Chapter 10

Numerical-Analytical Approach for the Solution
to the Wave Scattering by Polygonal Cylinders
and Flat Strip Structures

Eldar I. Veliev and Viadimir V. Veremey

1. INTRODUCTION

The principal approach for the solution to the wave scattering by perfectly conducting
polygonal cylinders (PC) is to formulate the problems in terms of the integral equations
of the first kind satisfied by the unknown functions associated with the current induced on
the cylinder surface. In general, the integral equations are derived by applying the potential
theory together with the Dirichlet or Neumann boundary conditions on the scatterer surface.
Numerical techniques [1-11] such as the Galerkin method of moments can often be employed
to reduce these integral equations to the system of linear algebraic equations (SLAE). For
example, the results based on the method of moments for the diffraction by PC structures
are presented in [3,4]. However, the existence of edges on the integration contour can make
current density computations less accurate. In order to improve the accuracy of the solution
to a certain extent, some approaches accounting for the Meixner edge condition in explicit
form, have been proposed in [3,6,8,9], where the current distribution on the PC facets and
the far field behavior have been investigated. There is also an attempt [12,13] to seek an
asymptotic solution using the geometrical theory of diffraction (GTD).

In this chapter, a new rigorous method is developed for obtaining the solution to the PC
diffraction problems with any preassigned accuracy. This method is based on the following
foundations. First, a perfectly conducting PC is considered as a composition of key elements
such as flat strips (see Fig. 1b). Then the original scattering problem involving the PC is
equivalent to the scattering by N key elements. As a consequence, the total scattered field
from the PC is expressed as a superposition of scattered fields excited due to the induced
currents on facet® of the cylinder. Second, the scattered field from each facet of the cylinder is
represented using the Fourier transform of the corresponding surface current density, which
offers a number of advantages for constructing the solution of the problem. Application
of the boundary conditions to the employed model then leads to a coupled system of dual
integral equations (DIE) with the kernel in trigonometric functions, satisfied by the unknown
Fourier transforms. Finally, a hybrid technique [14] based on the semi-inversion procedure
for equation operators [15] and the method of moments {14,16), is used to obtain the desired
solution. It should be noted that our approach is essentially different from the other existing
methods mentioned above, since this method, asaspecial case, can produce arigorous solution
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Fig. 1. Geometry of the problem in the (z,y) plane.

to the scattering by an aggregate of key elements (see Figs. 1b and 1c as an example of
a gystem of N strips). It is worthwhile to make some remarks here on the previous work
related to the foundations of the method developed in this chapter. The proposed modeling
for PC geometries sometimes enables us to apply the known rigorous techniques such as
the Riemann-Hilbert problem method [15,17). In fact, the solution for the diffraction by a
finite number of flat strips is presented in [17] based on this scheme. However, the previous
studies for the PC problems have restrictions since the contours of flat strips and their
extensions should neither cross nor touch one another. From a mathematical point of view,
it is also necessary to take into account the field behavior near the edges of the PC surface.
According to the Meixner condition, it is well known that in free space, there appear stronger
and weaker singularities for the current functions at the edges of plane strips and at the strip
joints, respectively. Therefore, a correct computation of the current singularities at the PC
corners (edges) is one of the important subjects for a successful solution of the scattering
problem.

In addition to the above-mentioned remarks on the PC modeling, we should note that
the reduction of scattering problems (including internal electromagnetic problems) to inte-
gral equations for the Fourier transforms of the unknown functions, also have advantages
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[16,18]. In [16], a related approach called the spectral theory of diffraction (STD) has been
developed. In this method, the scattered field is first represented as the Fourier transforms
of the currents induced by the waves incident on the scatterers. Then, a hybrid approach
based on the GTD and the method of moments is employed to solve the scattering prob-
lems at high frequencies. In [16], the scattering by a right-angled prism is treated using
this method. There are also a number of investigations on the scattering by plane screens
[19-22], the radiation from open-ended waveguides [23,24], and internal waveguide problems
[25-27], where the method of moments in the Fourier transform domain is employed to solve
the integral (algebraic) equations by taking into account the edge singularities in explicit
form. The methods proposed in [19-22] are based on the use of properties of the discontin-
uous Weber-Schafheitlin integrals for the Bessel functions. The properties of these integrals
are also used in various methods for solving boundary value problems in elasticity theory
[28,29].

In some of the papers mentioned in the previous paragraph, the integral equations are
reduced to the infinite SLAE of the first kind, which is solved approximately via a truncation.
It is important to note here that the applicability of the truncation method cannot always
be justified. In addition, the matrix elements associated with the SLAE decay slowly with
an increase of their index. However, these previous works are of interest due to the effective
computation algorithms for slowly convergent improper integrals with Bessel functions. On
the other hand, the radiation from a plane waveguide with an infinite flange is treated
in [30], where the problem is reduced to the solution of the infinite SLAE of the second
kind. However, the edge singularities are not taken into account correctly. In [25-27,31,32],
the method of partial domains with edge singularity computations is widely employed. In
principle, this technique reduces the problem to the infinite SLAE of the first kind but its
solvability cannot always be justified. However, if the convergence acceleration procedure
[25-27] is incorporated into this method, these SLAE may be solved by the truncation method
[32]. Finally in [33,34], the scattering problem for the PC is solved by using the geometry of
a flat strip. After expanding the fields due to the currents on the PC facets by the Mathieu
theorem, the problem is reduced to a coupled infinte SLAE of the second kind, where the
number of equations is equal to that of the PC facets. Nevertheless, neither examination
on the solvability of the SLAE nor detailed scattering characteristics are presented in these
works.

The main interest in this chapter is the H-polarized electromagnetic wave scattering
by the PC, which is one of the complicated but important problems. For a rectangular
(or square) cylinder, the infinite SLAE is investigated in detail to verify the existence and
uniqueness of the solution as well as the applicability of the truncation method. The char-
acteristics of the current distribution on the facets of the cylinder, the total scattering cross-
section, and the far field patterns are discussed via illustrative numerical examples. The
time variation for all the field quantities is assumed to be e ~** and suppressed throughout
the remaining part of this chapter.

