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AHHoTanusi. B cratee 0OCyXZaroTCsi METOABI MOCTPOEHHS KHHETHYECKOTO YPABHEHHS TEXHOJOTMYECKOIro IIpolecca.
[IpencraBnena Mojellb B3aUMOAEHCTBUS MPEAMETOB TpyJa C TEXHOJOTHYECKMM OOOpYIOBaHHEM, IOJIOXKEHHAs B OCHOBY
BBIBOJIa KWHETHUYECKOI'O ypaBHEHUA. PaccMOTpeHbI YHCICHHbIE XapaKTePUCTUKH, ONUCHIBAIOIINE COCTOSHUE NMPOU3BOACTBEH-

HOM JIMHUH.
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Abstract. The paper discusses methods of constructing the kinetic equation of the technology process. The article presents a
model of the interaction of objects of labor with technological equipment, which is the basis for the derivation of the kinetic
equation. To describe the state of the production line introduced numerical characteristics.

Keywords: kinetic equation, the production line, mass production, work in progress, balance equations, quasi-static process,

stochastic process.

Problem statement and analysis of recent publications

Modeling complex dynamic production processes is an
effective method of research [1,2]. One of widespread classes
form the production systems, in which character of the
observable production processes has stochastic nature [2, 3, 4,
5, 6]. Regularities of inherent equilibrium states in production
systems in many ways similar to those that take place in the
physical (thermodynamic) systems [7, 8]. They appeared so
deep and useful, that were proclaimed as some general
principles for the thermodynamics and production systems:
Le Chatelier-Samuelson, Carnot-Hicks [9]. On the basis of
the principles of the functioning of modern mass production it
can be represented as a stochastic process, during which the
manufacturing system changes from one state to another
[6,10]. The production process state is determined by the state
of the overall number N of items of work [6]. In transition of
the object of labor from one state to another, there is a
transformation of resources (raw material, materials, living
labor) in the prepared product as a result of purposeful
influence of equipment. State j-th object of labor in the phase
space will be described by state parameters

SJ :(Sj,lvSj,21"'!sj,av""sj,A)’
,le :(,uj,l!;uj,z!"'!/uj,av'-'v,uj,A)l
where S;, (USD) value of the transferred o - of the

technological resource or part thereof for the j-th subject of
work, u;, (USD /hour), the intensity of the transfer value of
a - of the resource to the j-th subject of work, 0< j<N,

O<a <A [6]. The state of parameters of production process
in some moment of time will be defined, if the parameters of

the state of the object of labor are defined (S,, 74,....Sy . iy )
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and the objective function J(t,§j,ﬁj) [11,12], and at any

other time it is found from the equations of states of objects of
labor [6,12]. However, if the number of objects of labor N is
much greater than unity, then decide System of N, equations
second order is practically impossible [13, 14]. The last
clarification requires a transition from the object-process
description (micro-description) to aggregated streaming
(macroscopic) description with the elements of probabilistic
nature. The main difficulty in this specification is to highlight
the characteristics of the parameters of states [15] objects of
labor [1,6], which could be measured in the study of the
actual production processes [12, 13]. Instead of considering
the state of the production process with the parameters of the

state of the objects of labor (S, z,... Sy, iy ) » We will enter
normalized discrete phase function of distribution of number
N objects of labor in the phase space (t,S, 1) [6,16].

Each point in the space of states [15, 16, 17] will set
the state of the object of labor. It is reasonable to expect that
at large N (N ~10pc. [18], [13]) function is well approxi-
mated by a continuous phase distribution function of the
objects of labor x(t,S, ) by the states [6, 16, 19, 20]. If the
production system produces the K kinds of products [21,
p.445], K=10, then it will be required to get a distributing
function for every k-th species (t,§,,[1), (k=1..K).
Before considering the multi-axis (multiresource, 0 <a < A)
model of the production process, in interoperational reserves
of which there are parties of K of types of interactive with
each other and with an equipment wares), we examine
patterns of processing batches N objects of the labor of one
kind (N >>1). We suppose that processing occurs over

