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Floquet states and persistent currents transitions in a mesoscopic ring
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We consider the effect of an oscillating potential on the single-particle spectrum and the time-
averaged persistent current of a one-dimensional phase-coherent mesoscopic ring with a magnetic
flux. We show that in a ring with an even number of spinless electrons the oscillating potential has
a strong effect on the persistent current when the excited side bands are close to the eigen levels of
a pure ring. Resonant enhancement of side bands of the Floquet state generates a sign change of
the persistent current.
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Mesoscopic systems subject to a periodic in time, ex-
ternal driving force are now of considerable interest.
This is illustrated by work concerning low frequency ac-
transport1,2, photon-assisted tunneling3–6, and quantum
pumping7,8. This list could easily be extended. Elec-
trons interacting with a time-dependent potential9 can
gain or loss energy and thus the electron system has no
stationary states and, in particular, there is no station-
ary ground state. However if the external potential is
periodic in time we can describe the state of a system
using the Floquet function10–12 which is a superposition
of wave functions with energies shifted by nh̄ω (here n
is an integer; ω is the frequency of the driving poten-
tial). The existence of many components (side bands) of
a wave function has a strong effect on the properties of
a mesoscopic system. For instance, side bands open up
additional channels for transmission through the meso-
scopic system - photon assisted transmission (see e.g.,
Refs. 11,12). The existence of side bands is also a neces-
sary condition for pumping charge through an unbiased
mesoscopic sample13.

The aim of the present paper is to investigate the prop-
erties of a phase-coherent mesoscopic ring in the Floquet
state. We are interested in the coherent properties of the
Floquet state of a ring structures with an oscillating po-
tential. In a ring structure the wave functions must not
only be periodic in time but also periodic in space. As a
consequence a ring, in the presence of an Aharonov-Bohm
flux14 Φ exhibits a persistent current15–19 . The persis-
tent current is a signature of the coherence of the ground
state of a mesoscopic ring20. Therefore, it is intersting
to investigate how the persistent current is affected by
a time-dependent potential. We find that under certain
conditions the system exhibits transitions between the
different components of the Floquet state. Our analysis
shows that the absolute value of the amplitudes of the
side bands of the Floquet states are strong functions of
frequency and of flux. As a consequence the persistent
current displays transitions as a function of frequency

and flux.
Let us consider the time-dependent Schrödinger equa-

tion for an electron wave function Ψ(x, t) on a circle of
circumference L threaded by an Aharonov-Bohm mag-
netic flux Φ with an oscillating delta-function potential

ih̄∂Ψ(x,t)
∂t = Ĥ(x, t)Ψ(x, t),

Ĥ(x, t) = − h̄2

2m

(

∂
∂x − 2πi Φ

Φ0

)2

+ V (t)δ(x),

V (t) = 2LV cos(ωt).

(1)

Here Φ0 = h/e is the magnetic flux quantum. To
solve this equation we will use the method of Floquet
functions11,12. Because the Hamiltonian Ĥ depends on
time the system has no stationary eigenstates. Since the
Hamiltonian is periodic in time, the states of Eq.(1) can,
according to the Floquet theorem, be represented as a
superposition of wave functions with energies shifted by
nh̄ω

ΨE(x, t) = e−iEt/h̄
∞
∑

n=−∞

ψn(x)e−inωt. (2)

By analogy with a pure ring problem we choose the
functions ψn(x) in the following form

ψn(x) = e2πi Φ
Φ0

x

L

(

ane
iknx + bne

−iknx
)

. (3)

Here kn =
√

2mEn/h̄
2 and En = E + nh̄ω. The coordi-

nate x is directed along the ring 0 ≤ x < L. Note, that
for the evanescent modes (En < 0) we put kn = iκn with

κn =
√

2m|En|/h̄
2.

On a ring the Floquet eigenfunction ΨE must be pe-
riodic in x. In addition its derivative is discontinuous
at the delta function barrier. Thus ΨE is subject to the
following boundary conditions
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ΨE(x, t) = ΨE(x + L, t),

∂ΨE(x,t)
∂x

∣

∣

∣

x=+0
− ∂ΨE(x,t)

∂x

∣

∣

∣

x=L−0

= 2m
h̄2 V (t)ΨE(0, t).