2. SOLUTION TO THE PROBLEM OF H-POLARIZED ELECTRO-
MAGNETIC WAVE SCATTERING BY A POLYGONAL CYLINDER

2.1 Statement of the problem: Derivation of a system of dual integral
equations

A class of two-dimensional (cylindrical) scatterers of rectangular or regular polygonal
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cross-section is the subject of the present study. Let an H-polarized plane electromagnetic
wave (H vector is parallel to OZ axns) be incident on a polygonal cylinder of such cross-
section at an angle y to the OX axis, as shown in Fig.1a. The scatterer is composed of N
perfectly conducting flat strips joined at the edges to construct a closed ribbed surface. A
general coordinate system (XY Z) and a local coordinate system (X,0,Y,) are introduced,
where the OZ axis of the (XY Z) system is parallel to the cylinder surface. The origin O, of
each local coordinate system is in the center of the s-th facet of the cylinder, and the O,Y,
axis is normal to the plane of the s-th facet. The total field is considered as a superposition
of the incident and scattered fields:

P =H +H! (1)

The total field has to satisfy the wave equation, the Neumann boundary condition at the scat-
terer’s surface, and the condition that the energy in any bounded volume of space is finite.
Besides, the Sommerfeld radiation condition holds for the scattered field. Let H'(z,y) =

¥¥(z,y). For volumes without any incident sources, it follows that (A + k?)¥!(x,y) = 0,
where A is the Laplacian. The second Green’s formula yields

/ [G(F, 7 )V (7') = V(7 )VIG(F,7")] dv

=S=i52( 7)o V() = ¥ ()3 GOF, 7)) dS @)

where G(7,7') is Green’s function representing the solution of the equation (A + k*)G(#,

= —§(F — 7'); V is the reglon between the scatterer contour Sy and a certain circle 5'2
of large radlus the normal 7 is directed to the interior of the region V. If the scatterer
contour S has sharp edges, then an additional condition enforced on the behavior of the
function ¥* is necessary to validate Green’s formula. Such a condition is described by

/{I\II |> + |grad ¥*|*} ds < oo, which follows from the condition of finite energy in any

So
bounded volume of space. Here, Sy is a bounded region containing the edge.

Using the homogeneous Neumann boundary condition, the following representation is
derived from (2):

V() = - )G ) dS + f |66, 7) 8 ()~ W) G 7| as

1

If the radius of circle S, tends to infinity and if we let W% = ¥ 4+ ¥* then

W) = —f{\p‘(“') _G(F,7') dS' + W (7)
S

Hence an integral representation of the total field is given by

Hg:H;’+/ (2, y)FG(" 7)dS' = Hi + ZH’

8 s=1

N %
g ] o
=+ 1Y [ g B (e ) o) ©
s=1_a. 3
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where H((,l)(x) is the zero-order Hankel function of the first kind, corresponding to the two-
dimensional free-space Green’s function; pu(z',y’) = —H}(z',y’) with (2',y') € S is the
surface-current density function; {u,(z})}_, are the surface-current density functions on
the s-th sides of the PC; {H?}, are the fields scattered by the s-th sides of the PC.
According to the proposed model of the PC, the total field may be represented as a sum of
the incident field and the fields scattered by each PC facet, as shown in (3).

By using the integral representation of the Hankel function

(o]

) 1 ; i .d
BT =P i) =7 [ e Doty 50

-00

the scattered field from each cylinder facet is expressed as

o]
H(z4,ys) = —'Z‘;’ / hy(a)et@metVI=a%00) 4o (4)
- 00

where the branch of /1 — o2 is chosen so that Im /1 — a2 > 0 if |¢] — co along the real
axis. In (4), h,(a) is defined as follows:

Gy

hy(e) = ai / po (2! )e ke agy!

-0y

If the current density function p,(z}) on the s-th facet vanishes outside its definition interval
[~as,as], then the function h,(a) is the Fourier transform of the function u,(z}), i.e.,

oo [0 0]
1 —skz! € ikz' o
h(@ =g [ mE)e el @) =52 [ @t )
-0

—00

where ¢, = ka, is a frequency parameter. The scattered fields {H?}"_, are now expressed
by Fourier transforms of the unknown functions of the current densities. It is worth noting

the validity of the following identity:
5 1
Hz (:c_,,O) = _5"3(178)’ zs € [—a"’a-’] (6)

For determining the unknowns {h,(a)},, let the total field be subjected to the Neu-
mann boundary condition on the cylinder surface:

N
= L= L,
L =0 L=Jl (7

B e
6_n(Hz +§Hz)

where L, is the contour of each cylinder facet in the X,0,Y, plane, and the normal vector
i is directed along the positive 0,Y, axis. To satisfy (7), it is convenient to rewrite the
fields H, and H!(q # s) in terms of the coordinate referred to the s-th facet (see Fig.1a).
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Using the local coordinate system (X,0,Y,), we obtain the following expressions:

H" — '.El["l B,(aa)+(,A,(ao)]‘{-l'kro,D.(au )] .

g — / hq(a)ef'[Boq(o‘)'l-+(-Alq(")+“"tqDvq(c‘)da’ (<0

- 00

Eq
4w
where the following notation has been introduced:

Asq(a) = — asin(p, — pg) — V1 —a?cos(p, — py);

Ay() = — apsing, + /1 — adcos p,;

Byg(@) = acos(p, — pg) — VI = alsin(p, ~ ¢,);

B,(ap) = ap cosps + /1 = adsinp,;

Dyq(@) = acos(pgs — ) — V1 — a?sin(pgs — ¢y);
Dy(a) =acospos — V1 — a?sinp,,;

Here, 7, (E Z—’) and ¢ (:‘—_ %’-) are dimensionless (normalized) coordinates; l,4, ro,, and
3 s
@sq are defined in Fig.la.
By using these field representations and noting that the function y(z,) vanishes outside
the interval [—a,,a,), the equation (7) for the unknown functions {h, (a)},_l is reduced
to the following system of dual integral equations (DIE) with the kernel in trigonometric

functions:

(o ;
/ h,(a) V 1 Ll aZeit.aﬂ,da o -41A’(ao)eilel(aﬂ)nl"'ikrOnD'(aO)
Es

©0

N
$4 3 2 [ h@Aag(@d st <1, @)
g=1,49#s o

/ h,(a)e“'"”'da =0, [nsl > 1

\ —o0

In addition to the system of equations (8), it follows from the finite energy condition for the
scattered fields in any bounded region of space that

/(|a|+ (e <00,  @= 1,2, ¥ 9)

must hold for the functions {h, ()} ;.

Thus the scattering problem has been reduced to the solution of N coupled DIE with
a trigonometric kernel for the unknown functions {h, (@)}L,. For computations, it is con-
venient to transform these equations using the edge condition, i.e., the specified behavior of
the unknown current functions {p,(n,)}.; near the points 7, = £1 (at the PC corners).
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In order to state this condition in terms of the current functions associated with the PC
surface, we now consider the problems of E- and H-polarized electromagnetic wave scatter-
ing by a perfectly conducting wedge (see Fig.1d) (i.e., the boundary-value problems under
Dirichlet and Neumann boundary conditions, respectively). Upon examination of the exact
solution to this problem [35], the following behavior of the corresponding current functions
p(r,¢) and p(r,p) near the edge can be found:

1 ;
T P

o 1
ury={ B DY et fsv< (10)

r—0

where v = 1; the angle B is defined in Fig.1ld. The expression (10) states that when

approaching the edge along ¢ = 0 and ¢ = B directions, the function p(r, ) becomes
singular, and the functions p(r,0) and u(r, B) tend to some constants. Physically, it means
that in case of the H-polarized wave scattering, the surface current flows onto the next facet
across the edge.