successive the M operations generalized production line

“ABTOMAaTH3MPOBAHHBIE TEXHOJIOTMH ¥ TIpon3BoacTBa™ — Nel, 2016



O e >O>
n, b s L TR b L ET]
1 M-
CepuiAHan NKMHKMA
myy my> My, b
by LM N

CEopoYHBIA yHacToOK

OO e =O}

iz g 22 228, by
21 -

:"?l'|||

-4
< m "y
/ 11 .h| ' 12

> ﬂ < PasaenuTenbHbli

moo m "\\\\\y‘-IaETDK

= OO
miay - mss

Mo

mg2
0l

Fig. 1. Scheme of flows of objects of labor (m - equipment and -buffer), [23]
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Fig. 2. The unit cell of phase technological space

(fig. 1), (M >>1) [23]. The obtained patterns are common

for both single-threaded and multi-threaded lines with a wide
variety of resources [10, 23].

The construction of a kinetic equation of the production
system

We will break up phase space on such number of cells,
that sizes of cell AQ=AS*Au will contain into itself the
large number of the objects of labor (fig. 2). It is possible to
conduct the estimation of amount of wares in a cell
AQ=AS*Apu . For the process, which consists of M ~100

[13], M =250 [23, p.4589], M =300 [21, p. 445] operations
with the number of items of work in progress N ~10° [25],
N ~10* [13], m-th operation in the reserve contains the

average number of items of work ('V%\l)zlos’. Influence of

the number of operations M on the accuracy of calculations is
investigated in [6, p.23], where an analysis of the calculation
results obtained using DES- and PDE-models for M = 50 (

N ~10*), operations with satisfactory accuracy. Along with
M=50 a comparative analysis is executed for M = 10
operations. It is shown that this amount can be used for a
rough approximation. Instead of fixing the exact parameters
of objects of labor, we will approximately describe the state
of the production process using the number of objects of labor
in cells AQ with the coordinates of the parameters of the
object of labor, S; €[S,S+AS], yj € [u, u+Au] (fig. 2).

If the cell size is small enough, the approximate de-
scription will carry the equally detailed information as
accurate does. For the technological process, consisting of
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several hundred operations it is reasonable to go to the
continuous description of the parameters, that describe the
operation, considering along with [23] the main limit when
N — oo and the limiting case of M >>1. Due to the fact that
the product of y(t,S, ) *dQ is the number of items of work

in the cell dQ phase space with coordinates
S; €[S, S+AS], yj €[p, u+ Ay, the integration over the
volume Q of the phase space (S, ), gives the total number N

of items of work that are in progress [6, 19]:

Sgoo Sgo0

Ijz(t,s,u)d;MS=N, Q:”dms, )
00 00

where S; (USD) - the cost of the product. The limits of
integration S=0and S = S, specify the range of change in

the coordinates S, S €[0,S;] which determines the position of
the object of labor along the technological route. We will
accept (1) as a condition for the normalization of the phase
distribution function y(t,S, ) items of work over the states
[6, 16, 19, 20], which is the law of conservation of articles in

the production process [6]. We introduce a numerical
characteristics

[ 20,8, 0 =2 @
0

that reflect the essential features of the distribution of the
states of the objects of labor that are in progress. Features (2)
for the distribution function x(t,S,z), we will define as
moments of k-th order [20, s.906]. Often the problem can be
solved using numerical characteristics, leaving aside the laws
of distribution.
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Numerical characteristics and method of moments as-
sociated to them play an important role in the construction of
many of the statistical theory of dynamical systems [6].
Essential value in the models of the production process are

the zero [yl =[x]o(t.S)and the first [y}, =[x (t.S)
moments of the distribution function of the states of the
objects of labor [19] which determine density of distribution
on the positions of objects of labor and the rate of processing
operations on objects of labor [26, ¢.37]. The change of the
distribution function y(t,S, ) of the states of the of objects

of labor is due to the stochastic nature of the interaction of
objects with the equipment and with each other [23, ¢.4591].
This interaction is characterized by function G(t,S, 1)