(4)

These boundary conditions define the discrete set of Flo-
quet eigenenergies E(l) (where l is an integer) and cor-
responding Floquet eigenfunctions ΨE(l) which are char-
acteristic for the ring problem. The quantization of the
Floquet energy in a finite-size system is quite analogous
to the quantization of an energy in the time-independent
problem. In addition each Floquet state can be occupied
by only one electron (because of the Pauli principle) and
thus the wave function ΨE must be normalized

1
T

T
∫

0

dt
L
∫

0

dx|ΨE |2 ≡
∑

n

L
∫

0

dx|ψn|
2 = 1. (5)

Here T = 2π/ω. Furthermore, note that usually the Flo-
quet energy E is determined within the interval 0 ≤ E <
h̄ω. However in our problem it is convenient not to re-
duce the discrete set of E(l) to this interval.

Substituting Eq.(2) and Eq.(3) into the Eqs.(4) we ob-
tain the following relations between coefficients an and bn
of the Floquet function ΨE corresponding to the Floquet
energy E

anAn + bnBn = 0,

anAn − bnBn =

−i 2υ
kn

(an−1 + bn−1 + an+1 + bn+1).

(6)

Here we have introduced

An = e
−2πi Φ

Φ0 − eiknL,

Bn = e
−2πi Φ

Φ0 − e−iknL,

υ = mLV
h̄2 .

(7)

Eqs.(6) couples amplitudes of different index n. As
a consequence we obtain an infinite system of uniform
linear equations for the coefficients an and bn (n =
0,±1,±2, . . .). To have a nontrivial solution the corre-
sponding (infinite range) determinant must be equal to
zero. This condition defines the allowed values of the
Floquet energy and the corresponding set of coefficients
an and bn.

Using the method of continued fractions21 the calcu-
lation of an infinite range determinant can be greatly
simplified. To this end we rewrite the first equation of
Eqs.(6) as follows

bn = −an
An

Bn
, (8)

Substituting the above relation into the second equation
of Eqs.(6) we obtain a recursive equation for the coeffi-
cients an. It is convenient to introduce new quantities xn

(n 6= 0)

xn =
1

υ

an

an∓1

sin(knL)

sin(kn∓1L)

Bn∓1

Bn
. (9)

Here and hereafter the upper (lower) sign is for n ≥ 1
(n ≤ −1). In terms of the xn the recursive equation
reads

xn =
sin(knL)

knDn − υ2 sin(knL)xn±1
, (10)

where

Dn = cos

(

2π
Φ

Φ0

)

− cos(knL). (11)

We can write the solution of Eq.(10) in the form of a
continued fraction

xn =
sin(knL)

knDn − υ2hn±1

kn±1Dn±1−
υ2hn±2

kn±2Dn±2−
υ2hn±3

...

. (12)

Here hn±1 = sin(knL) sin(kn±1L), Using the quantities
xn and Eq.(9) we can express any an through the a0

an = a0υ
|n|Bn

B0

sin(k0L)

sin(knL)

n
∏

j=±1

xi, n 6= 0. (13)

The corresponding relation between bn and b0 can be
easily obtained from the above equation and Eq.(8).

Now we can write down the equations containing only
a0 and b0. Using Eqs.(6) for n = 0 and expressing a±1

and b±1 in terms of a0 and b0, respectively, we get

a0A0 + b0B0 = 0,

a0A0 − b0B0 =

−i 2υ2

k0
(x−1 + x+1)(a0 + b0).

(14)

This system of equations has a nontrivial solution if its
determinant equals to zero

k0

[

cos
(

2π Φ
Φ0

)

− cos(k0L)
]

−υ2(x−1 + x+1) sin(k0L) = 0.

(15)

The solutions k
(l)
0 (l = 0,±1,±2, . . .) of this (dispersion)

equation give us a set of allowed Floquet eigenenergies

E(l) = (h̄k
(l)
0 )2 /(2m) and corresponding side bands E

(l)
n

= E(l) + nh̄ω.
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Note, that in the absence of an oscillating barrier
(υ = 0) we obtain the well known spectrum of a per-
fect ring with a magnetic flux

E(l)(Φ) =
h2

2mL2

(

l +
Φ

Φ0

)2

. (16)

For a weak potential (υ → 0) the Floquet energies are
close to those given by Eq.(16).

