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1. Introduction
In the lecture, three following types of integral equations (1.E.) are considered

]ﬂ(t){lnlf -1+ Ni(§, n;?)]df = fi(n), n€l-1, 1] (1)
~1
. /ap(qp) [m.z lsm (‘P —2‘”) + Na(o, 900;6)] dp = fz(‘/"o): o € [-a, o] " (2)

[ KB (el — zal)dz = fr(eo), 30 € (6, o) ®
0

Here p(£) are the functions to be found; {N;}%., and {f;}}., are known func-
tions; 9) () is the Hankel function of zero order; ¢ is a real parameter. In addition
functions (Nj, N}) € C and (fj, f}) € C belong to the class of continuous functions.

Equations (1), (2) are LE. of the 1-st kind with logarithmic difference kernel.
Equation (3) is an LE. of Wiener-Hopf type. In equation (2) both function Ay)
and kernel are periodic functions. : )

There is a lot of interior and exterios boundary-value diffraction problems which
may be reduced to equations (1)~(3). E.g., the problems of plane waves diffraction
by an infinitely thin strip and circular cylindrical screen may be reduced
to solution of LE. of the following type '

3
[ rOHPele - iyt = i), @

=
/ ptor? (e foin (2522 )|) do = fwe) ®

Here the unknown functions p(¢) and p(yp) are proportional to current density
on the screen, ¢ = ka = 2xa/) is the frequency parameter, o and a characterize

the geometry of the screens. As the function H{"(z) may be represented by
o
H{(z) = Zlnz + N(z), (8)
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where N(z) is a continuous function, it is clear that equations (4),(5) may be reduced
to equations (1),(2).

We shall construct the solutions of I.LE. (1)-(3) by means of the method of
orthogonal polynomials (O.P.) which is rather straightforward and general one. This
method is a particular case of more general scheme of Bubnov’s method applied
to LLE. but differs by two factors. It needs firstly to investigate preliminary the
structure of solution near the edge point of the domain of integration and secondly
to construct spectral expressions for singular parts of the kernels with orthogonal
polynomials as eigenfunctions.

The method of O.P. is widely used for solution of problems of the theory of
elastisity and continuous media mechanics [3-5]. Nevertheless, it has not yet found
applications in electromagnetic theory.

2.'LE. with Logarithmic Difference Kernel

At first let us consider L.E. (1). Assume the solution structure to be such that
p(€) satisfies the condition S

pE)  ~, -7 ™

That means p(€) has square—root singularity at the ends of interval {~1, 1].
It is well known that condition (7) follows from Meixner condition in diffraction
problems |1, 6}.

The following theorem takes place: If fi(n) € L;lz[—-l, 1; (1 —n?)"1/?] then the
unique solution czists of I.E. (1) such that p(€) = (1 — £3)~1/2(£) where p(£) €
L1, -¢)1).

Here L*-1,1;(1 - 7?)"1/2) is Hilbert space with scalar product defined as
Aaving weight function (1 — n?)~1/2,

Let us expand the unknown function p(£) as follows

p(€) =(1 - €)1 Pp(€) = (1 — )12 f‘, pnTa(€) (8)

n=0 g

whero {Tn(¢))%g are Chebyshev polynomisls of the 1-st kind, {pa}32o are the

The expansion (8) for p(£) is caused by the fact that Chebyshev polynomials
Ta(€) are eigenfunctions of the following integral operator (1.0.) [3, 5]

1
1 [ Ta(§)
._;-/l 1____......._62 In ¢ — nldé = w,Tn(n), |nl g 1 9)
Here {w,}32, are eigenvalues of 1.0. and are given by
In 2 n=0
Wy =

'1" n=1, 2, (10)
n
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nnalfqé ‘fznrtg;r derivations we need orthogonality condition for Chebyshev polyno-

[ 0 1 . . 1, n=0
_/ T s = gomties fa={ ) no0 ()

k)

Using (9) and (11) one can show the kernel of (9) to have a convergent in certain
sense bilinear expansion

1
TRy zw., T () (12)

Substxtutmg (8) into LE. (1), let us take into woount spectral expression (9).
Then assuming the continuous function to be represented by the series expreesmn

fi(n) = Z FaTa(n) (13)

n==0

and using orthogonality condition (11) for seeking coefficients {p..}“,,, we obtain
infinite system of linear algebraic equations (S.L.A.E.)

pg.—z:ag,.p..=‘n, k=0, 1, .. (14)
no
Here
4 Br ;1 Ta(n)Tu(€) |
n= g . Ny(&,m; '
n = o - S ey €)dnd§ -
T = nfu/(2wr)
It may be shown that {y:}52, € I3 and besides

T3 faral < o0 (16)

k=0 n=0

It means that matrix {akn}3o,~0 produces an absolutely continuous operator

A, from [l to [;. Consequently, this operator may be approximated by a finite-
dxmensnonal one, in other words S.L.A.E. (14) may be treated by means of trunca-
tion.

