν

0.254 1:483� 10�3 1:297� 105 1:027� 104 7:312� 103 1584 0.33
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Fig. 4. Convergence of finite element solutions of the thin orthotropic plate: (a) the lowest frequency; and (b) the eighth frequency.
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solutions obtained with three types of elements for the lowest and eighth natural frequencies depending of the number of
elements per plate edge is shown in Fig. 4. It is seen that the discrepancy between the numerical results for all the elements
used on the mesh 20�20 and the 3-D exact solutions presented in [70] does not exceed 0.5 percent for both the
frequencies.

In Table 4 the first eight natural frequencies calculated with the FE models with S8R5 and S4(R) elements based on the
CPT are compared with results obtained by using the 3-D exact solutions in terms of Fourier series in [70] and utilizing the
superposition method in [71]. One can see an excellent agreement between the frequencies, where the largest discrepancy
is about 1 percent for the higher modes. Thereby, the finite element models based on the CPT are well suited for modelling
free vibrations of thin orthotropic plates in the case, when the principal orthotropic directions coincide with the reference
axes of the plate.

In the next example the model based on the CPT is applied for the free vibration analysis of orthotropic thin ða=h¼ 100Þ
plates with two different boundary conditions and four angles of material orthotropy. The material properties of orthotropic
plates are accepted as such that satisfy the following equalities: E1 ¼ 5E2 and G12 ¼ E1ð1�ν12Þ=2ð5�ν12ν21Þ. In simulations
we assigned E2 ¼ 5000 MPa, ν12 ¼ ν21 ¼ 0:3 and ρ¼ 1584 kg/m3. Table 5 presents the first five dimensionless frequencies of
the plate with two simply supported opposite edges and the other two clamped edges (CSCS) and the plate with fully
clamped edges (CCCC). Here, the notations ‘S’ and ‘C’ mean clamped and simply supported fixations of the edges,
respectively. From Table 5 it is obvious that the calculated frequencies agree very well with those obtained by using Green
functions for solving the governing equations of motion in [72]. The mode shapes associated with the natural frequencies
computed for the clamped orthotropic thin plate are shown in Fig. 5.

Next the natural frequencies of a thick ða=h¼ 10Þ orthotropic square plate with simply supported edges are calculated.
The material properties of the orthotropic plate taken are the same as in [31] and are listed in Table 6. The simulations are
performed with FSDT finite element models, developed with the conventional general-purpose S4R and special thick S8R
and continuum SC8R shell elements, and 3-D models incorporating solid linear C3D8(R,I) and quadratic C3D20R elements.
The normalized frequencies computed by using those FE models and obtained by applying the 3-D elasticity equations in
[31] and the third-order shear deformation theory in [75] are compared in Table 7. The percentage relative errors between
the computational FSDT and 3-D models and the exact 3-D solution in [31] for the first 13 frequencies are shown in Fig. 6.
The diagram indicates that the 3-D finite element model with quadratic solid elements provides much better results than
Table 4
Natural frequencies (Hz) of the thin orthotropic plate with completely free boundary.

Mode no Hurlebaus et al. [70] Gorman [71] Present, CPT

S8R5 S4R

1 51.76 51.74 51.728 51.769
2 60.17 60.17 60.173 60.399
3 121.4 121.4 121.29 121.74
4 165.9 165.9 165.86 168.21
5 212.6 212.6 212.53 213.33
6 228.6 228.5 228.43 230.90
7 236.6 236.5 236.39 237.09
8 304.9 304.8 304.60 305.51

Table 5
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffi
ρh=D

p
of the thin orthotropic square plate.

BCs Mode no 01 151 301 451

CPTa [72]b CPTa [72]b CPTa [72]b CPTa [72]b

CSCS 1 53.129 53.060 51.613 51.571 47.734 47.707 42.843 42.823
2 70.667 70.481 71.857 71.752 74.333 74.256 76.486 76.387
3 111.68 110.24 114.67 114.10 119.98 119.68 103.69 103.43
4 140.43 139.41 134.56 134.18 120.71 120.19 123.64 123.28
5 154.41 153.30 152.91 152.46 151.17 150.78 155.52 154.96

CSCS 1 57.266 57.145 56.043 55.998 53.656 53.618 52.506 52.470
2 85.889 86.030 87.157 86.958 1.144 90.926 94.899 94.635
3 139.18 137.15 136.92 136.54 124.26 123.94 116.12 115.86
4 142.47 142.57 140.83 139.86 143.56 143.12 144.29 143.91
5 163.05 160.71 163.13 162.38 169.31 167.90 183.11 181.17

D¼ E1h
3=12ð1�ν12ν21Þ.

a Present results.
b Results of Whitney and Pagano.



