IVth International Workshop on
Electromagnetic Wave
Scattering

September 18 — 22, 2006

Gebze Institute of Technology
Cayirova Campus, 41400
Gebze,Kocaeli,Turkey

Sponsored by:

@

TUBITAK
The Scientific and Technical Research Council of Turkey



EWS 2006 ’ 33

Fractional operators approach in wave propagation, reflection and
radiation problems

T.M. Ahmedov (1), E.L. Veliev (2), M.V. Ivakhnychenko (2)

(1) Institute of Mathematics NAS of Azerbaijan, Baku
(2) IRE NAS of Ukraine, ul. Proskury 12, Kharkov 61085, Ukraine
veliev@kharkov.ua

Abstract

We review potential applications of the tools of fractional derivatives and fractional curl operator to
propagation, radiation and reflection problems in electromagnetics. New intermediate fractional
sources as extensions to canonical sources are analyzed. It is shown that in reflection problems
fractional field represents a solution for new type of boundaries, which in special cases can be
described by anisotropic or bi-anisotropic boundary conditions. Besides, propagation in bi-isotropic
medium can be described by the concept of fractional field.

1. Fractional sources using fractional integrals

Tools of fractional calculus in electromagnetics have been extensively considered in the works of N.
Engheta [1-3]. In this section a new definition of the fractional derivatives of function y(7), which

satisfies inhomogeneous Helmholtz equation, is given. As will be shown later, we come to such
representation after considering “fractional” solutions of ordinary Helmholtz equation.
We use fractional integral known as Riemann-Liouville integral:

1 .
BE = x—t)*" f(t)dt, for <0, M
DI f() F(_a)i( ) )
where ['(—) is the Gamma function. We will use the uniform symbol oD% (or DY) to denote

both fractional derivative and fractional integral, and it will define a fractional derivative for 0 <a <1
and a fractional integral for & <0.

Green’s Theorem with fractional derivatives
Consider a function w(7), which satisfies inhomogeneous scalar Helmholtz equation with the source
density given by function p(7):

Ay (F)+k*y(F)=—4np(F) . 2
Besides, define G(7,7, ) as the Green’s function of the Helmholtz equation:

AG(F .}, )+ kK*G(F,F) ) = —4nd(F - 7,) 3)
Here, 5(7 -7, ) is the three-dimensional Dirac delta function, 7 and 7 are the position vectors for the

; ; ; 5 S 5 ;
observation and source points, respectively, A=5—2+5y—;+yls the Laplacian, and k is a scalar
29

constant. After applying fractional derivatives to equations (2) and (3) with respect to the x variable,
multiplying the first equation with _ D!G(7,7,), and the second with _, D{y(7) , subtracting one from
another, integrating this over all source coordinates x,,y,.z, inside S,, and finally using the Green’s
theorem, we obtain the following representation:

([ D2 p(Fy ) L D2, G(F. 7, Jdv, + C)
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where x+v = f. Here it was used the property of the fractional derivative of the Dirac delta function:
[F(%) . D,6(7 ~F dv, = DIF(7), )
yl)

Equation (4) is a generalization of well-known Green’s theorem for the case of fractional derivatives.
Consider some important particular cases, which can be obtained from (4).

Case 1. Excitation in free space

For the case when volume ¥ is the whole space, the surface integrals in (4) vanish and we have:

DLy (%)= [ DL p(F, )+ L.}, G(F,F, )dv, (©)
v

Originally function w(7) characterizes the field excited by the source with the volume density po(7).
From the other hand, for =0 representation (6) means that the field y(7) is expressed through the
distribution of fractional sources with density D™ p(r,) inside volume ¥ and by using fractional
integral of conventional Green’s function D'G(r,,r).

Case 2. Assuming p(7)=0, we can obtain some other important representations:

1 o - ” = s :
240 DLG(FR )V (7 )~y (7 )V, DLG(F R, )]ds,, if v=P,u=0
DPy(F)={ ™ 7
Dew(F)=1 N o o - . )
a4 [G(F R Vo L Diy (R, )~ Doy (R )VoG(F. R, )]ds,, i v=0
S 3

From this representation we see that the fractional derivative of function (7 ) is expressed either via

the value of the function and its first derivative at the boundary and the fractional derivatives of
Green’s function, or by the fractional derivatives of the function at the boundary and the usual Green’s
function.