Note that double mtegral in matrix elements {axa}$, ®am¢ May be transformed

into & single-dimensional one provided that the function N;(E , 7€) has a represen-
tatidn

 Neme) = [Ha)wden=OIT: He) x, 0@ 821 (1)
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\{‘ ,
" In order to show this let us substitute (17) into (15) and take into account that
7 ;

l .
| Tae(n) cos(ean) dyp___ T [ Julea) |
.,/ {Tzul(n)san(ean)}m? -0 { ) o
(Here Ji(z) are Bessel functions). |
Then for a;,, we obtain
A ~ [+ (D] Bk / GS')J;,(ea)J,.(ea)da | (19)

n
Wi

In practice [5)y the given method of solution of LE. (1) may be shown to be
effective only for small values of ¢ (¢ ~ 0+ 10). As a rule, this parameter is related
with some wave dimensions of scatterers. It may be illustrated by LE. (4), (5)
describing plane ‘waves diffraction problems by cylindrical screens.

3. Method of O.P., Effective for Arbitrary Values of ¢

Now we shall give the alternative method of solution of LE. (1). This algorithm
is based also on O.P. method but it is effective for all values of ¢ including the large

values of ¢.
Let us make the transformation of variables in LE. as following

th ($¢) th (§4)
n=—r=a {=-rx" =8 (20)
th($) th ()
Then the kernel of LE. takes the form

sh (£ —&o) | €
TEE D] " (5) @)

Now the unknown function p(a) is represented by

_ ch £¢ - L _
P(a) “mgznz‘n( ) (22)

Expansion into series (22) follows from the fact that Chebyshev polynomials
T,(a) are eigenfunctions of 1.0. with the kernel (21), and the following spectral

expression takes place [3]

e e
sh§(€—&)|  Ta(e)  dE = AnTa(a) (23)

1
—;/ln ch £ ch£éo|(/2(che — che) ch 5¢

Inj¢ -yl =1n

-~

Here {1}, are eigenvalues of 1.0. equal to

1
Ech%ln(2cth§), néO y
e=ide By ol
nCCh%’ n »1’ Y
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Besides it should be noted that Chebyshev polynomials satisfy orthogomhl*

expression

/ To(a)Ti(2) _df _ 1 e "
N CTEr Y AT P '

Now let us substitute (22) into L.E. (1) and take into account spectral expan
(23). Using orthogonality condition (25) for seeking the coefficients {:c"},,,,o,sq
obtain infinite 5.L.A.E.

oo
zk"'z:clmzn:Wu k=0, 1, ... (26]

n=0

efrch § / / Ny(a, B; €)Ti(@)Ta(Bn) dédgo

= "8h J | Jiche — chet)(che — chety) hE-ch o
 Inth ( £) '
b e £)’ W
3
Be . ¢ H(B)Tu(B)  déo
oo b g Sy SWEIRD) | dee
Ll B(che — chets) b §o G

It may be shown that number sequence {g;}§2, € I2, and operator C produce
by the matrix {cin}§’,=o Operates absolutely continuously from l; to I;. That i
why it may be approxxmated by a finite-dimensional operator.