W%a,s,m @)

which takes into account spatial layout of equipment the laws
of impact of equipment on the subject of work for the purpose
of transfer of resources and mechanisms of interaction of
objects of labor with each other. The interaction of objects of
labor with each other is determined by the processing
priorities (processing rules FIFO, LIFO ...), and restrictions
on the technological modes. The total derivative in (3) means
differentiation along the phase trajectory of the object of
labor. If the motion of the object of labor in the state space is
deterministic and defined by the Euler equations for the
objective function of the production system [11, 12], the
equation (3) by virtue of the Liouville theorem becomes the
identity G(t,S, z) =0. We write a total derivative y(t,S, 1)
in the form

dy(t.S, ) _ xS, 1) 8z(t,S,ﬂ)*y+
dt ot oS

4
L ox(tS,4)  du @
ou dt
and represent the equation (3) as follows:

xS, 1) +61(t,8,ﬂ)*#+
ot oS 5)

LS ) B s ),

ou dt

Equation (5) u has the averaged intensity of transfer
resources on all subjects of labor dQ in the cell with
coordinates  Sj €[S,S+AS], yj €[, u+Au] [6]. Replace

d%t in (5) with the equations defining the normative
trajectory of the object of labor in the cell dQ [6,11,12, 16,

20],
d_yzg([l]n,,(t,s)}r
dt ol [xlo(t.S) ©)
U, 09 o [[m (t,S)J: ()
[x1o(t.S) oS\ [x]o(t,S)
ds
ﬂ=a,

where [z, (t,S) - the pace of processing of objects of labor

equipment at the point of the technological route with
coordinate S. Equation (6) connects the release of products in
place technological route, specified by the coordinate S and
the amount of necessary costs of technological resources to
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transform the object of labor. The ratio of the form (6) which
provides the connection with the cost of manufacture can be
determined as a function of the generalized manufacturing
equipment located in the designated area of a technological
route. The kinetic equation of technological process allows us
to describe the evolution of the transition state of the
production process to the equilibrium state:

ox(t,S, 1) N ox(t,S, 1) %t
ot OX

XS D w45y — (1,5, ),
ou

)

2(%,S,0) = y(x,S,0) =0.

The kinetic equation of the form (7) is used in [26]
(2003) in the construction of balance models of production
lines. At the same time the US Ringhofer in the study of the
production processes of the company "INTEL" got a kinetic
equation for quasi-static description of the production lines

oy (x,r,t) +1 oy (x,r,t) ~G(r.x1) ®)
ot r ox

where the coordinates of the phase space X, r - the degree of
incompleteness of manufacture of the product (corresponding
position), and the effective time of processing. Construction
of kinetic equations is one of the major problems of statistical
theory of production lines management systems [6,19,28].
The Kinetic equation (7), (8) takes on real sense after the
establishment of the form of function G(t,S, 1) . At motion of

the object of labor on a technological route, an equipment has
an impact on the object of labor, changing it qualitatively and
quantitatively. The stochastic process impact of equipment on
the object of labor is described by a distribution density

x//(t,S,ﬁy,,y,/,) of a random variable H, where ﬁw and s,

- the intensity of the transfer of resources to the object of
labor before and after exposure [27]. The cross-section
random process for regulatory trajectory, that characterizes
the rate of transfer of resources at time t at the point of a
technological route with the coordinate S is a random variable

[12] x4, with the distribution density z//(t,S,ﬁ,,,,yV,). The

probability that the result of the impact of the equipment on
the object of labor the value 4, would be in range

(45 44, +du, ) is the value w(t,S, 1, 14, )du, , and the total
probability of transition to any state is unity:

[wit.s iy, )du, =1. (©)
0

For regulatory technological trajectory that character-
izes the change of state of object of labor by treating the
transition from one generalized operation to another, the
mathematical expectation of the intensity of the transfer of

resources < ﬂw> for labor can be calculated:

[, v &S iy m)du, = (). (10)
0

Function '/’(t’s';‘w'ﬂw) is determined by the design
and technological documentation or as a result of the

experimental study [24] the state of object of labor in the
transition from one operation to another. Fig. 3 shows
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Fig. 4. The density of the arrangement of equipment A4,,,m(t,S), Apjan:(t, S), AS,, =1

the experimental technological trajectories Ty (x) , for a party

of 920 subjects of work in the phase space (x, r), which show
the dependence of the total effective processing time of the
object of labor from the place of treatment in the technologi-
cal route. Fig. 3 shows the histograms of the distribution of
the objects of labor on technological positions for different
periods of time (b —t =20, ¢ — t = 30, d — t = 40) since the
beginning of processing of party of wares. Measurements
were carried out on the production line for the production of
semiconductor products of the company "INTEL" [24] to
examine the impact of vibrations of the effective time
duration of processing on the duration of the production
cycle. This experimental data is sufficient to construct the
table function (//(t,S,ﬁy,,y,/,) which is approximated by a

smooth continuous function. At its construction, we consider
the technological process which consists of a sequence of
generalized operations. In the design of production lines to
provide the required performance are using a series-parallel
arrangement of generalized items of equipment (fig. 1) [23].
To account for the number of generalized equipment within
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the range of the generalized operation [S,_;,S,]- we
introduce the notion of density of equipment Ap(t,S)
along the technological route [0,S4].This is because each
generalized equipment unit consists of a plurality of sections,
modules, components, subassemblies and others separately
provided parts of common equipment distributed along a path
of processing the object of labor within the generalized
trajectory. The dependence on t in the function Apn(t.S).,
suggests the possibility of changing the amount of equipment
in the time interval of the production cycle, for example, due
to the on / off of reserve equipment units. Then the number of
generalized items of equipment at time t within the interval of
generalized operation [S,,_;,S,,](fig.4) can be defined as

17 -
N—J.ﬂ./,'//(t-svﬂ./,:ﬂ,//)dﬂw : (11)
mo
If the m-th generalized operation corresponds to only
one generic unit of equipment, respectively the integral (11) is
equal to one.
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Often, one generalized equipment can be represented
in the form of successive modules, each of which in order to
improve the performance of the operation has the ability to
duplicate. Suppose that up within the module is done the ratio

S,
[ Znom(t,5)dS = Rrg [5.1,851€ [ 1.5,

Sb—l
Srn
Iﬂnorm(tls)ds =1.
Sm—l
Then, for the m-th generalized operation with addi-
tional number n of modules rightly:

Sm

j/zp,am(t,S)dszun* 5 (fig.d) where Ao (t,S)dS -
St

the number of units of a generalized equipment on the
segment [S,S+dS]. In unit time a volume element
AQ=AS*Au, Sel[S,S+dS], u e[, 1+ du] was visited by
xS, 1)* u*du objects of labor on average, which have
experienced with the {Apjan(t, S)*dS*{x(t,S, 1) * p*du}

acts of impact of equipment at the objects of labor. The
probability that the result of the impact of the equipment on
the subject of work value of a random variable x will be in
the range of (i, z+dz) there is the value o(t,S, i, ) *du
and the total probability of transition to any state will be.

[otts. i mad =1. (12)
0

Thus, the number of objects of labor that are experi-
enced per unit time the impact of the technological equipment
and took random value in the range of (u,u+du) is the

product of the transition probabilities ¢(t,S, x, £)*dz on the
total number of objects of labor
Aptant(,S)*dS* x(t,S, 1) * u*dy , experienced the impact of
the equipment.
(/J(t! S, Hs ﬁ) *dﬁ ~kﬂ’Plant(t! S) *
*dS* y(t, S, u)* p*du.
The distribution density ¢(t,S, &, ) of a random var-

iable p can be expressed through the density distribution
y/(t,S,ﬁ,/,,yV,) of random variables , . With a uniform

(13)

transfer of resources for all N, objects of labor, are in-
process backlog of m-th generalized operation, the random
variables p and 4, associated functional dependence [28,
p.783], [29, p.117], [29, p.821]:

1= 1, *Ng' (14)
which assumes a linear law of increasing processing time of

the party of objects labor with increase of the size of the
queue N,. The distribution density ¢(t,S,z, ) of the

random variable x can be written as:
@, S, 1) = Ny *w (6,8, Ny * 1, N * 1) .+ (15)
The moments of a random variable u we write through
the moments of a random variable:

ol = [0t 8.7 ) =lvlo =1, (16)
0

14

0

[ - 1 N
[o]; ZIﬂ(D(t,S,ﬂ.ﬂ)dﬂ =N—ju,yw(t,8,u,,,uw)duw =
0

. (17)
[yl _ Ik (S)
No  [21o(tS)
P —!y o(t,S, i, 1)du = o
2 (18)
:[MJ 1+o'(§
[xIo(t,S) <ﬂw>2 ’
_°° k I _ vk
[e) —_([y o(t,S, i, p)dp = o 19

where o, - is the standard deviation of a random variable

74
4, . For many practical casesc% >=0.005...0.1 that
Hy

allows you to record approximately

_ [m(t,S)T
i ([l]o(tys) '

Along with the departure of (13) objects of labor from
the volume element dS*duz in the element of volume

dS*du objects of labor come from volume dS*dz in the
amount of:

(20)

P, S, 1, 1) * Apt™* Aprany (1, S) *dS * (¢, S, i)} * pr*dpr . (21)

After the integration of the difference between (13)
and (21) over a range of values of z , we obtain the change in

the number of objects of labor in the volume element dS*dyu
per unit of time
0 * dir* Aprany (t,S) *

0

- - - - (22)
* [0S, B * i 265,70 -8, 1, ) * 1 (4,8, )}
0
from which
L0, 0
ST ou
(23)

= 2ot [{ (68, B 10T (4, 2= 0(8, . 1 )20, 10}
0

For brevity we use the notation y = y(t,S,1),

[l =[xk @S), f=1(tS), Apant=2pian:(t,;S). Taking
into account (16), equation (23) can be written as:

oy ox . ox
Z+ L u+=f=G(,S, 1=
o T as X ” (t,S, 1)

2 (24)
= ﬂ'PIant{J‘[(p(t’ S,ﬁyﬂ)*lj*}((t, S,,lj)]*d/] —,u*;(}
0

For multidimensional description equation (24) can be
written as
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0 0§ i)+ 52 (0.5 5+ T8 (0.5, 5)
FAOS A+ == 2GS, )+ T(LS) aﬁz(t,slu)—

. (25)
Aprant(t,S)) [Tt St iz (8 S. i) — (1.5, ) .

0

The most interesting, from a practical point of view,
cases the density distribution ¢(t,S, 2z, z) does not depend on

the status of objects of labor, before exposure to the process
equipment. Then integration of the right-hand side of (24)
leads to a simplification of integro-differential equations:

0 0 0
Loy Lot = g (1, S, 1) Lk — 1 73 (26)
ot s ou

The conclusions

Integro-differential equation (24), (26) is a kinetic
equation that describes the processing of objects of labor
during their movement on the technological route, it was first
obtained in [26]. In the case where the intensity u is slowly
varying with time, x =y =const (quasi-static process), the
kinetic equation (24) takes the form:

oy 0O
E;{Jra—)g*# = Aptant *
~{[ Lot i) * 7 26, >0 - a* 23 27)
0

du
== £(t,5)=0,
m (t,S)

which is used in the quasi-static description of the technologi-
cal process [19,28]. From equation f(t,S)=const (6)

follows  [x],, (t,S) = const*[¢],(t,S), which requires

compliance with performance proportional to the number of
items of work the equipment in its in-process storage. It is
difficult to realize in practical terms, except for the case of

synchronization the equipment a%[;(]w (t,S) = 0. The kinetic

equation of the form (27) can be used to construct models of
synchronized production lines. It should be noted that the
equation

0

al(();,tr,t) +% a}(((;(),(r,t) =T(t, r)j[w(t,F)*;g(t,x, F)]*d—l; 3

—ot,r)* y(t,xr),
the right part of which is constructed using the method of
random phases, it was obtained in [27, p. 788]. Built on the
basis of its balance equations is used to study the synchro-
nized production lines for the production of semiconductor
products of "INTEL" company. Where T(t,r) - distribution

density of the random variable r, w(t,r) - the auxiliary phase

function [27, p.785]. The right side of the kinetic equation
(28) in [27, p.788] is written in general terms, it requires
further in-depth study of the effect as the features of
processing technology as well as layouts of components and
assemblies inside the unit of generalized equipment.

g (28)
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