Proceeding from the above remark, the edge condition for the current functions p and
p on the PC can be expressed as

pi(n) |~ (=), §=1,2,..,N;

wim) ~ GA-m+Cin+n+1-n"), j=12... N (11)

Here, the constants {C,-}J’-v:l depend on the frequency, amplitude and incident angle, and
the functions {pj(n)}f;l are to satisfy the continuity condition, i.e.,

pi(+1) = pj(=1) = 2Cj41 ;.. .5 py4r(+1) = p(=1) = 2G4, (12)

where Cn4+1 = Ci. If one considers a structure of separated flat strips, then the edge
condition can be expressed as follows:

: A~ — p?1-1/2. . o~ L 211/2 '
pim) w5y, =175 ()~ (1=n7] (13)

The validity of the expressions in (13) follows from the statement that for infinitesimally
thin screens, the current density function is a jump of the H, component of the total field.
Then it is clear that v = 1/2 and {C; }f;l =0.

The technique of reducing the DIE (8) to the infinite Fredholm system of the second
kind is presented below. It is the basis of a new method for solving both the DIE (8) and the
scattering problem. To clarify the essentials of the proposed approach, an auxiliary problem
will be considered in the following subsection.
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2.2 Solution of a class of dual integral equations with the kernel in trigono-
metric functions

In this subsection, we consider a more simplified DIE system. Let the unknown function
h(«) satisfy the DIE of the type:

/ h(a)V1 - a2e*da = f(3), |n| <1,
T (14)
/ h(a)e***"da = 0, In] > 1

The solution of this system is constructed under the following assumptions:
a) The unknown function k() is the Fourier transform of a continuous function p(7)

(n € [-1,1]) satisfying

1
. - 2\y i
{#(n)nqil( )" zSv<l a5)
n(n) =0, Inl > 1
Besides, assume that
M) = p(n) € Lal=1, 1;(1 = 1) (16)

(1-n?y

where Ly[—1,1;(1 — n%)"] is the Hilbert space of functions in which a scalar product is
defined with the factor (1 —5%)” [36].

b) The function k(a) belongs to the class of functions satisfying (9). We call this class
of functions La(—00, ).

¢) The given function f() is continuous and defined in Lo[-1,1;(1 — 5?)*).

We can easily show that the unique solution of the DIE system (14) exists under the
above assumptions. Indeed, application of the Parceval equality [37, 38] to the homogeneous
counterpart of (14) yields

/ |h(a)*V/1 = a2da =0 Y

with k() being the solution. It follows that h(a) = 0, which gives the stated result.

For constructing the solution of the DIE system (14), an approach similar to the method
of moments (MM) [14] is proposed, but the suggested scheme is different from the classical
one because the procedure of semi-inversion of equation operators is incorporated.

The choice of a correct set of expansion functions for the unknown function h(«) is de-
termined by the fact that h(a) is the Fourier transform of the function yu(n) satisfying the re-
lationship (15). Let us now represent the continuous function ¢(n) as a uniformly convergent
series using the Gegenbauer polynomials {C%+/2(5)}5%, in the space Ly[—1,1;(1 — 7%)"],
where these polynomials form a basis. Then the function x(7) may be represented as a series

) o v+ i 1
p) = (=)’ 3 2aCii(m),  F<v<l (18)
n=0
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where {,}3%, are unknown coefficients. The Fourier transform of the function p(n) is
found to be

h(a) = [ p(n)e™***"dy

—'—\_

m+v+l~(6a)

- 1
“ D )2( Ve eyt 25V (19)

where J;;,, 1 (ea) and r'(v+ :‘12-) are the Bessel function and the gamma function, respectively,

and
Bm =T(m+2v+1)/T(m+1)

Thus the infinite set of expansion functions is given by {J,,4,41(ca)/a” Hiidyeo .. The
series in (19) converges uniformly because it has been obtained by integration of uniformly
convergent series (18). Then by using the asymptotic expansion for the Bessel functions
for large argument, the estimate of the Fourier transform h(a) for large |a| is obtained as
follows:

1 1
h(a) 'a|_.°° (0] (a—l_r;> 5 5 <v<li (20)

Hence there is a relation between the order of decay of the Fourier transform of the function
p#(n) and its behavior near the endpoints of the interval in its definition (at the edges).

If seeking the solution of the system of dual equations (14) in the form (19), then the
second equation of the system is satisfied identically for any |p| > 1. It is easily proved using
the property of discontinuous Weber-Schafheitlin integrals [39, 40].

From (19), the problem has now been reduced to finding the unknowns {2, }=o. To
realize the semi-inversion procedure, the principal and completely continuous parts of the
integral operator of the system (14) are to be separated. This procedure can be realized by
introducing the function y(a)

V1-a? =iloll —y(a)f;  7(a) B O(a™?) (21)

Let us substitute (19) and (21) into the DIE (14) and expand the continuous functions gfean
and f(7) in terms of the Gegenbauer polynomials as follows:

2 2 y+% 1 2 .k 1 v4 &
eteon — <;) r (1/ + 5) Z‘l (k +v+ -2-) Jk+V+%(€a)Ck ’(n),

k=0

fo =Y RClEm) £ € Lal-1,1;(1 - n?)"] (22)

k=0

Then after interchanging the order of summation and integration in the resultant equations
(the validity of this procedure follows from the uniform convergence of the series in (19) and
(22)) and using the discontinuous Weber-Schafheitlin integrals [39, 40], we may conclude
that, first, the homogeneous equation in the DIE system (14) is satisfied identically and,
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second,by the definition of the unknowns {z,}3%, the infinite SLAE is derived as follows:

iy [+ (=1)4"] (C&H) ” dif,**)) (Pl ST B0 L. sewg]
=0 (25)

¢ 3 n 1 1
(1= 317+ D =
i 1

v=— (24)

Tag,

o0
1
(=D*aa = Y (=1)"(2n + 2dyy 1 ng122041 = 5T2041,

n=0

In (23) and (24), the following notation has been employed:

+ " da
Cl(:lrln = = I\V-l-% = I{V-l-%(e)/']k+v+%(5a)']m+v+§(6a)a_g7
0

Vm+v+’,~(2y) - r: (V+ %) r (m%i + 1) ; (25)
b+ P+3+ 52T (v +5+255) T (M2 + 2w +1)
00
) do
d(k'::r%) = Is,,.Hg_(e)/7(a)JL.+,,+§(ea)Jm+.,+g(Ea)g;; (26)
0
7 d
1 o
dg:’) - = 2/7(&)Jk+1(5a)Jm+1(5a);§;,' = dl%:m (27)
0
2+ & 2/l (v+1)
Ty = Koippe)—5—5 k+v+1) e e?=1T(v) B8

The normalization factor K, +%)(£) has been introduced for elements of the matrix

[ee]

{ C,g::*)} so that each element does not depend explicitly on the parameter ¢.
k,m=0

The problem has now been reduced to solving the infinite SLAE (23) and (24) for the

unknowns {z,; }oo—o- According to (9), the set of coefficients {z,}7>, belongs to the class

Of numel’ical sequences
12 v+¢<-|) = Ty - E l:c I ,B < o0 (29)
2 n - n n

T(n+2v+1) R | T - T
Tn+1)  noee Oo(n*) (if v = 5 then Ir(1) = {z, .nz;:)l:cnl (n+1) <

00}). Let us prove that the solution of these equations exists and is unique, i.e., the Fredholm
alternative [40] is valid for them. The SLAE (23) is examined first. Introducing the new

oo
coefficients as z{."“/z) = (—i)*zx\/Pr, the sequence {z£"+l/2)}k . belongs to the space

where 3, =

k=0
solution space for the following infinite SLAE satisfied by the unknowns 2

I = {z£"+1/2) : Z |z£."+1/2)|2 < oo} according to (29). Then in view of (23), l2 is the

(v+1/2)
k

km

YL AT g L 00) = U, 1, (30)
=0
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where

v m v 1
AL - [1+( DI BBnCon D5 1D = 2Bt

QU™ = S+ (<)M Bt 1

km

In the space I3, the infinite SLAE (30) may be represented in operator form [40]:
(A(V+1/2) - Q(V+1/2))Z(V+1/2) = FREL2) (31)

g
Here 2(**+3) and f(*+%) are column vectors given by the unknowns {z,£u+’)}2°=0 and
i
the free terms {f,su+ ’)}i‘;o of (30), respectively. Operators A(+3) and Q("“"%) have been
1 1
given by the matrices {AS;'::’)}E?m:o and {Qﬁ:’)}i‘jmﬂ. Let us verify that f(”+§) € ls.

From the definition of f("+§) , we find the inequality:

Zﬂk'rklz < CZﬂk

k=0

e
k+u+

where C is a constant. Since {fx}32, are coeflicients of the expansion in the Gegen-
bauer polynomials for the function f() of the space Ly[~1,1;(1 — 5?)”], the inequality
[=0]

o0
Z | fil28r/ (k +rv+ %—) < oo holds for {fr}3%o. Then it is evident that Z |f,(c"+1/2)|2 <

k=0 k=0
00, which gives the stated result.

It is easy to show that the operator A(+) s positive definite, i.e., it has a double-side
continuous inversion operator.
Let us show that the Q("+%) operator in (31) is completely continuous. For this purpose,

it is necessary to prove that the operator norm IIQ("“")II is bounded. Using (26) and (30)
together with the Cauchy-Bunjakovskii inequality, the following is obtained:

2
QU+ < }: 3 lolr®

=0m=0

9 +3 "'+"+x
<I(2+L Zﬂk/ 2V|/+I+a da Z ﬂm/|71( )|2 2”+1 g da
0

(32)
Here s is some parameter such that 0 < s < 1, and
a<l
a)| = lay(a)| = |la +iV1—a? {
()| = ley(a)| = | | = \/'1—__—&2 a1

For estimation of the function |y;(a)| for every a, let us use the following statement in [41]:

- 1 2
R Z( 1)k+lck —2k+1 ;Z|Cf/2| = %_-; a>1,
k=1

k=1

Ll L (k-
Cf/z 2 (2 I)I‘(k+21) (k 1)) (33)
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V2 o1 1
Since there exists a parameter 0 < s < 1 such that — < oo Ve find that |y;(a)| < S

If one substitutes this estimation into (32) and evaluates the integrals, then
| k 2
199 < K, 1 4(e) Z erors @ 4 s+ 1)y (34)

The series in (34) converges because it is seen using (25) that

k v V—s— v
Vet @rts+1) ~ 0¥ B~ O(™)

Hence, Q(" +H) isa completely continuous operator.

Thus it has been verified that (31) belongs to the class of operator equations [40] such
that the Fredholm alternative is valid. The approximate solution for the infinite SLAE (30)
can be obtained by the truncation method. Indeed, as the positively determined operator
Al+3) may be represented in the form AW+E) =7 peg (see [41]) with T being a positive
operator, I is the identity operator, and ¢ is a real number; so in view of the complete

continuity of the operator Q(""'%), the conclusion of applicability of the truncation method

to the infinite SLAE (30) follows (see [42]).
Now let us consider the infinite SLAE (29) after turning to the new unknowns

z,(cl) = (—i)"\/k + 1z in the space ly:

o — ) QRlAY e (35)

m=0

It is obvious that { f{l)}k 2o € la. According to the estlmatlon of the operator norm ||QV)||

(see expression (34) for v = 1/2), the matrix {Q }k'm=0 gives a completely continuous
operator in the space l. Then the infinite SLAE (35) is the Fredholm equation of the
second kind. Hence, these equations are also solvable with the truncation method.

Let us prove that the infinite SLAE (24) is the Fredholm equation of the second kind

in the space l5. For this purpose, let us estimate the norm of the matrix {(m+ l)d(l) |
by taking into account (27) and the Cauchy-Bunjakovskii inequality. This estimation is:

a2 <> Z(m+1)2|dg) 1> < 4Z/JL+1(sa) Z(m+1)2/J,n+1(5“)|71(a)| 1

k=0m=0 k=07

2
According to (33), it is seen that |y;(a)] < 1 holds for & < 1 and |y;(a)| < % for o > 1.

Therefore we derive
oo

”d(l)“2 z 5) Z(m+ 1)? {/J31+1(50)%%+2/J51+1(5a)i—(:}
1

0 2,2
Since Z (m+1)2J%, (ca) = E—g— [39], the following estimate is obtained after evaluating

m=0
the corresponding integrals and sums:

1dV))? < 363 /47 < o0 (36)
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Thus the matrix {(m + 1)d§c }iom=0 gives a completely continuous operator. Since the free
terms {['1}5=, of (24) also belong to the space l3(1), it is clear that the infinite SLAE (24)
is the Fredholm equation of the second kind, which gives the stated result.