Case 3. When v=-u,1.e. =0 we obtain a representation for the function y(7) itself:

s 1 - o s - = . -
W(F) ==l DYG(F7 )Y, L Dly(R)= Dhy(7 )V, DFC(7 7 )lds,  (8)
So

This expression means that the function y(7) is represented through its fractional derivatives at the
boundary and the fractional derivatives of Green's function.

Generalization of the Huygens principle

Equations (7), (8) generalize the Huygens principle in such a sense that the fractional derivative of the
function /(7 ), which characterizes a wave process, is presented as a superposition of waves radiated

by elementary "fractional" sources distributed on the given surface. “Fractional” potentials,
d D2 Y(7 )V, D G(F,F, eds, d DL G(7.7, )}V, DI "y(F, )ods,, can be considered as
S v . S

generalization to well-known single and double layer potentials.

Fractional boundary conditions and integral equations

This generalization of Green’s theorem can be used to obtain integral equations for various boundary
problems. To do this we should complete the equation (7) with appropriate boundary conditions. We
introduce the “fractional” boundary condition

LDY(7),=0 ©)
If @=0 or a=1, then we have conventional Dirichlet or Neumann boundary condition, respectively

(if one chooses the variable of fractional differentiation appropriately). Using equation (7) for v =0
and taking 7 — S, , we can obtain a boundary integral equation.

For open regions the radiation conditions at 7 — o should also be considered.

Intermediate sources between line and sheet currents

Having line current distribution _};l (F)=26(x)d(y), a new fractional source can be proposed [2]:
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Jo )= .5, 000) = 2L LD 8(0)6()~ D66 =72 ZAIT for0<act  (10)
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For @ =0 this source represents a line source: j'(F)=Z8(x)8(y). For a =1, j}(F)= 255(x) isa
sheet current source. Fractional derivative of delta function in (10) can be considered as “intermediate”

source between one and two-dimensional sources defined by one and two-dimensional delta-functions
d(x) and &(x)é(y), respectively.

Fractional Green’s function and intermediate waves
Intermediate source corresponds to the fractional Green’s function er (x,y;k) as a solution of the

Helmbholtz equation with the function (10) in the right-hand side. Fractional Green’s function defines a
new wave [3], which has features of “intermediate” wave between plane and cylindrical waves.
Engheta proposed the following form for the fractional Green’s function: ‘

i "
4k'T(w) (k| y D™
for kp—>o0, @#0 but @ not too small, G,(x,y)= Hé])(k\/?-\t-—yz ) is a two-dimensional Green’s

function. In the far zone this Green’s function has a plane-wave part in addition to the cylindrical
wave. It is a nonuniform plane wave propagating in the y direction and its amplitude behaves with y

as |y

G, (x,y;k) = z%[@D;"Gz (5.9~ D3 Gy(x )] 7 cosS X ksin| o), {—,f—%e g

2. Fractional sources using fractional curl operator

Fractional curl operator curl® was introduced in [1]. The fractional order o can be, in general, a
complex number. We have analyzed radiation from elementary fractional sources such as sheet
currents, line currents and point dipoles. In the limit cases of =0 and o =1 the "fractional" from the
given electric field represents the fields due to electric and magnetic currents, respectively. The
expressions for the new "fractional" sources were derived from the "fractional" fields. It is shown that
the fractional sources represent a coupling of electric and magnetic currents and can be treated as
intermediate case between electric and magnetic sources. Such fractional sources were analyzed in
works [4,5,6].
The technique for fractionalization of operator was described in [1] where the presentation for curl®
of the function of one variable was presented. Following this recipe we get the presentation for curl®F
where the vector function F is expressed via exponents as P =R
curl®[Xe™ =] = -—17 {xi* (8,,a° + BK*(b* +c*)) +

k ) (11)
+3i*(8,,ab + k* B(Akc — Bab)) + 7i* (8, ac — k* B(Akb + Bac))}e' =™+

where B = c(,s(_”zﬁ) , A= sin(%oi) y

The fractional field (E*,A®) is defined as application of curl® to the original field (E,H) radiated
from some current distribution (electric current with density j, and magnetic current with j, ):

E® = (ik,) * curl®E; o H*=(ik,)* curl®(n,H), (12)
where k, = m\/éo—u; is the propagation constant, n,= m is the impedance, p,e, are the
permittivity and permeability of the medium.