Fig. 5. The first five mode shapes of the clamped orthotropic thin square plate with angle of material orthotropy of 451.

Table 6
Dimensions and material properties of the orthotropic thick plate.

D1111�104

(MPa)
D1122�104

(MPa)
D1133�104

(MPa)
D2222�104

(MPa)
D2233�104

(MPa)
D3333�104

(MPa)

D1212�104

(MPa)
D1313�104

(MPa)
D2323�104

(MPa)
ρ (kg/
m3)

ν

16.0 3.73 0.172 8.69 1.57 8.48 0.421 2.56 4.27 7827 0.3

Table 7
Dimensionless frequencies ω ¼ωh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=C11

p
of the simply supported thick orthotropic square plate.

Mode Present [31]a [75]b

FSDT LWT 3-D

(S4R S8R) SC8R (C3D8R C3D8I C3D20R)

(1,1) 0.0474 0.0475 0.0473 0.0468 0.0474 0.0470 0.0474 0.0474
(1,2) 0.1032 0.1039 0.1031 0.1021 0.1033 0.1023 0.1033 0.1031
(2,1) 0.1187 0.1197 0.1180 0.1177 0.1188 0.1168 0.1188 0.1197
(2,2) 0.1692 0.1703 0.1677 0.1670 0.1694 0.1669 0.1694 0.1694
(1,3) 0.1884 0.1921 0.1898 0.1869 0.1888 0.1885 0.1888 0.1897
(3,1) 0.2178 0.2217 0.2169 0.2161 0.2181 0.2137 0.2180 0.2218
(2,3) 0.2469 0.2501 0.2458 0.2437 0.2476 0.2437 0.2475 0.2460
(3,2) 0.2619 0.2653 0.2594 0.2588 0.2625 0.2564 0.2624 0.2638
(1,4) 0.2959 0.3065 0.3019 0.2934 0.2969 0.2930 0.2969 0.2963
(3,3) 0.3310 0.3352 0.3275 0.3264 0.3319 0.3233 0.3319 0.3298
(4,1) 0.3311 0.3411 0.3316 0.3286 0.3320 0.3266 0.3320 0.3388
(2,4) 0.3463 0.3552 0.3486 0.3422 0.3476 0.3401 0.3476 0.3442
(4,2) 0.3696 0.3782 0.3677 0.3656 0.3707 0.3650 0.3707 0.3746

C11 ¼ 160ðGPaÞ.
a Results of Srinivas et al.
b Results of Kant and Swaminathan.
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Fig. 6. Comparison of the accuracy of the different computational finite elements used for the free vibration analysis of the thick orthotropic plate.
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Table 8
Material properties of the laminated plate.

Materials E1=E2 G12=E2 G23=E2 ν12 ν23 Common ρ (kg/m3)

E-Glass/Epoxy 2.45 0.48 0.342 0.23 0.462 E3 ¼ E2 2100
Boron/Epoxy 11 0.34 0.346 0.21 0.444 G12 ¼ G13 2030
Graphite/Epoxy 15.4 0.79 0.79 0.3 0.675 ν13 ¼ ν12 1627

Table 9
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρh=D0

p
of the simply supported symmetrical five-layer cross-ply thin square plates.

Mode (1,1) (1,2) (2,1) (2,2) (1,3) (2,3) (3,1) (3,2)

E-Glass/Epoxy
Leissa et al. [9] 15.193 35.894 42.344 60.770 71.569 94.504 88.395 105.44
Chao et al. [74] 14.862 35.063 41.330 59.367 69.779 92.217 86.090 102.79
CPTa S8R5 15.146 35.727 42.105 60.297 71.023 93.497 87.439 104.10

S4R 15.174 36.013 42.496 60.746 72.592 94.903 89.548 105.96
3-Da C3D8 15.089 35.545 42.407 60.135 72.833 94.030 87.435 105.14

C3D20R 15.090 35.603 42.474 60.346 73.004 94.247 87.904 105.54

Boron/Epoxy
Leissa et al. [9] 11.039 24.037 36.790 44.157 49.281 63.520 81.425 86.002
Chao et al. [74] 10.778 23.445 35.793 42.172 45.698 61.724 78.343 83.170
CPTa S8R5 10.986 23.843 35.984 43.272 48.418 62.103 78.938 82.892

S4R 11.012 24.010 36.460 43.666 49.361 62.900 79.558 84.116
3-Da C3D8 10.951 23.901 36.654 43.218 49.361 63.192 81.616 86.264