From the existence of the unique solution for the infinite SLAE (30), the existence of
the unique solution for the DIE system in space Lz(—oo o0o) follows in accordance with the
formula (19).

Various interior and exterior problems in electromagnetics may be reduced to the oper-
ator equations as shown in (31). For example, many interior problems of electromagnetics
[25-27, 31] have been reduced to the infinite SLAE of the first kind by means of the partial
domain method [26, 33] upon consideration of the edge condition but without investigation
of the solvability. However, if the procedure of the convergence acceleration is carried out
[25-27], then the derived SLAE of the first kind can be reduced to the class of operator
equations of the (31) type (see [32]).

2.3 Reduction of the problem of H-polarized wave scattering by polygonal
cylinders to the SLAE

The procedure for the reduction of the DIE (8) to the system of N coupled linear
algebraic equations is similar to that described previously in Section 2.2, but it requires
somewhat more careful considerations. Since there are non-zero currents along the edges of
the PC, the functions {,(17)}_, appearing in this diffraction problem cannot be represented
in the form (18). At both endpoints of the interval [—1,1], the functions {s, (m}Y, tend
to some constants {C,}!, as has been pointed out previously (see (11)). Therefore these
functions are to be in the form of

) s
pa(n) = C*(1 =) + C*H1 (14 ) + (1= nd)” D paCrt 2 (m,) (37)

n=0

Thus an additional problem of determining the constants {C, }), arises. The Fourier trans-
form of the function g, (n) is:

hy(a) = C*(=20) K (o) + C*H2K] (o) + E Fnﬂn]n+u+l(5sa) (38)

'22vr( +1

where {j,,,, +%(z)}?f___o are functions connected with the Bessel functions through the simple

relationship jy,4,41(2) = (z/2)"’"1/2J,,+,,+§(z) , and

eF€ % ging,a

(F(a) = T (6r0)? s por = (D Puak; ok = i1 M ok

(!

Although the expression (38) for the unknown function h,(c) is somewhat complicated, we
can apply a method similar to that developed in Section 2.2 for the reduction of the problem
to the SLAE.

As before let us substitute the representation (38) for the functions {h,(a)}., to the
DIE system (8) and separate the principal and completely continuous parts of the integral
operators of these equations using (21). Then assuming that the right-hand sides of the
equations in (8) belong to the function class L,[~1, 1;(1 —7?)"] and using the orthogonality
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relation of the Gegenbauer polynomials for determining the unknowns 2}, = (—i)"\/B,us,
the following coupled infinite SLAE is obtained:

N oo
Z AoCy +i Z(Am,. —Qha)zn + D) PN =10, (39)

¢g=1n=0

where

oQ
fij,:o = {-—162 / K}(a)V1 - a"’jm+,,+§(e,a) da
o0

4 s
s ©o
_%5,_15’ / K;_l(a)eikr""'D""’A,,,_ljn;+,,+%(€,B,,,_1)dcv /ﬂm
L8 (40)
€0 = €EN; I\’(:]h(a) = I\,[:\h((a)) Dy = D,n; Aso = Asn;
22D (y 4+
Bso= Bsn; 7= 2iﬂ;
0
139 _ E‘]E-‘ + ikrgesD,q d
Amo s ﬂ1117 I\ (a)e Asq]rn-*-y-{-l(e.l sq) o
7"4i / K (a)V1- a2jm+u+§(€!a) da, g=s+1
Brm R
1€ .
_7Eq 41 s / I’ l(a)eskrg-x Do g 1A, e 1]m+y+1(55 : q-l)da, q # s,s+1
—00
“ oo
= £ €5 g 5 5
mn — Qmn = ("7')_4:" V BnBm / Jn+u+§(€,a)]m+,,+%(s,a)\/ 1 - a?da
521/ i92v -l +
= I__—_[Ag:n ) (yn %)]
\u+%(€-‘
oo 5
Es€ V- s . Sl ik
R:)q" = _"_42.. ﬂnﬂm / .7m+u+%(€qa)]n+y+12-(5.1 Bsq)elk q.D.tho daAg‘;)e qulqu
(41)
1Y 1 tkr o).
0E=8:2 l"(u + -2-) Ajeitros Dol )]m+y+%(€,B,(ao))\/ﬁm (42)

The matrix A2, is generated by the edge constants {Cq}flv=1- Besides, the system (39) is to

be completed with N equations for the unknowns {C""};V=1 and {i;). }o_,.
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From the definition of the current function on the PC (see (3)) and the edge condition
(11), it follows that the total field near (s + 1) edges tends to some constant:

N
e = (H; + Zﬂg(a:,,y,)) -

Ye=0 g=1

= —py(+1) = —20*H

’

y,=0

z

1
As has been stated above, H;(z,,0) = ——2-;:,(1:,) (see (6)). Then H}(a,,0) = —C**!,
H:tY(ag41,0) = —=C**1. Therefore the relation

N
{Hi(z,,ys)+ >, H?(r-,ys)}

g=1,9#3,5+1

=0 (43)
y'.—= aO.

may be obtained. If one substitutes the representations (8) and (38) into the relation (43),
then the following expression is obtained:

N [o0]

i . £ AR N T

eferBelan)HieDefan) . Y (;ﬁ / (CU(=20) K] (o) + CI(-20)K; (o)
¢=1,9#3,541 —66

™

)
2 . ie,Byg+iki g, D, -
+22"F(V+ %) gﬂzﬁn]n+u+l/2(5q0)) gt e lDas gy =

n=0

After its transformation, N additional equations required for the SLAE (39) are derived as
follows:

N N 00
D CBDM+ Y N ABY =P, s=1,2...,n (44)
g=1 ¢g=1,q#s,s4+1n=0
where
( Qs_’s—l) §= Q1
(e o]
0, g=s-1, Qf =Te / K*(a)ei€rBratikrasDig gy
BD% = { 3q 9 q (45)
- 00
—Q:H-Z’
\ :.q—l - Q:-.q’

oo
8q : i€ B,q+iki g, D,
Bt =eV/Br [ dnsusy(ega)eePeetit e
—00

P = _42111-(” 4 %)eis.B,(ao)-Hqu,D,(ao) (46)
On the basis of (39) and (44), the original infinite SLAE is transformed into the following
form:
N =) . N oo
D ARG HiY (A — Qradah + DY 24 Pat = T,
g=1 n=0 ¢g=1n=0

N N oo (47)
Sowpte 3 Samger
g=1

¢=1¢#s,s+1n=0
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The matrices { Py}, n=0 (5 # q) are shown to generate completely continuous operators
{ij}f;q:l in the space I, (in Section 4, the explicit estimation of these operators is given).