Fractional field is a field radiated by new sources (j**,j™*) in the medium with (,,4,) . We name

these currents “fractional” or “intermediate” currents. Field (12) can be considered as "intermediate"
or "fractional" solution between the original field and the dual field.
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It can be shown that the currents (7**,j™) are a combination of the original currents (j¢, ;") [5]:

jo= cos@)z +sin(%)7m ,Jo= —sin(%)}; +cos(f’—2"i)fm , (13)

Note that fractional currents are distributed in the same volume as original currents. Fractional source
(13) can be treated as a coupling of original magnetic and electric sources, i.e. curl®* makes a mixture
of electric and magnetic properties. Besides, fractional electric current can be treated as intermediate
source between electric and magnetic currents. Next we consider some important examples of
excitations in free space: radiation from sheet currents, line currents and point dipoles.

Fractional Sheet Currents
Consider the field (E, H) radiated from a combination of two parallel sheets of currents located in the
plane y=0: a sheet of electric current j, = %j, and a sheet of magnetic current - j, = %/, , where
Jo=RE58(9)> Jn =—11%],€78(y), (14)

and J ,=|J J|e™, J,=J,|e™ are the amplitudes, y, is the initial phase, B, is the propagation
coefficient. Fractional field can be considered as a field excited by a combination of two sheets of
electric and magnetic currents j* = #/%e™*5(y), j =-nEJ2e™ 5(y), where

JEJ ¥ =BJ,—AJ_, J® < J|e*" =4, +BJ,. (15)

Polarization of the fractional field
Polarization of the fractional field depends on polarization of the original field and the fractional order

a . We consider special case when g, =0, and also we assume, that i, =0.
The polarization vector for the electric field E* can be expressed as

P*(t)=Re{(2|E* )" n[X(BJ,— AJ, )+Z(FAJ, ¥ BJ, )] cos(—wt tky)} (16)
Consider two special cases of the original field: linearly-polarized and elliptically-polarized.

Case 1. The original field is linearly-polarized. If o is real then the electric fractional field is
linearly-polarized and the polarization vector makes the angle &, with the axis x defined by

tand, =F|J; |/|J, | 17
If « is complex then the fractional field is elliptically polarized.

Case 2. The original field is elliptically-polarized. If elliptically-polarized original field is
characterized by the ellipse with axes a=J,, b=J, , then the fractional field for 0<a <1 is

elliptically-polarized but with the axes rotated by some angle to coordinate axes. For a =1 this ellipse
has horizontal axis a, =b and vertical axis b, =a. For the case when the original field is circularly

polarized, the fractional field remains circularly polarized.

Fractional line currents

Consider a field (E,H) radiated by the line current located along the axis z. The current density is
given as j, =Z/,6(x)8(y) . It can be shown that the fractional field from such original field is a field
due to a combination of two line currents, electric and magnetic ones, with the densities

j: =2ZJ, cos(%)&(x)&( Vs Jo = ZJ, sin(%)J(x)é‘ ). (18)

For a =1 the fractional field is a field radiated only by a magnetic line current, j* | _,=Z/,5(x)8(y) .

Fractional point dipoles
Consider a field (E*,H*) radiated by an ideal electric Hertz dipole [1] located at the origin and having
the dipole moment p = pi, where p=const. The electric current is distributed with the density



EWS 2006
3-7

J.(F)= pé(r) . The fractional field from this field can be treated as a field due to the fractional sources
(.asJma) » Which are a combination of the electric and magnetic dipoles:

je,a = Bje ’ jm.a = —Ajz (19)
From the other hand, the field E** should satisfy the Helmholtz equation with the function curl® G.)
in the right-hand side, i.e. the fractional field (E**,H**) is the field due to the electric current

foe = =curl*(j,) (20)
Fractional electric current f*¢ (20) and fractional sources (19) are equivalent it the sense that these
two source distributions radiate the same field.

Physical remarks about fractional sources
Fractional sources obtained by applying fractional operators have the following physical meaning:
(1) Fractional curl operator yields fractional sources, which are effectively an intermediate case

between electric and magnetic sources.
(2) Fractional integral yields the change of source density (change in the volume where the source is
distributed) while not changing the nature of the source (electric source remains electric, etc.).