C3D20R 10.976 23.936 36.709 43.371 49.555 63.738 81.789 86.643

Graphite/Epoxy
Leissa et al. [9] 11.290 24.034 37.085 45.159 48.362 64.470 81.205 83.230
Chao et al. [74] 10.729 22.794 35.058 42.712 45.698 60.888 76.221 78.267
CPTa S8R5 11.216 23.797 36.149 44.052 47.423 62.704 80.484 82.575

S4R 11.244 23.952 36.652 44.474 48.283 63.481 79.300 83.275
3-Da C3D8 11.200 24.269 36.392 45.067 48.589 63.756 82.058 83.448

C3D20R 11.199 24.306 36.447 45.255 48.908 64.313 81.936 83.627

D0 ¼ E1h
3=12ð1�ν212Þ.

a Present results.
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Fig. 7. A quantitative assessment of the accuracy for the natural frequencies of five layers cross-ply laminated thin plate, calculated based on (a) the model
involving the CPT; and (b) the 3-D model.
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other models used, but it is the most computationally expensive. At the same time, the use of the FSDT model developed
with the special thick second-order shell elements and continuum shell elements gives accurate enough results, which are
even comparable with the 3-D solutions resulting from the models with linear solid elements. The model developed with
the general-purpose first-order shell elements gives results which are a little worse in this case, but with less computational
expense.
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5.3. Laminated plates

This series of examples is used to assess the accuracy of different FE models for the analysis of symmetric and
antisymmetric composite laminated plates. Natural frequencies of five-layer symmetrical cross-ply and four-layer
symmetrical angle-ply thin (a=h¼ 50) square plates with simply supported edges are calculated at the beginning. Three
types of materials namely E-Glass/Epoxy, Boron/Epoxy and Graphite/Epoxy are considered for these plates. Properties of
those materials, presented in the form of dimensionless stiffness constants are shown in Table 8. The first eight normalized
natural frequencies of the cross-ply laminated plates computed using the FE models based on the CPT within ESL approach
with S8R5 and S4(R) elements and the 3-D elasticity theory with C3D8(R,I) and C3D20R elements in comparison with those
calculated by applying the Ritz method within the CPT in [9] and the 3-D elasticity equations in [74] are presented in Table 9.
The percentage relative errors for the first eight frequencies between the computed results and the 3-D solution in [74] are
presented in Fig. 7. For the CPT model the errors are larger for the higher frequencies and increase with increasing the
material orthotropy ratio E1=E2, as seen in Fig. 7a. Thus, the CPT models are able to capture with good accuracy mainly at
lower frequencies and are only accurate for materials with low orthotropy ratio. The 3-D model is less sensitive to the mode
number being calculated and orthotropic material properties, Fig. 7b. Nevertheless, from the standpoint of the compromise
between the accuracy and computational efforts, the CPT may prevail in the cases of thin laminates.

Table 10 shows three dimensionless natural frequencies of four-layer symmetric angle-ply thin plates computed with the
CPT FE model and those obtained in papers [9] and [74]. One can see that the predicted frequencies are in good agreement
Table 10
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρh=D0

p
of the simply supported four-layer angle-ply thin square plates.

Source ½01�S ½7301�S ½7451�S

ω1 ω3 ω5 ω1 ω3 ω5 ω1 ω3 ω5

E-Glass/Epoxy
Leissa et al. [9] 14.18 38.37 57.59 15.22 40.18 66.71 15.49 40.16 71.00
Chao et al. [74] 15.19 44.42 64.53 16.02 42.62 71.68 16.29 41.63 77.56
CPTa S8R5 15.02 43.98 63.84 15.75 42.02 70.57 15.99 40.92 76.37

S4R 15.18 44.59 65.45 15.99 42.71 72.44 16.26 41.67 78.47

Boron/Epoxy
Leissa et al. [9] 9.552 25.81 31.92 12.42 33.63 46.40 13.13 33.59 49.98
Chao et al. [74] 11.04 30.91 44.16 12.83 36.62 52.13 13.46 34.94 57.59
CPTa S8R5 10.893 30.46 42.29 12.05 34.01 47.19 12.41 31.77 52.48

S4R 11.00 31.32 43.43 12.64 35.97 50.96 13.20 34.17 56.94

Graphite/Epoxy
Leissa et al. [9] 10.06 23.89 33.58 12.42 34.25 47.33 13.05 33.82 50.96
Chao et al. [74] 11.29 28.69 45.16 12.66 36.67 51.84 13.17 34.76 57.61
CPTa S8R5 11.17 28.33 39.79 12.14 35.27 49.02 12.48 32.91 55.06

S4R 11.26 28.96 44.75 12.45 35.95 50.47 12.88 33.76 56.57

D0 ¼ E1h
3=12ð1�ν212Þ.

a Present results.
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Fig. 8. A quantitative assessment of the accuracy for the natural frequencies of four layers angle-ply laminated thin plate calculated based on the CPT
depending on the reinforcement angle: (a) the first frequency; and (b) the third frequency.
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with the reference solutions. The percentage relative differences between the computed results and the 3-D solution in [74]
for the first and third natural frequencies of the plates with different reinforcement angles in the lay-up are shown in Fig. 8.