The main component (corresponding to the energy
E(l)) of the Floquet wave function has a large ampli-

tude: a
(l)
0 and/or b

(l)
0 ∼ 1. This is due to constructive

interference in the ring. In the general case, the am-

plitudes of side bands (corresponding to energies E
(l)
n ,

n 6= 0) are small due to destructive interference. They are

a
(l)
n , b

(l)
n ∼ υ|n| for a weak potential and a

(l)
n , b

(l)
n ∼ υ−|n|

for a strong potential. Mathematically the effect of in-
terference in a ring is described by Eq.(15) (for the main
component) and by the denominator in Eq.(10) (for the
side bands). However there is a special (resonant) case
when the amplitude of a particular side band with an en-

ergy E
(l)
nr

is comparable with the amplitudes of the main
component (corresponding to the energy E(l)). This is

the case when the energy E
(l)
nr

of the side band is close

to another Floquet eigenenergy E(l′). Note that at the

same time the corresponding side band E
(l′)
−nr

is close to

E(l).
To determine the Floquet wave function ΨE(l) we need

to know a
(l)
0 (then the coefficients b

(l)
0 , a

(l)
n and b

(l)
n can be

found from Eq.(8) and Eq.(13)). We find this coefficient
from the normalization condition Eq.(5). Substituting
Eqs.(2), (3), (8), and Eq.(13) into Eq.(5) we obtain

|a
(l)
0 |2 =

1

L

sin2(k
(l)
0 L/2 − πΦ/Φ0)

Z(l) sin2(k
(l)
0 L)

, (17)

where

Z(l) =
ξ
(l)
0

sin2(k
(l)
0 L)

+
∑

n6=0

υ2|n| ξ(l)
n

sin2(k
(l)
n L)

n
∏

j=±1

|x
(l)
j |2,

(18)

and

ξ
(l)
n = 1 − cos(k

(l)
n L) cos

(

2π Φ
Φ0

)

+
sin(k(l)

n
L)

k
(l)
n L

[

cos
(

2π Φ
Φ0

)

− cos(k
(l)
n L)

]

.

(19)

Next we consider the current carried by the Floquet
state ΨE(l) . We will concentrate on the time averaged
(dc) current Idc. To this end we integrate the quantum
mechanical current

I[Ψ] = i
eh̄

2m

(

Ψ
∂Ψ∗

∂x
− Ψ∗∂Ψ

∂x

)

−
e2

m
AΨΨ∗, (20)

(where A = Φ/L is a vector potential) over the time pe-
riod T = 2π/ω

I
(l)
dc =

1

T

T
∫

0

dtI[ΨE(l)(x, t)], (21)

and obtain

I
(l)
dc =

eh̄

m

∑

E
(l)
n >0

k(l)
n

(

|a(l)
n |2 − |b(l)n |2

)

. (22)

Note that the evanescent modes do not contribute to the
current, therefore we sum over the propagating modes

only (E
(l)
n > 0).

Now we can analyze the effect of an oscillating poten-
tial on the electron wave function and the corresponding
quantum mechanical current. From the discussion given
above, it follows that the oscillating potential has in gen-
eral a weak effect on the wave function which is mainly
determined by interference due to the ring geometry. But
as we already mentioned this is not the case at resonance
when the difference between two Floquet eigenenergies is
an integer number of the energy quantum h̄ω.

The resonant frequencies are determined by the level
spacing. In the perfect ring investigated here the spec-
trum has special features. Especially at zero flux (or
multiples of Φ0/2) we have levels crossing each other.
Consequently for small flux there are two energy scales
which determine the resonant frequencies. The first scale
is the (large) level spacing ∆(l) = E(l+1) - E(l) that is a
common feature of all finite-size systems. For a small
enough sample L → 0 the corresponding resonant fre-
quency is large ω∆ = ∆(l)/h̄ ∼ L−2 → ∞. The second
scale is determined by the magnetic flux dependent sepa-
ration δ(l)(Φ) = E(l)(Φ) - E(−l)(Φ) between levels which
are degenerate (in pairs) at zero flux (or at multiples
of Φ0/2) given by E(l)(0) = E(−l)(0) (see Eq.(16)). This
energy scale is a specific feature of ballistic, perfect, ring-
like structures. The nth resonance δ(l)(Φ) = nh̄ω occurs
(in the case of a weak potential) at