If {A39, )55 0, {B22}5%0, and {I12,}°_, form convergent sequences in the space o, then it
can be concluded that the infinite SLAE (47) belongs to the class of matrix equations such
as (30), whose solvability has been investigated in detail (see Section 2.2).

Note that the elements of matrices {P,’n"k}f,‘,"kzo describing the electromagnetic interac-
tion of the PC facets (as one can see from (41)) are represented by improper integrals of the
Bessel functions. The asymptotic behavior of the integrands N4 (a) depends on the values
of the indices j and ¢ .

For example, when ¢ = j+ 1 or ¢ # j + 1, i.e., when the operators {ij};-\"q:1 describe
the interaction of adjoining PC facets or non-adjoining ones respectively, the rates of decay
of the functions {N7%}3 .o for |a| — oo differ basically from each other. In fact, we find

that .

NI+ 1o} 1 : Nit o e~ Hia
mi (@) O\ ) Nmk@) 1z O )

This point needs further consideration. The values Ajy(a), Bj («), and Dj,(a) involved
in the integrand of N}J (a) become complex values for |a| — oo as one can see from the

formula (9). As the complex value Bjy(@) = acos(ip; —g)+V'1 — a?sin(p; —¢p,) is involved
in the Bessel function argument, the functions N2 (a) have an exponentially increasing

factor exp (ej Va? — 1sin(p; — <pq)). On the other hand, however, the functions N;:fk(a)
have an exponentially decaying factor exp (—kr,-,\/ a? — 1sin(p; — gojq)). Then using the

asymptotic expansion for the Bessel functions, the functions Nf;fk(a) behave like

. 1 . .
igq ~ —Va3=T1[krjgsin(p—pjq)—¢; sin(p;j—pg)
Nmk_(a) la]—»co a2”+1 (4 19 3 jq ki 3 9

For ¢ = j+1, the parameters r;, = l;, and a; are connected through a simple relation
ljg = 2a; cos(pj — pjq) (see Fig.1d). Then

NI @) e exp (—VaT —Tejsin(; + g — 2030))

As the identity ; + g —2p;q = 0 or 27 is valid for the j-th and (j+1)-th facets of a regular
polygon, N;;;{c“(a) ~ O(a~?~1). For ¢ # j + 1 (non-adjoining facets), it is obvious

Jal—oo
that I;, sin(p; — wj,) > a; sin(p; — ;,). The asymptotic representation

: 1 . .
jq ~ —ak[rjgsin(p;—@;q)—a;sin(p;—p,)]
Nmk(a) [al-—ooo 02u+1 e 39 3 iq J ) q
is now derived. The adjoining facets are characterized by a slow decrease of the functions
N2 (a) as can be seen from (48). Therefore it is necessary to use the procedure of conver-
gence acceleration for computation of the improper integrals involved in the matrix elements
J.J+1
Pkm .
Note that the recurrence formula

m

-1
= (Lm—l,n-l + Lm—l,n+1) = Lm—2,n

Lipn =
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is valid for the block matrix elements, which can be derived from the recurrence relationship
for the Bessel functions. Here Ly, represents A7 . or Q..

Now it is desirable to give formulas for the main electromagnetic characteristics of the
scatterer. The solution of the problem of wave scattering by a bounded body resuits in
characteristics of primary interest such as the radiation pattern (RP), the total scattering
cross-section o7 , and the back scattering cross-section. The current distribution on the PC
facets is described by the functions {y; (1))}’ =, expanded in terms of the series (37) using the
Gegenbauer polynomials. The unknown coefficients {y,, }°°=0 are determined by solving the
infinite SLAE (47). For this purpose, the fields {HI }]Nf:) in far zone should be investigated.
Introduce a cylindrical coordinate system (r, ¢, z) which is coaxial to the general coordinate
system (zoy)(z = r cos p,y = rsinp). Noting that

Jl = zcosp; + ysin; — ro; cos(9; — Poj)
y} = —zsin; + Y cos pj — roj sin(p; — Poj)
and substituting the asymptotic expansion of the Hankel function H((,l)(r) for |r] — oo into

the formula (38), the far field representation in the cylmdncal coordinate system (r, ¢, z) is
deduced as follows:

= A(r)®;(¥)
where
A(’I‘) — 2 _eikr,
V wkri
and

@(p) = ~ S sin(p — y)eitres =Heseni) [ pyi(y)ees o=l

_\H

gives the radiation pattern for each element. On taking account of
1

[ mmyemiesesse=eidn = hycost - 4,))
-1

with the function h;j(cos(¢— ¢;)) being defined by the expression (38), the radiation pattern
®(yp) for the total scattered field is derived as

N i N
) ;1‘1’:'( Eg j sin(ip — pj e kres cosle=es)
x { [Ci41K; (cos(p — ) = C3 K (cos(p — 5))]

Z B, Imtv1/2(€5 cos(p — SP"))} (492)

= (2¢; cos(p — ;) +1/2

F(+)

According to the optical theorem [44], the total scattering cross-section is given by

4
o = ~ 1 Re®(60) (49b)
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3. H-POLARIZED PLANE WAVE SCATTERING BY A FINITE
NUMBER OF FLAT STRIPS

As a special case, the method developed in the previous section for solving the wave
scattering by a PC provides a rigorous solution for the scattering by infinitesimally thin flat
strips (see Fig.1Db). In order to obtain the solution of this problem, it is necessary that:

a) the PC facets are disengaged, i.e., the linear dimensions {2a; };\,:1 of flat strips are
such that they cannot touch one another.

b) the parameter specifying the current function singularity at the edge is taken as
v=1/2.

Under the above requirement, the current density functions on the strips may be rep-
resented as

pim) =1 =053 o, Un(n) (50)
m=0

by taking account of (18), where {Up (1)} =0 are the Chebyshev polynomials of the second
kind (Unm(n) = CL(n)). To find the unknowns {z7,}33_, according to the scheme stated in
Section 2.2, the infinite coupled SLAE of the following form is derived:

o o]

( (_l)kx‘;k - Z(_l)m(2m+ l)w;mdsi)"m
m=0
1
='2— Z Z( i)™ (m + 1)z4,, PI%,
= =0
) q lg#jm (51)
(-1, - Z( 1)m(2m+2)-"32m+1 2k+1 2m+1
m=0
1 N [
—2— Z Z i)™ (m + )ad, Pl
g=1,q 1=0
where
iklqDjq(a)
je _ . W i
Pim = 2/AJq(a)Jm+1(€qa)Jk+l(€JBJq(a)) aB;,(a) da

() _ 4e*reiPi(e0) 4;(ao) Juya (¢ Bj(o)) (52)
¢ ¢j Bj(ao)

and the elements of the matrix {dkm} k.m=o are determined by the relationship (27).