We can identify that the accuracy of the FE model, implementing the CPT in the predictions of natural frequencies highly,
depends on the angle of reinforcement. The more the reinforcement direction deviates from the reference coordinate axes,
the less the prediction accuracy of the CPT model is.

In this example the fundamental frequencies of simply supported three-, five- and nine-layer symmetric cross-ply thick
ða=h¼ 5Þ square plates are calculated. The finite element models based on the FSDT within both the ESL and LWT concepts
and 3-D theory of elasticity are utilized. The material properties of the plates are taken for the wide range of material
anisotropy ratios E1=E2 from 3 to 40 and E2 ¼ E3, G12 ¼ G13 ¼ 0:6E2, G23 ¼ 0:5E2, ν12 ¼ ν13 ¼ ν23 ¼ 0:25. The FSDT plate
models assuming the ESL are presented by conventional shell elements S4R and S8R. The LWT model with the FSDT
assumptions for each layer is created by stacking through-the-thickness the continuum shell elements SC8R. Four elements
per layer in three layer, two elements per layer in five layer and one element per layer in nine layer plates in the thickness
direction are used in the simulations. In doing so, the plate is discretized by the FE mesh, where the element length-to-
thickness aspect ratio is kept not less than 2:1. The 3-D finite element models are composed of the C3D8(R,I) and C3D20R
elements of the regular cubic form. The two first-order 3-D elements, but one second-order 3-D element per layer are
utilized in the tree-layer laminate and one element per layer for all other 3-D models. The exact 3-D solution in [31] and
results obtained using the FSDT in [73] and the HSDT in [75] are invoked for comparison with the results calculated herein.
The values of the frequencies are summarized in Table 11, and the relative differences between the FE predictions and the
test 3-D solution in [31] for the five- and nine-layer laminated plates are shown in Fig. 9.

As one sees from Table 11 and Fig. 9, all the FE models can provide a correct value of the fundamental frequency within
accepted engineering precision. Herewith, the 3-D models based on the second-order and the first-order with the assumed
strain assumptions solid elements are the most accurate. However, they have the greatest computational cost; and this is 20
times more than for the FSDT models developed with conventional shell elements within the ESL approach. The latter
models, unfortunately, have the worst accuracy among all the others. The LW model created via the stacked through-the-
thickness FSDT shell elements gives results accurate enough, which are comparable with the 3-D solutions based on the
linear solid elements. Thus, a compromise between the accuracy and computational efforts for modelling thick laminated
plates can be gained by using the LW model.
Table 11
Dimensionless fundamental frequencies ω1 ¼ω1a2=h

ffiffiffiffiffiffiffiffiffiffi
ρ=E2

p
of the simply supported symmetric cross-ply laminated thick square plates.

Lay-up Source E1=E2

3 10 20 30 40

½0=901=0�
Srinivas et al. [31] 6.6185 8.2103 9.5603 10.272 10.752
Whitney et al. [73] 6.5630 8.1847 9.2774 9.8851 10.289
Kant et al. [75] 6.5712 8.1696 9.2513 9.8595 10.269
Present FSDT S4R 6.5587 8.1371 9.1800 9.7460 10.112

S8R 6.5476 8.1258 9.1700 9.7363 10.103
LWT SC8R 6.4927 7.9443 8.8803 9.3930 9.7325
3-D C3D8R 6.4926 8.0669 9.1184 9.7199 10.110

C3D8I 6.5572 8.2113 9.3449 9.9798 10.401
C3D20R 6.5682 8.1639 9.2381 9.8357 10.232

½0=901=0�S
Srinivas et al. [31] 6.6468 8.5223 9.9480 10.785 11.344
Whitney et al. [73] 6.5844 8.4201 9.8265 10.679 11.267
Kant et al. [75] 6.6033 8.4382 9.8246 10.644 11.196
Present FSDT S4R 6.5775 8.3626 9.6949 10.470 10.985

S8R 6.5662 8.3503 9.6828 10.458 10.973
LWT SC8R 6.5266 8.1934 9.4194 10.123 10.588
3-D C3D8R 6.4724 8.2766 9.6328 10.427 10.957