4. LE. with a Periodic~Difference Logarithmic Kernel.

Let us consider now LE. (2). Assume again that unknown function p(¢) satisfie

the condition
oe) (¢ —a®)/? (2

For the sake of convenience we represent functions p(p) and fz(yp) as the sum‘
of even and odd terms ‘ |

o) = 3lor(0)+ p-(0) falpo) = Hlfelv0) + -]

px(p) = plP) £ o(—¢);  falpo) = fa(wo) £ fo(—0)
Then LE. for the functions p4(y) are given

(30)

o

/ p+(p) [_.1,, ET&_IE—:;@'{ + Nz(%_‘ﬁo;_i)} dp = f1(po)i o € [—a, 0{1 | (31

-
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for the functions p4+(p) we can write

cos £ n¥ '
AHe)= V2(cosp — cos @) Z e (sxn ‘q) , #Ei-a ol , S

n=0

\ tg § e
p-(p) = szzn-lﬂa-l (Fg—%)" ¢ € [~a, a] . {(33)

As before, the form of expansion (32), (33) is caused by the fact that Chebyshev
plynomials T3, (sin £/sin &) and Tpn—y (48 £/tg §) are eigenfunctions of L.O. cor-

rsponding to the s:ngular part of the LE. kernel (31) As has been shown in [4],
there eéxist the following spectral expressions

].ln T2 (3;%5") l'odcp = 02012n (sln )

2 [sm w{\/z(coscp cosa;

a . t 2
1 1 Ton-1 -5-'25»2 d: e £ 4
_'/l __.(.:_8~—-L—~—.__2_. ~P “Ugn_szn-l ( g 2 ) (35)

x 2lsxnf——‘f'-?-h/z(u:mqo--cocf.uu)ﬁ%’E tg 3

Here {0,}52, are eigenvalues of 1.0., equal to

—Ilnsing, n=0 | 1
Ok = y O2p—1 == : el 2 vas
2 .217’:’ nzl’ 2, ”.i 2n—1 (2“-‘1)0‘)3%’ y “y

(36)
Besides it should be noted that for Chebyshev polynomials T, (sin £/sin §)

wd T, (tg £/ tg %) the following crthogonality conditions are valid

sin £ sin £ cos £ 1. '
T(-:—--g-)T (-—-—1)—————-—3——————— = —Tnk,
/ "\sing k_ sin § ‘/(cosp-cosa).zd(e ﬂnw '

o *

= (&) ()
tg 5 tgz cos ¥ (oosgp cosa)Z

The kernels of LE. (34), (35) may be shown to have the following bilinear

expansions

(37)

sin £ sin £2
Z O'ZnﬂnTZn ( . a) T2n ("T"&L)
In -—-——-————-—-———1 ={ "=t )
2 ‘sin f—;ﬂ’

(38) -
tg £ tg £
?zazn—-szn—l (ti 2 ) Ton-y ( S 3 )

o o
n=0 2 tg 2
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Now-let us substitute expressions (32), (33) into LE. (31). Taking into account

spectral expressions (34), (35) and orthogonality (37), we obt
f°”°°“’“8“nknown(ooe)f,ﬁs:xe3ts orthogonality (37), we obtain infinite S.L.A.E.

o0
T2k +"Z bak anZTan = fh, k=01, ... (39)
=0
o n
ZTax-1 + Z bak—1 2n-1%an-1=fp_yy k=12, ... (40)
n=1 '

Here we have denoted

bzk n = '
cos § cos 9Ty (H202) T (S04
80”-:[:[ (cosp — cosaY{cos e — cos a) Na(p, po; €)dpdipo
b2k~1 2n—1 =

-1 a [ 7 Tzk-—l‘ Ton-1 -!-%f— o;
°°'2§_-/a_:{ Hlcosp — mlxm¢§-w:2)fol(§;2d dipo

(41)
¥ S4+(po) cos 2 sm<p,/2
fzk = 402k ./ eo.% ma) ( sin 0/2
: ) (42)
o=l o pe F-(90)T2k—1 (3&{%—) ;
2%~ 9 /; 2—.: e e g—— Po
It may be shown that
YUl <oo; Y Maof<oo
k=0 k=1
€8 00 oo (43)
Yo o aal <00 33 lbakcs za-alf <00
k=0 n=0 &BO nx=o

In other words, operator B produced by the matrix {bin}$, Ton=o 18 an absolutely
continuous one and may be approximated by finite—dimensional operator. Then
thie bolution of infinite S.L.A.E. (39), (40) may be obtained with any given accuracy
by the truncation method.

As foir the validity of truncation method applied to the solution of infinite
S.L.A.E. (14), (26), (39), (40), we note the folowing. In paper by G.Ya. Popov
{8], the infinite S.L.A.E. resulting from LE. (1), (2) by the method of O.P. may
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x always solved by the truncation method provided that the eigenvalues of LE.
onnected to the singular part of the kernel have the asymptotics

on ~ O(n~7), 0<7<2 (44)

n—+00

It is easy to note that for the eigenvalues of 1.0. under investigation there is an
wymptotic wn, An, On O(n~1). Thus the condition (44) is satisfied.