The infinite SLAE (51) belongs to the class of matrix equations such as (24) and (35);
in other words, this is a system of the Fredholm equations of the second kind. To verify this
statement, it is sufficient to prove the inequalities:

[oe]
Z Z(m + )PP <oo; S IMY) <o (53)
k=0

k=0m=0

This means that the matrices {Pf,‘f,}i"m ol #4=1,2,...,N) corresponding to the inter-
action between strips generate completely continuous operatms { km} rm=0(J # ¢) in the
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space [, and the free terms of the equations (51) also belong to the space l3. Recall that the
complete continuity of the operators corresponding to the matrices {dg,?l k.m=0 Was proved
in Section 2.2. For clarity, the validity of the relationship (53) can be proved for the case
of wave scattering by the structure of two identical strips (a; = a3) lying in the same plane
(Fig.le). Using the solution of the problem as a model, the conclusion that it is impossible
to join the infinitesimally thin and perfectly conducting strips without changing the edge
condition v = 1/2 at the joint, will be verified below. The parameters of a two-strip system

(Fig.1e) correspond to:

p1 =00 = 27012 = 05021 = T po2 = 0;113 = l31; Bip = Byy = o

l
Az = Ay = =V 1 — a2, Dy3 = —a; Day = a; Dy(ag) = ag = cosfy;re; = rog = %';
Bl(ao) = Bz(ao) = ao;Al(ao) = Az(ag) = 1- 0'(2); Dl(ao) = —Qq (54)

Then the following expression can be obtained :

=

 To check the second inequality in (53), the integrals included in the matrix elements
P}} should be investigated more carefully. Then under (54), these matrix elements are
transformed into:

{ mL} _2/ \/__Jm.,_l(ega)JkH(eza){e:klna}da (55)

ki
mk 13

jao) = [ — J5(gjxo)] < o0

If one tries to estimate these integrals according to the above-stated scheme (on the basis
of the Cuachy-Bunjakovskii inequality), the validity of (53) cannot be established because
when a function is estimated in its absolute value, the oscillating factor e**¥'12% improving
the convergence rate of the integrals in (55) disappears. In order to obtain the desired result,
the principal part of the integrand is separated in a familiar manner. As before, the function

7(e) is introduced by means of the formula /1 — a? = i|a|[1 — y(«)]. The result is :
i d
Eldy=s —2i/Jn1+l(€la)Jk+1(5la) [emklae 4. (—1)b+meithiac] ;Oi
0

o0
+ 2i/Jm+1(€1a)«7k+1(€10)7(0) [em¥liae 4 (—p)hbmeihtian] %Q(E P+ BlL)
J .

Then it is obvious that P2, = (=1)™**P12 = From the deﬁmt‘.lon of P2 it follows
that the estimate of this matrix norm is identical to (36). As for P2 the corresponding
integrals are tabulated (see [39]) and then

m+k 201 m+k+2
mk - [1 ] 112

i [%(p+ BEE2)(C(p + 242 + 2)(T(p + 254% + 1) (2a1)2"
I‘p+m+L+3)F(p+m+2)F(p+k+2)F(p+1)

T (56)
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p? \ 2

series converges for all /2 > 2a;. The desired result follows from the representation (56).

Namely, the norm of matrix { P%(m + 1)}:’: k=0 IS

. 1 (24, ,
Note that the term of this series decreases as O | — (—ai) for p — oo, ie., the

- [s¢] [o+]
1Pl =D ) |Pmkl(m +1)? < 0

k=0m=0

and is bounded only under the strict requirement l;5 > 2a;. Hence the interaction matrices
{ P2 (m+ l)} generate the completely continuous operators only if the strips do not touch
each other 115 > 2a, .

The verification reveals the fact that the interaction operators P;, are always completely
continuous if the strip contours and their prolongations do not cross each other. Thus, it has
been shown that the infinite SLAE (51) is the Fredholm equation of the second kind, and
its approximate solution may be obtained by the truncation method with any preassigned
accuracy.

On the basis of elaborated numerical algorithms, the electromagnetic characteristics
have been calculated for various structures of practical interest such as 2- and 4- mirror
strip open resonators (OR) (Figs.2-5). Figures 2 and 3 illustrate the frequency dependence

H

: .0 d . ;
of the total scattering cross-section —2- for the 2-mirror strip OR at different values of

a
the parameter 6§ = h/a and the incidence angle 3. The current distribution on the strips
and the field pattern are also shown in Fig.2. These results (Fig.2, curve 1) completely

agree with those obtained on the basis of mathematically rigorous method [17]. As is seen

H

from Figs.2 and 3, the dependence %’—- versus k£ = ka has sharp resonances due to the

a

excitation of quasi-eigen oscillations inside the resonator. It is known [17] that the values
g mm

& corresponding to the resonances for § < 1 are always less than —— (for the normal wave

2
) 1 . e
incidence, kK < (m—=)w, m = 1,2,...). In this case, the resonances due to the excitation of

”piston-like” natural mode prevail. If § > 1, the resonances occur mainly due to the higher
order modes for « values close to nw/(26)(n = 1,2,...) as shown in Fig.4.

H
The frequency dependences of Zs_ for the 4-mirror strip OR (of identical strips) are pre-

sented in Figs.5 and 6. These curves Clllave sharp resonances which occur when the frequency
parameter is close to wvv/m? + n? where m,n = 0,1,2...; in other words, at frequencies
close to the natural frequencies of the interior domain of resonator. Besides, it is natural
to assume the presence of natural frequencies of the 2-mirror OR, because the 4-mirror OR
may be considered as a system of two coupled 2-mirror strip OR. The frequency depen-
denc;:ls for the 4-mirror strip OR shown in Fig.6 confirm this consideration. The resonances
of % in low-frequency range (they may be named principal resonances) are just observed
at frequencies shifted to lower ones with respect to those of the 2-mirror strip OR (compare
the curves in Fig.2 (6 = 1) and Fig.6). Figure 7 shows the surface current distribution on
the mirrors of the 4-mirror OR for different values of its parameters.
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Fig. 2. Frequency dependence of the total scattering cross-section (SCS) 05’ /4a for a 2-mirror
strip open resonator (OR) with & (= h/a)=0.5 (solid line) and 0= 1.0 (dashed line). Current dis-
tribution function £(7) on the strips and radiation pattern (RP) for ka =/2 and 0=10.
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Fig. 3. Frequency dependence of the total SCS for a 2-mirror strip OR at different incident angles

0, with 6=0.5, 1.0.