C3D8I 6.5926 8.4310 9.8177 10.635 11.183
C3D20R 6.5951 8.4029 9.7488 10.533 11.058

½0=901=0=901=0�S
Srinivas et al. [31] 6.6600 8.6080 10.137 11.053 11.670
Whitney et al. [73] 6.5940 8.5196 10.037 10.954 11.579
Kant et al. [75] 6.6143 8.5422 10.055 10.964 11.581
Present FSDT S4R 6.5954 8.5001 9.9844 10.869 11.450

S8R 6.5841 8.4874 9.9713 10.856 11.438
LWT SC8R 6.5371 8.3245 9.6677 10.449 10.967
3-D C3D8R 6.5703 8.4852 9.9852 10.885 11.494

C3D8I 6.6071 8.5315 10.039 10.945 11.558
C3D20R 6.6077 8.5213 10.013 10.906 11.509
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The non-dimensional fundamental frequencies of simply supported antisymmetric cross-ply two-, four-, and ten-layer
thin and thick square plates in comparison with those obtained using the 3-D elasticity theory in [74] and calculated with
alternative FE models implementing refined transverse shear theories in [20,76] and [77] are collected in Table 12. The
material properties of the individual layers for all examined laminates are the following: E1=E2 ¼ 10 or 40, E2 ¼ E3,
G12 ¼ G13 ¼ 0:6E2, G23 ¼ 0:5E2, ν12 ¼ ν13 ¼ ν23 ¼ 0:25. The length-to-thickness ratios of the laminates were taken as a=h¼ 10
for thick and a=h¼ 100 for thin plates. The plate models involving either the CPT and FSDT with conventional shell elements
within the ESL approach or the LWT via stacked continuum shell elements or 3-D solid elements are used again. The LW and
3-D models are meshed accounting for the proper element length-to-thickness aspect ratios. Herewith, one element per
layer in the 10-layer plate and two elements per layer in two- and four-layer plates are used. It can be seen from Table 12
that the calculated frequencies are in good agreement with the solutions given in the mentioned references. The percentage
relative errors of the calculated fundamental frequencies for the thin and thick laminates with respect to the results in [74]
are presented in Fig. 10.

As seen, the use of the CPT models leads to accurate enough results for the thin laminates, whereas the FSDT models give
good enough predictions for the thick laminates. Although, the accuracy of the FSDT model based on the general-purpose
S4R element that uses a simple bending kinematic and low order shape function is less satisfactory in the thick problem. The
Table 12
Dimensionless fundamental frequencies ω1 ¼ω1a2=h

ffiffiffiffiffiffiffiffiffiffi
ρ=E2

p
of the simply supported antisymmetric cross-ply laminated thin and thick plates.

E1=E2 Source 2 layers 4 layers 10 layers

a=h¼ 10 100 10 100 10 100

10 Chao et al. [74] 7.7343 8.0815 9.3888 10.011 9.8409 10.485
Owen et al. [76] 7.8699 8.1477 9.5385 10.093 9.9648 10.574
Argyris et al. [77] 7.7644 8.1090 9.3764 10.049 9.8664 10.529
CPTa S8R5 – 8.1304 – 10.073 – 10.554
FSDTa S4R 7.7795 8.1551 9.4214 10.094 9.9044 10.584

S8R 7.7809 – 9.4005 – 9.8789 –

LWTa SC8R 7.7456 – 9.3783 – 9.8269 –

3-Da C3D8R 7.6267 – 9.1368 – 9.8519 –

C3D8I 7.7809 – 9.4563 – 9.8987 –

C3D20R 7.7877 – 9.4416 – 9.8985 –

40 Reddy et al. [20] 10.610 11.538 14.883 17.493 15.793 18.821
Chao et al. [74] 10.313 11.258 14.478 17.226 15.656 18.521
Owen et al. [76] 10.501 11.320 14.736 17.304 15.802 18.639
Argyris et al. [77] 10.362 11.289 14.346 17.263 15.680 18.601
CPTa S8R5 – 11.297 – 17.273 – 18.610
FSDTa S4R 10.276 11.332 14.457 17.324 15.709 18.664

S8R 10.263 – 14.423 – 15.673 –

LWTa SC8R 10.291 – 14.284 – 15.673 –

3-Da C3D8R 10.077 – 14.124 – 15.351 –

C3D8I 10.408 – 14.638 – 15.727 –

C3D20R 10.419 – 14.507 – 15.706 –

a Present results.
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Fig. 9. A quantitative assessment of the accuracy for the fundamental frequency of the symmetric cross-ply thick laminates with (a) five layers; and (b)
nine layers.
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Fig. 10. A quantitative assessment of the accuracy for the fundamental frequency of the antisymmetric cross-ply laminates with (a) E1=E2 ¼ 10; and (b)
E1=E2 ¼ 40.

