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1. Introduction

The analysis of the scattering by resistive strips is an important subject in diffraction theory. This
geometry can be regarded as a suitable model of thin dielectric slabs and coating of finite length which
are often used for radar cross section (RCS) reduction. There have been several investigations on the
scattering by resistive/impedance strips based on high-frequency and numerical methods 1, 2]. In this
paper, we shall analyze the plane wave diffraction by a resistive strip using the analytical-numerical
approach [3] which is entirely different from the previous methods employed to solve the impedance-
related problems. Applying the boundary condition to an integral representation of the scattered field,
the problem is formulated as an integral equation satisfied by the unknown current density function.
Expanding the current density function in terms of the Gegenbauer polynomials by taking into ac-
count the edge condition, our problem is reduced to the solution of an infinite system of linear alge-
braic equations (SLAE) satisfied by the unknown expansion coefficients. These coefficients are deter-
mined numerically with high accuracy via truncation of the SLAE. The scattered field is evaluated
asymptotically and the far field expression is derived. Numerical examples on the total scattering cross
section and the monostatic RCS are presented and the far field scattering characteristics are discussed.
Some comparisons with a high-frequency technique are also given to validate the present approach.

The time factor is assumed to be e ™' and suppressed throughout this paper.

2. Formulation of the Problem

We consider a resistive strip as shown in Fig. 1, being illuminated by an E-polarized plane wave,
where the strip occupies the region || =/ of the y = 0 plane and is assumed to be infinitely thin. The
E polarization implies that the incident electric field is parallel to the z-axis.

Let the total electric field E,(r,y) be

E,(@,y)=E;(x,y) +Ej(r,y), 1)
where E}(z,y) is the incident field of E polarization given by
E:(x,y) ___e-ih(xcosei-usine)’ 0<0<r (2)

with k [=w(eqt)'"?] being the free-space wavenumber. The total field satisfies the impedance-type
boundary condition, as given by [4, 5)

E,(z, +0)=E (r,~0) = - ((Z/2)[H (x, +0) - H(x,-0)], |z} </, ©))

y .
A E;

Fig. 1. Geometry of the problem.
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where { is the resistivity and Z is the intrinsic impedance of free space. Using Green’s formula, we
can express the scattered field E (z,y) as ’

By =- [ femPee-27+yiar, @

where H{"(-) denotes the Hankel function of the first kind, and f(-) is the unknown current density
function defined as

f@@)=ikZ[H (x,+0) - H.(z,-0)]. ®
Taking into account the boundary condition as given by (3), we obtain from (1), (2), and (4) that
s 1
- S =2ic 0+ L [* fH eIz~ i ©®

Equation (6) is the integral equation to this diffraction problem.

3. Solution of the Integral Equation
Using the integral representation of the Hankel function, it follows that

HY iz =2 = [ ghee=n d"a. ")

where @ =Rea +ilma (=0 + it). The branch for 41 —a? is chosen such that Im J1-a?>0as lo|
— o_ Substituting (7) into (6) and taking the finite Fourier transform of the resultant equation over the
interval |z| </, we obtain the following integral equation in the spectral domain:

_ sm:c(ﬂ-#—cos@; 1 (= sink(@-p8) F(a)
{F@)=4i B+ co - ag-8 »[l—az

da, (8)

where
F@)= [ fae=rdn, r=k. ©)

Taking into account the edge condition for a resistive half—plane [S], the current density function can
be expanded in terms of the Gegenbauer polynomxal CY2(.)as

fa) = anc Ym), Inl<l, (10)
n=0
where f, for n=0, 1, 2, --- are unknown coefficients to be determined. Substituting (10) into (9) and
applying some properties of the Weber-Schafheitlin discontinuous integrals to (8), we derive the infi-
nite system of linear algebraic equations (SLAE) as in

—Um=rm+ZAmnfnp m=071,2;”', (11)
where ; n=0 !
~m+1J m1/2(KCOS 6)
m=— A 2ne@m + 1)(—ym1 B 12
7 x(2m + 1)(=i) ey (12)
App=[1+ (—D"’“‘](m + 1/2)(~1)" s (13)

o= T s e Seapd), memonm, 09

p=0 »=0
dV=(-1TK+p+ 1/2)1"(1> +K +3/2)
IIF(p+ DI +m+3/2)[p+n+3/2)I + 2K + 2)], (15)
dP=I(-p+KI® +1/2)p+3/2)

IFrG-K+m+3/2ro—K+n+3/2)'p+K + 2)), (16)

=2Ink+PPp+K+1/2)+Pp+K+3/2)-¥p+1) ,
~Yp+m+3/2)-Pp+n+3/2)-¥p+2K+2), 17
ue=0, uyg=1for K21 with K=(m+n)/2. (18)

In the above, I'(+) and [y /() denote the gamma function and the Bessel function, respectively,
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and ¥(-) is the psi function defined by
o 1 1

W(z)=—C+n§)(n+ 1 n+z

with C (= 0.57721566- - -) being Euler’s constant.