ω =
2∆(l)

nh̄

Φ

Φ0
. (23)

Note that at this condition the nth side band E
(−l)
n is in

resonance with E(l) and vice versa: the −nth side band
E

(l)
−n is in resonance with E(−l).
From Eq. (23) we can see that at small magnetic flux

Φ → 0 the resonant frequency is small even for a small
ring. Thus we conclude that even a slowly (adiabatically)

ω ≪ ∆/h̄, (24)

oscillating potential can essentially influence electronic
properties of a ring at small Φ → 0 (or at Φ → Φ0/2)
magnetic fluxes. This regime is of interest in the present
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paper. In what follows we describe numerical results con-
cerning the Floquet states in a ring with a small magnetic
flux.

Let us consider a ring at zero magnetic flux with
a delta-function potential oscillating with a fixed fre-
quency ω. In this case the Floquet eigenenergies E(l) =

(h̄k
(l)
0 )2/(2m) (where k

(l)
0 is a solution of Eq.(15)) are the

same as for a pure ring Eq.(16). This is because the time
averaged potential is zero.

Further, we choose some pair of degenerate (at Φ = 0)
Floquet energies E(l) and E(−l). Because of interference
the main component ψ0 of the Floquet wave function

has a considerable amplitude: b
(l)
0 ∼ 1/L, a

(−l)
0 ∼ 1/L

(all other coefficients are close to zero). Now we in-
crease the magnetic flux which causes the levels E(l)(Φ)
and E(−l)(Φ) first to follow the energies of a pure ring
Eq.(16). However close to the first resonance Φ ∼
Φ0h̄ω/(2∆(l)) they ”interact” with the corresponding

side bands (E
(−l)
+1 and E

(l)
−1, respectively) and show an

avoided crossing behavior.

0.00 0.01 0.02 0.03 0.04 0.05
Φ/Φ0

3.8

3.9

4.0

4.1

4.2

E0

E+1

E-1

E-2

FIG. 1. The dependence of the Floquet eigenenergy E0

= E(l) and some side bands En = E(l) + nh̄ω (solid lines; n
= −2, −1, 0, +1) on the magnetic flux Φ. The width of the
solid lines is proportional to the probability of occupation of
the corresponding side band. The energy and magnetic flux
are given in units of ǫ0 = 4π2h̄2/(2mL2) and Φ0 = h/e, re-
spectively. The parameters are: l = 2; h̄ω = 0.1ǫ0; υ = 0.05.
In addition the Floquet eigenenergy E(−l) with side bands
(n = −1; 0;+1; +2) are also depicted by thin dotted lines. For
comparison the eigenenergies ǫ0 (l ± Φ/Φ0)

2 of a pure ring are
depicted by thin dashed lines.

Close to resonance, because of constructive interfer-
ence on the ring, the amplitude of the wave function cor-
responding to the first side band considerably increases22:

a
(l)
−1 ∼ 1/L and b

(−l)
+1 ∼ 1/L. The same occurs at the

higher resonances. Thus we can say that at the resonance
the Floquet state corresponds to an electron equally dis-

tributed between two states with energies shifted by nh̄ω
(for the nth resonance). This is evident from Fig.1 where
we depict the dependence of the Floquet energy E(l) and
some side bands on the magnetic flux. The width of the
solid lines is proportional to the square of the absolute
value of the amplitude ( the probability of occupation )
of the side band of the Floquet state.

We see that with increasing magnetic flux the particle
belonging to some Floquet eigenstate undergoes a tran-
sition between states with an opposite direction of move-
ment. For instance, let us assume that at zero magnetic

flux Φ = 0 the particle is in state E
(l)
0 with a

(l)
0 = 0

and b
(l)
0 = 1/L and thus it carries a diamagnetic current

I
(l)
dc < 0 (see Eq.(22)). Then after the first resonance (see

Fig.1) it passes into the state E
(l)
−1 with a

(l)
−1 = 1/L and

b
(l)
−1 = 0. In this case the particle carries a paramagnetic

current I
(l)
dc > 0. Correspondingly, after the second reso-

nance (Φ ∼ Φ0h̄ω/∆
(l)) the particle undergoes a transi-

tion into the state E
(l)
+1 with a

(l)
+1 = 0 and b

(l)
+1 = 1/L and

it again carries a diamagnetic current, and so on. Such
a behavior has a strong effect on the persistent current
carried by the (spinless) electrons on the ring.