Table 13
Dimensions and material properties of the simply supported rectangular sandwich plate.

Component a (m) b (m) h (m) ρ (kg/m3) E (GPa) G13 (GPa) G23 (GPa) ν

Face sheet 1.83 1.22 4:06� 10�4 2770 68.9 – – 0.33

Core 0.0064 122 – 0.134 0.052 0.32

Table 14
Natural frequencies (Hz) of the simply supported rectangular sandwich plate.

Mode no ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

[78]a ‘EXP’ 23 45 69 78 92 129 133 152 169 177
‘ANL’ 23 45 71 80 91 126 129 146 165 174

[80]b 23.4 45.0 71.4 81.3 92.7 128.3 133.7 150.4 171 180
[81]c 22.2 43.3 68.7 77.1 89.6 126.1 141.8 160.6 167 180
CPTd S8R5 23.3 44.5 70.9 79.6 91.7 126.0 128.1 148.9 169 173

S4R 23.7 46.2 78.8 88.2 98.9 136.6 158.3 192.6 200 208
FSDTd S8R 23.2 44.5 70.3 79.8 91.0 125.5 129.1 146.2 166 174
LWTd SC8R 23.6 45.5 75.0 83.5 96.4 133.4 139.8 169.8 188 190
3-Dd C3D20R 23.3 44.5 70.2 79.7 90.9 125.3 128.4 145.0 165 173
HSAPTd S4R/C3D8R 23.1 44.1 70.4 78.2 91.1 124.6 124.6 148.4 168 170

S8R/C3D20R 22.9 43.6 69.5 77.0 89.3 124.9 129.1 148.9 171 172
SC8R/C3D8R 23.9 45.8 71.7 80.4 94.2 127.0 129.3 149.5 171 175

a Results of Raville and Veng.
b Results of Nayak et al.
c Results of Malekzadeh et al.
d Present results.
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increase of the integration points through the thickness of the element does not improve the results. The accuracy of the 3-D
models is much better, but they demand the biggest computational efforts. In this respect, the LW model can be considered
as an alternative to computationally expensive 3-D models for modelling thick laminates.
5.4. Sandwich plates

Sandwich plates can be considered as a three-layer laminated plate consisting of two thin stiff layers, called face sheets,
separated by a thick and weak layer, referred to as core [23]. Unlike a standard laminate, where, as usual, layers of equal
thickness and the same material are composed together, sandwich constituents typically possess extremely different
mechanical and geometrical properties through the thickness. The ratio of Young's moduli of the face sheets to the core
typically lies between 500 and 1000 and even more. As such, the core can be very flexible relative to the face sheets. This
flexibility leads to a change in the height of the core and, as a result, there exists a nonlinear cross section pattern, which the
plate theories that work well for laminates fail to predict. Thereby, free vibration analysis of sandwich plates requires an
appropriate approach accounting for overall modes, localized ones and through the thickness. In this respect, the HSAPT [50]
has successfully been used in the analysis of the majority of actual sandwich constructions, instead of other assumptions
called as an anti-plane stress state, which are mostly valid for stiffer metallic honeycomb cores.
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Fig. 11. Comparison of the accuracy of the different computational finite elements used for the free vibration analysis of the thin sandwich plate.

Table 15
Material properties of the simply supported thick sandwich plate.

Component E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν ρ (kg/m3)

FRP face sheets 24.51 7.77 7.77 3.34 3.34 1.34 0.25 1800
PVC C70.130 core 0.1036 0.1036 0.1036 0.05 0.05 0.05 0.32 130

Table 16
Dimensionless frequencies ω ¼ωa2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
of simply supported sandwich square plates.

Mode no ½0=901=0=CORE=0=901=0� ½451=�451=451=C=�451=451=�451�

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

[79]a 15.28 28.69 30.01 38.86 16.38 29.65 29.65 40.00
[81]b 14.83 26.91 27.47 35.57 15.53 27.36 27.36 36.39
FSDTc S4R 15.79 29.01 29.64 38.47 16.94 29.91 29.91 39.63

S8R 15.77 28.88 29.51 38.33 16.92 29.79 29.79 39.51
LWTc SC8R 15.01 27.10 27.63 35.70 16.31 28.54 28.54 37.63
HSAPTc S4R/C3D8R 14.62 26.80 27.40 35.55 15.42 27.17 27.46 36.24