Our problem has now been reduced to the solution of the SLAE satisfied by the unknown coeffi-
cients f, for n=0, 1, 2, ---. By solving (11) numerically via appropriate truncation, these coefficients
are determined with high accuracy.

), z240,—1,-2,--- (19)

4. Scattered Far Field
Substituting the asymptotic representation of the Hankel function into (4) and carrying out some
manipulations with the aid of (10), we derive the scattered far field with the result that

EX0,0)~ | 2o 100(p), hrse, 20)
where (7, ¢) is the cylindrical coordinate defined by r=rcos¢, y=rsin¢ for ~rS¢ <7z, and
L2232 ] slecos o)
Op) = ), (i — (21)
KCOS @

n=0

5. Numerical Results and Discussion

Figure 2 illustrates the normalized total scattering cross se-tion (TSCS) o,/4/ as a function of nor-
malized frequency kI, where the incidence angle and the resistivity for numerical computation are
chosen as 6=45°% 90° and {'=0.1-10.27, respectively. The results for a perfectly conducting strip
({ = 0) have also been added for comparison. It is seen that the resistive strip gives a lower TSCS level
than the perfectly conducting case over the whole frequency range in the figure. Shown in Fig. 3 is the
monostatic RCS ¢/A [dB] as a function of incidence angle 8 with A being the free-space wavelength,
where the results for the resistive strip with {'=0.1—10.27 and the perfectly conducting strip (¢ = 0)
are again plotted. From the figure, we observe noticeable peaks at 6=90° due to the specular ref-
lection from the strip surface, and there appear some oscillations in the RCS characteristics for 2q =
41. Comparing the results for the resistive and perfectly conducting strips, it is seen that the RCS is
reduced for the resistive case. Figures 4 and 5 show comparisons with the results obtained by Herman
and Volakis [2]. It is seen from the figures that the agreement between the two methods is excellent
for 82 30° whereas there are some discrepancies near §=0°. Herman and Volakis use Clemmow’s
approach together with the extended spectral ray method for analyzing the problem. The discrepancies
near 8=0° is perhaps due to the fact that the higher order diffraction between the edges of the strip is
not taken into account in their analysis. :
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Fig. 2. Frequency dependences of the total scattering cross section o,/4l. Solid and dashed lines denote the
results for the resistive strip ({ = 0.1—10.27) and the perfec:ly conducting strip ({ = 0), respectively.

20 20
10 . ohsas 10 ]
g g o
3 ¢ 3 P /‘\\ ''''' ]
o 4 A
o iR b O golEn AR o -
:.10,..., F( e YN TV
2 ;
[ B T 20 |-
g g
g g
T | S| STy e, 330 st dmprs s
.40 -40
15 30 45 60 75 80 0 15 30 45 60 75 90
INCIDENCE ANGLE [deg] . INCIDENCE ANGLE (deg)
(a) 2l=2. » (b) 20=42.

Fig. 3. Monostatic RCS /A [dB] versus incidence angle 8. Solid and dashed lines denote the results for the
resistive strip ({'=0.1-70.27) and the perfectly conducting strip ({'=0), respectively.
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Fig. 4. Monostatic RCS 0/2 [dB] versus incidence Fig. 5. Monostatic RCS o/2 [dB] versus incidence
angle @ for 2[ = 0.52 and its comparison with the angle € for 20 =0.52 and ils comparison with the
results in [2]. -oooeeeeee {=-14; ———-- L =14, results in [2]. -oeeeeeeeee ({=01-10.27, —=-—-~ :
————— :{= 4 (this paper). «:{=—i4; A {=1i4; {=0.1+10.27; :{'= 1.1 (this paper).
3 :¢ = 4 (Herman and Volakis [2]). o {=0.1-1027, A:{=01+i027, CJ:L=1.1
(Herman and Volakis [2]).
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