‘To compute the integrals in matrix elements {(see (15), (27), (41)) with Cheby-
shev polynomials one has to make use of quadrature formula of Faylon [3]. The
latter gives the best approximation for these integrals.

In general, one may use quadrature formula propesed by G.Ya. Papov for inte-

gals given by (3] 1
Tm= / 12(1 — )P PSO(1 - 2)f(t)dkt, (45)

0
where {P{#)(z)}22_, are Jacoby polynomiais.

This quadrature formula does not need the values of zeros of Jacoby polynomials
and takes into account the oscillation of integrand. All the information on this

formula may be found in 3].
5. I.E. with Difference Kernel on Semi—-Infinite Interval

Finally, let us consider the particular case of LE. (3) appearing in the problem

of E-polarized plane wave E} = explik(aoz +/1 — aly)] (k = 2x/A, ag = cosb, 6
angle of incidence) diffraction by an infinitely thin perfectly conducting halfplane.
It may be written as

/p(x())kﬂ(k'h: = :L‘gi)dzg = xc"’k‘abz (46)
(1] ;

Here k' = —ik, ko(z) = ZH"(iz) is McDonald function, p(zo) is surface

current density.
Let us show that basing on O.P. method the solution of LE. (46) may be

obtained analytically.
Function p(z¢) satisfies the condition

pzo) ~ O('") (47)

Introducing the dimensionless parameter gy = Zok', the function p(ne/k') may
be expanded as &

N €N, [-1/2, 8
p(no/K') ﬁZF,L,. (2m0) (48)

n=0

Here {Ln v 2(210)}32, are Laguerr polynomials, {pn}7e are the unknown co-
efficients.
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This expression (48) follows from the fact that Laguerr polynomials Ly 1/ 2(2:7)
are eigenfunctions of 1.0. {3, 5] _

ko(‘-’” ), -1/2 1/2 -z
—= L (2 = —=voL 2z)e”%, 49)
while the eigenvalues of 1.O. are given by
. -
7 = M ~ O(n"llz) (50)

"7 Tn+1) n—oo
Orthogonality conditions for Laguerr polynomials are given by

ooe_' _ |
S _L7V3)L P (n)dn = yabn (51)
/ e L AL )i = b

From spectral expression (49) it follows that for the kernel of IE (46) the
bilinear expansion 18

fe ]
ko(lz = yl) = Zze ™49 3 L7 2(22) L5/ (2y),
ﬁ n=0
(52)
. ’ [ ]
iH (klz — y)) =v2e™* 40 N " o LV (—2ika) L7V (~2iky).
n=0
Let us substitute (48) into LE. (46). Then taking into account spectral expres-

sion (49) and orthogonality (51) under the condition 1+ ag.> 0 we obtain unknown
coefficients {pa}32, as foliows

1 (ao - 1)”
T (a“ + 1)»-0—1/2 ?
Thus, we have obtained the function p{np/k’) analytically

0 2k'e "0 I'(n ™ il
o (%) =m,§rgni?) (a +:) L (em)  (59)

Unfortunately, this formula is not valid for arbitrary angles of incidence, as the
series converges only if 0 € @ < 7. Nevertheless, this difficulty may be overcame by

means of summation using the known formula {7}

= 2k'— ap = cosf (53)

p (k') = -—--—Ic'(l +aoh Fi(}; (1 —ao)n) =

=ﬁk’(1 + ap) {1 —vV7n(1 — ap)e( o) [1 - erﬂ/M]} (55)
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Here ; Fy(a; b; t) is the degenerated hypergeometric function, erf(a:) is the prob-
ability integral.

Note that representation (55) for surface current density coincides with the

results by other authors {8] obtained by meaas of other methods.
Using representation (55) for p(z) one may come to the following asymptotles

) " __2_”_ i(kz—-% 4 f 3/2
a) z—0; p(z) w‘/"kze( 4)k0062 [l 4ikz sin® 3 +0 [(kz) ]

b) z—o00; p(z)m ~s —ik sin fetkzcosd [1 +0 (k];:)]
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