S8R/C3D20R 14.63 26.80 27.41 35.58 15.43 27.18 27.47 36.27
SC8R/C3D8R 14.62 26.80 27.41 35.55 15.41 27.29 27.29 36.25

a Results of Meunier and Shenoi.
b Results of Malekzadeh et al.
c Present results.
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Free vibrations of a simply supported rectangular sandwich plate with aluminum face sheets and an aluminum
honeycomb core have been studied experimentally and analytically with assumptions of an anti-plane core in [78]. The
geometry and material properties of the sandwich plate are given in Table 13. In the paper the natural frequencies known
from [78] are compared with those computed using appropriate FE plate models. The models embodying the CPT and FSDT
are composed of the second-order thin S8R5 or first-order general-purpose S4R and second-order thick S8R conventional
shell elements, respectively. In the LW model, four continuum shell SC8R elements per core and one element for each face
sheet, stacked into a sequence in the thickness direction, are used. The 3-D model is presented by the second-order
continuum solid elements C3D20R, where one element per face sheet and two elements per core are assigned. Finally, the
HSAPT models are realized via compositions of shell and solid finite elements. Firstly the general-purpose shell elements
S4R are used for the face sheets, whereas the linear 3D elements C3D8R are utilized to discretize the core. Secondly the face
sheets and the core are covered by the second-order shell elements S8R and the second-order solid elements C3D20R,
respectively. Thirdly, the combination of the continuum shell elements SC8R for the face sheets and the solid 3-D elements
C3D8R for the core are applied. Herewith, one element per face sheet and two or more elements per core are utilized for all
calculations. It should be mentioned that the HSAPT models have to attain compatibility between the shell and continuum
elements. The first two models can provide it via the special shell-to-solid constraints available in the ABAQUS code, but
there is no conflict between the degrees of freedom in the latter HSAPT model.
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Fig. 12. Comparison of the accuracy of the finite element models used for the free vibration analysis of the thick sandwich plate: (a) with symmetric cross-
ply face sheets; and (b) antisymmetric angle-ply face sheets.

Fig. 13. Pumping (symmetric) modes in the simply supported thick sandwich plate.
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The natural frequencies measured and calculated in [78] and computed in the paper for the sandwich plate are tabulated
in Table 14. The relative differences between them are shown in Fig. 11. One can see that the predicted results are in close
agreement with the known analytical (ANL) and experimental (EXP) frequencies as well, noting that they are in good
compliance with the closed-form solutions based on the HSAPT model in [81] and the FE solutions using an assumed strain
formulation of Reddy's higher-order theory in [80]. Furthermore, Table 14 and Fig. 11 show that accurate results are also
provided by the FSDT models involving the conventional shell elements. Thus, these models can be adequate in the case of
thin sandwich plates with a stiff core.

In the next example, the accuracy of the FE plate models of thick ða=h¼ 10Þ symmetric and antisymmetric square
sandwich plates is evaluated by comparing the calculated frequencies with the analytical solutions based on the HSDT in
[79] and results obtained with the HSAPT in [81]. The sandwich plates are composed of the laminated cross-ply or angle-ply
fibre reinforced plastic (FRP) face sheets and a HEREX C70.130 polyvinyl chloride (PVC) foam core. The elastic mechanical
constants corresponding to those materials, taken as in [79], are presented in Table 15. The ratio of the core thickness to the
total thickness of the plate is hc=h¼ 0:88.

Table 16 shows the first four dimensionless natural frequencies calculated in the paper and obtained by the authors in
[79,81]. The same FE models, discussed above, are used for analysis of the thick sandwich plate with a soft foam core.
Herewith, the models developed with solid elements are composed of four linear and two quadratic elements through the
core thickness, whereas one element per face sheet is used in all the cases. As seen from Table 16, the frequencies calculated
with the FSDT models and LWT model exploiting the FSDT assumptions at each layer are in good agreement with those
obtained analytically using the high-order theory within the equivalent single-layered plate in the paper [79]. While the
mixed shell-solid models result in the lower frequencies, compared to the results in [79], they are close to values obtained
with the HSAPT assumptions in [81]. The relative differences between the finite element results and the analytical solutions
in [81] are presented in Fig. 12. It is obvious that the HSAPT models enable the capture of the transverse flexibility of the core
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and, therefore, are more accurate for modelling sandwich plates than models based on the FSDT assumptions within both
the ESL and LW concepts. The mode shapes associated with the natural frequencies of soft-cored plates may include
pumping (symmetric) modes relating to the changes of the plate height. Several of such modes similar to those presented in
[82] are shown in Fig. 13. It is necessary to note that the core is excluded from the figures for the sake of clearness. Thus, the
mixed FE models using the solid elements for the core and shell elements for the face sheets are more preferable for modal
analysis of sandwich plates.
6. Conclusions