Surprisingly, the pair of electrons occupying two Flo-
quet sates E(l) and E(−l) carry exactly the same current
as in the case of a pure ring:

I
(l)
dc + I

(−l)
dc = −2I0

Φ

Φ0
, (25)

where I0 = eh/(mL2). Therefore the oscillating delta-
function potential has no effect on the persistent current
in a ring with an odd number Ne of (spinless) electrons

Iodd = −NeI0
Φ

Φ0
, |Φ| < Φ0/2. (26)

However this is not the case for a ring with an even
number of electrons. In this case the current Ieven is
mainly determined by the ”unpaired” electron in the
highest occupied Floquet state. As we discussed above
the current carried by this electron oscillates with a large
amplitude. In the low frequency limit (see Eq.(24)) of in-
terest here the period δΦ ∼ Φ0h̄ω/(2∆(l)) of these oscil-
lations is much smaller than the magnetic flux quantum
Φ0.

In Fig.2 we depict the dependence of the persistent
current on the magnetic flux in a ring with four (Ieven)
and five (Iodd) electrons.
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-2
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0

1
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0.00 0.01 0.02 0.03 0.04 0.05Φ/Φ0

Ieven

Iodd

FIG. 2. Persistent current in a ring with an even Ieven

(Ne = 4; solid line) and an odd Iodd (Ne = 5; dashed
line) number of electrons. The current is given in units of
I0 = eh/(mL2). The parameters are the same as in Fig.1.

We would like to emphasize that the behavior of the
persistent current in a ring with an even number of elec-
trons is due to an interplay between the interference in a
ring and the excitation of side bands by an oscillating po-
tential. The persistent current reflects the behavior of a
single Floquet state. The interaction with an oscillating
potential can not lead to transitions between the differ-
ent Floquet states. As a consequence the particle stays in
the same Floquet state when the magnetic flux changes.
Because of interference the particle losses or gains some
energy quanta h̄ω which brings it into the appropriate
sub state of the Floquet state when the magnetic flux
goes through the resonant value.

However the interaction with an environment can lead
to transitions between different Floquet states. In this
case the particle will relax to the lowest unoccupied Flo-
quet state corresponding to a given value of a magnetic
flux and the peculiarities of Ieven will be diminished. This
effect will be considered elsewhere.

We remark on an essential difference between the os-
cillations of the persistent current investigated here and
the oscillations of a persistent current with a period of
Φ0. In the ballistic case the energy is quadratic in the
magnetic flux Eq.(16) and the properties of a ring (in
particular, the persistent current) become periodic in Φ
(with a period of Φ0) only because of the relaxation to
the state with a minimum energy (for a more detailed
discussion see23). In contrast, the oscillations of interest
here (see Fig.2 ) occur if only the system stays at the
same Floquet state (when the magnetic flux changes).

In the present paper we have considered a perfect ring.
But the effect under consideration is quite general be-
cause it is due to a competition between the quantum
mechanical interference and the excitation of side bands
by an oscillating scatterer. In particular, in the presence

of disorder there is no level degeneracy16. However the
oscillating scatterer can still generate transitions between
the different components of the Floquet state (and thus
can affect the persistent current) if only an appropriate
resonant condition is fulfilled: nh̄ω = E(l)(Φ)−E(l+1)(Φ)
(here E(l)(Φ) are energy levels in a ring with disorder).
The only difference from the perfect ring case is that (in
the low frequency limit) the transitions are due to many
photon processes: n≫ 1.

In conclusion, within the framework of the Floquet
states approach we have considered the effect of an oscil-
lating delta-function potential on the persistent current
in a ring of noninteracting spinless electrons threaded by
a magnetic flux. We have found an unusual strong parity
effect in a weak magnetic flux. The current in a ring with
an odd number of electrons is diamagnetic and exactly
the same as in a pure ring. In contrast the current in a
ring with an even number of electrons oscillates in sign
with a large amplitude and with a small (compared with
Φ0) period.

This work is supported by the Swiss National Science
Foundation.
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