3. Fractional curl operator in reflection problems

In this section, new boundaries obtained by the fractional operators approach are considered. Using the
operator curl®, Engheta [1] obtained new boundary with impedance 7, =itg(za/2) as intermediate

case between perfect electric conductor (PEC) and perfect magnetic conductor (PMC) in the problem
of normal incidence of a plane wave on an impedance boundary. Lindell and Sihvola [7] considered
new boundary called Perfectly Electromagnetic Conducting Boundary (PEMC) as a generalization of

PEC and PMC defined by boundary conditions (BC) like E+MH =0 with the coefficient M named
the admittance.
Consider a classic two-dimensional problem of the TE polarized plane wave F(0.0,g2 7 mmly

incidence at the angle ¢ on the plane boundary, y=0. The total field (E,H) should satisfy isotropic
impedance BC with the impedance 7 [8]. Having the field (E,H) as a known solution for a certain
value of impedance 7, we can construct the fractional field as curl® applied to this field (E.H).
Fractional field (E®,H®) acts as an intermediate solution between the original and dual solutions [1].
Duality principle in the reflection problems states that the dual solution (E',H'), obtained as
E'=n,H,n,A" =-E , corresponds to an impedance surface with 7" when the original solution is a
solution for the impedance 7 . As a special case, the dual field corresponds to the PMC boundary

when the original field is a solution for the PEC one.
We assume that the fractional field represents the solution of the reflection problem for some
boundary, which can be characterized by the following BC [8]:
: AxE* =T Ax(AxH*), 1)
. ; t t
where the impedance %, in general, can be written as a tensor T, =( ! tlz] and can be
21 22
expressed via the original impedance n and the order «.
Consider two important special cases of 7, .
Case 1. Anisotropic BC ( t,, =t,; =0). It can be shown that [9,10]

t,=i— : tan(wa / 2) g 1'77 an p oozl 2) , b, =isingtan(za/2) = l_ﬂ sTn peotiEe2) (22)
sin @ 1+insinptan(za/2) 1+insinptan(ra / 2)
If the original field is a solution for a PEC (7=0 ) boundary, then we have
t, =i——tan(ma/2), t,, = isingtan(za/2) (23)

sin@
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For the normal incidence (¢ =7/2) from (23): ¢, =t,, =itan(za/2) . Similar formula was derived by

Engheta in [1] for the normal incidence on isotropic impedance boundary, and the expressions (23) are

the extension to the case of oblique incidence of the plane wave.

Case 2. Bi-anisotropic BC ( #, =t,, =0). In this case the coefficients are expressed as [9,10]

fnesd 1- 1‘77 an pcot(na/2) , 1, =—itan’(ma/2) 1- 1.77 an @cot(ra/2)
1 +insin g tan(za / 2) 1+insinptan(ra/2)

If the original field is a solution for a PEC (7 =0) boundary then t,=-i, t, =—itan’(na/2). For

0<a <1, (24) describes a bi-anisotropic boundary, which supports surface currents given by

i =g 29)

(24)

4. Fractional field in a medium

We propose tool of fractional curl operator to describe fields propagating in the bi-isotropic medium.
The constitutive relations for bi-isotropic media can be written in the form

D=¢E+¢H, B=cE +uH (26)
where (e, u,£,¢) are scalars: & =( ,g—ik)\[a),u—o , &= Z+ik)\/ay_o , which are the Tellegen and chirality
parameters, respectively. We will consider the case of a purely chiral medium with z=0.
After applying rot* to the known field (E,H), which represents propagating wave in homogeneous
isotropic medium, we obtain new fractional field (E*, H%):

(D%, B*) = (ik)™® curl® (D, B) . (27
Fractional field (27) can be treated as a field radiated from the same sources and propagating in a new
medium characterized by parameters expressed via the fractional order @ and original parameters
(€0, #4) - For the case when original field is a propagating plane wave, the fractional field has simple
analytical form:

E® = Be,E® + Ay H®, H® = By, H® — Ae,E° (28)

Comparing field (26) in bi-isotropic medium and fractional field (28) we can conclude that fractional
field represents a field in the bi-isotropic media with parameters (¢, 1, &,¢) expressed as:

e=¢g,cos(ma/2), pu=p,cos(nma/2), &= pysin(na/2), ¢ =—¢,sin(ra/2) (29)

Operator curl® can be treated as the operator that connects the fields in the usual simple isotropic
medium and the complex bi-isotropic medium.
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