The FEM is considered herein as one of the most effective methods allowing the handling of a variety of plate models in a
unified manner. The finite element predictions of natural frequencies and appropriate mode shapes of isotropic, anisotropic,
laminated and sandwich composite plates are carried out. The known plate theories are implemented into various
computational models developed within the finite element package ABAQUSTM in order to evaluate the accuracy of
kinematic assumptions utilized. The obtained results of the finite element studies are consistent with earlier known
analytical, experimental and numerical solutions for free vibrations of selected plates. Comparisons of the results lead to the
following general conclusions:
�
 The ideas of the CPT, which are implemented in the thin shell elements with Kirchhoff constraints S8R5(S9R5) and
general-purpose shell elements S4(R), are very suitable for performing the free vibration analysis of isotropic and
orthotropic thin plates. Nevertheless, it should be noticed that the latter elements are first-order and therefore they
demand a finer mesh than the former ones.
�
 In order to analyze accurately the modal response of thick isotropic and orthotropic plates, the FE models using the FSDT
assumptions within the thick second-order shell elements S8R and linear continuum shell elements SC8R can be
exploited. At the same time, the models based on the general-purpose linear shell elements S4(R), which use the FSDT as
a suitable option, are less accurate especially in the prediction of high frequencies of thick plates. The use of 3-D models,
generated by the first- C3D8(R,I) or second-order C3D20(R) solid elements, demands a very fine mesh, and consequently
has a much high computational cost than other models.
�
 The thin shell elements S8R5 endowed by the CPT were inadequate for prediction of the frequencies of layered plates,
while they can be recommended in cases of extremely thin laminates. The slight increase of accuracy for laminated plate
frequencies was gained by using the general-purpose shell element S4(R). The thick shell S8R and continuum shell SC8R
elements, where the effect of transverse shear deformation is taken into account by means of the FSDT, gave satisfactory
results for moderately thick and thick laminated plates. However, the obtained solutions with application of FSDT within
the single-layer laminate concept in S8R and SC8R are not good when the degree of material anisotropy (E1=E2 ratio)
increases. Comparison of the results computed in this paper with solutions known in the literature leads to the
conclusion that only FE models developed with stacked through-the-thickness elements can provide more accurate
results. The models of the continuum shell elements SC8R, stacked into an appropriate sequence in the thickness
direction, are associated with the layer-wise approach, where the FSDT assumptions for each layer are assumed. Such
models can capture more correctly variations of transverse shear deformations that yield a high enough prediction
accuracy of the natural frequencies of laminated plates and allow one to attain the CPU time at a reasonable level with
increased accuracy in comparison with the 3-D models. In the case of multi-layer plates, the use of 3-D models becomes
numerically prohibitively expensive.
�
 The general approach adopted for the analysis of sandwich plates implies that they can be assumed as three-layered
structures. Thereby, the FE models applied to laminates are suitable for the free vibration analysis of sandwich plates.
Nevertheless, the models using only shell elements based on the FSDT have not shown a good agreement with the
analytical solutions and experimental data in the case of soft cores. This is connected with the extremely different
properties of the constituents composing a sandwich plate that leads to non-identical displacements in the face sheets
and, as a result, a nonlinear deformed pattern through the sandwich thickness. Hence, in order to predict the frequencies
of sandwich plates with greater accuracy, the application of FE models involving solid elements can be more preferable.
However the latter models demand a very fine mesh and, therefore, they are often extremely computationally expensive.
As an alternative to those 3-D models, the models using conventional or continuum shell elements for the face sheets
and solid elements for the core can be considered. The advantages of these FE models are not so high computational cost
and realistic predictions in accordance with the HSAPT.

In general, an analyst can choose a suitable finite element model depending on the requested accuracy and available
numerical possibilities. However, since the FE technique is a method based on an idealization of geometry, the results will be
as accurate as the idealization. Thus, mesh sensitivity needs to be considered for preliminary assessments of results. Besides,
from the engineering point of view the FSDT is still an attractive approach in FE modelling due to its simplicity and low
computational cost. Moreover, it is well recognized that the FSDT gives adequate solutions for global structural behavior e.g.
transverse deflections, fundamental frequencies and modes, and critical buckling loads. At the same time, it is necessary to
remember that this theory is inadequate for the accurate predictions of local responses such as modes and frequencies
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corresponding to thickness-stretch deformation (warping cross-section effect), interlaminar effects, face sheet-to-core
debonding, and wrinkling phenomena of face sheets, etc. In such cases more sophisticated FE models like the models based
on the LWT for laminates or the HSAPT for sandwich plates are required.
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