0 w0 20 30 40
Fig. 4. Frequency dependence of the total SCS for a 2-mirror strip OR at different incident angles
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Fig. 5. Frequency dependence of the total SCS for a 4-mirror strip OR at different incident angles
0, with S(=a,/a)=0.3,0.5.
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Fig. 6. Frequency dependence of the total SCS for a 4-mirror strip OR at different incident angles

4. WAVE SCATTERING BY A FLAT STRIP

In this section, we consider the H-polarized plane electromagnetic wave scattering by a
single flat strip as a special case. This problem is formulated in terms of the infinite SLAE
of the second kind (51) with j = 1. Then all the linear dimensions of the strips {aq};\;, =0
besides one of them (j = 1), and all the mutual interaction matrices {P,’;fk};',‘,”kzo = [
This is a classical problem in diffraction theory, and a considerable number of investigations
have been devoted to seeking its rigorous and approximate solutions. The most complete
bibliography on this matter can be found in monographs [42-45]. It should be noted {21, 46]
that the solution methods developed in recent publications are a special case of the present
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Fig. 7. Current distribution function on the strips of a 4-mirror strip OR at different values of S,
0 and ka.
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approach. By means of the MM, the original DIE was reduced to the infinite SLAE of the
first kind with slowly decaying matrix elements [21} and to the SLAE of the second kind in
[46]. However, the solvability of these equations was not thoroughly investigated.

For the problem considered here, the infinite SLAE of the second kind takes the form :

d(l) 1) _ —9 V 1~ a% J2k+1(5a0)
(&3] «g

(-1)k2) — \f:(—l)'"(zm +1)

2k,2m$2m =
(57)
o
1 1 V91— a2
(—1)k1’(21k)+1 - Z("l)m@m + 2)d(zk)ﬂ,2m+1"’(2n)n+1 = 2a—30=72k+1(500)
m=0

It should be noted that on the basis of the SLAE (57), the integral equations of the second
kind for the unknown Fourier transforms can also be obtained. For verifying this statement,

let us represent the Fourier transform function h;(+a) as a sum of the even and odd parts,
ie., hi(xa) (= hf (@) 2 b7 (a)/2). In view of (19) (under v = 1/2), we obtain

o0
(@) = 2 3 (-1 (om + 1 2e2(E10)
m=0

Japy2(610)

g1 (58)

hi () = —2mi z (—1)'"1:(21,,2+1(2m +2)
m=0

If one substitutes {z{})}%_,, the solution of the SLAE (57), into the series (58) and
recalls that the quantities dﬁ_ln)l are defined by the formula (27), then

21 /1 — a2
hi(e) = —21;——6“;—0—0 E(Qk + 1)Jorq1(e10) Jar41(E10)
k=0

LS S PTIRELCGLIA S I VR O / 1B Tat1(618) Jam 1 (€16) 2
& k=0 o k=0 o ﬂ

Through interchanging the order of integration and summation (this procedure is possible
due to the uniform convergence of the series and the absolute integrability of the integrands)
and introducing the notation

K*(@,6) = 35 D2k + Dansa(€10)Jaksa(61) (59)
k=0

the following integral equation is obtained:
4 o0
h*(@) = —i=/1 - 3K+ (e, 00) 42 / BY(B)K* (a, B)h} (B)dB (60)
1
0

The expression for h™(a) can be obtained in a similar fashion:

W (@)= STtk (a,a0)+2 [ BYOK™ (@, A7 (B)d8 (61)
0
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where
K=(a,8) = a‘—ﬂ 3@k + 2)Jae42(610) Jak 42(61) (62)
k=0

Equations (60) and (61) are the Fredholm integral equations of the second kind. The kernel
representation K i(oz,ﬂ) may be simplified to

K*(a,f) = i(a_:i_ﬁz) [a/1(e12)o(e1) = Blo(ere) 1 (e16)]
K'(a,ﬂ) = -2(—026—}_—'—35—)‘ [ﬂJl(Cla)Jo(Elﬂ) = .OJ0(€1C!)J1(61,3)] (63)

by means of summation of the series in (59) and (62). Note that the Fredholm equations of
the second kind (60) and (61) with the kernels (59) and (63) are identical to the analogous
equations obtained by the Riemann-Hilbert problem method [38,43] and by the method of
the Abel integral transform [49].

Determining the coefficients {2{M}%, from the SLAE (57), the surface current density
function and the radiation pattern (RP) can be evaluated by (49) and (50), respectively. In
particular, the RP is found to be:

—7sin¢p

oo
—i)" (1)
2¢1 cos Z( i)"(n + D)z, Jn41(€1 cos o)

n=0

() = -

from which the total scattering cross-section (SCS) can be found using the formula (49b) as

[oe]

E(" + 1)Jnt1(e1 cos o) Re {(_i)nxslx)}
n=0

m sinfy

H
L -
4a; ~ €3 cosfy

The well-conditioned algorithms for computation of these characteristics have been devel-
oped to check the efficiency of the obtained solution. The infinite SLAE (57) is solved by
the truncation method for arbitrary physical parameters using the Crout algorithm [53].

However, as follows from the estimation of the norm of the matrix {dgcln)}i‘,’"=0 (see (36)) for
the frequency parameter €1 = ka; < 1, i.e., in low-frequency range, this system of equations
can be solved by simple iterations.

Improper integrals involved in the expressions for matrix elements d}, are computed
by the Simpson method (see the details in Section 4). In order to keep the error less than
1075, the infinite integration interval may be replaced by the finite one (0,25).

Tables 1 and 2 present the correlation between the truncation order Nj of the infinite
SLAE (57) and the accuracy of the field H (1) and the total scattering cross-section ol in
the far zone. This is to demonstrate the good convergence of the sequence of solutions when
the truncation order N increases. Similar results have also been obtained for other values
of the parameters ¢€; and 6. Numerous calculations show that for the reasonable accuracy,
the truncation order N, should be chosen as entier(e;) .

The current density functions on the strip at various incidence angles o and normalized
widths €; = ka;y of a strip are shown in Fig.8. These results agree well with those given
in the monograph [47). Frequency dependences of the total SCS and the RP at different
incident angles 8y are shown in Fig.9. It should only be pointed out that if £, — oo, then
the total scattering cross-section tends to the geometric-optical limit o /4a, T sin 0.

e
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Table 1. Computational accuracy of RP for various values of the truncation order N, of the infi-

nite SLAE.
0o =45° &, = ka; = V28
Re®(p)

o T 1 g 3 4 5 10
2.5° 0.02079 0.03344 0.03433 0.03434 0.03434 0.03434
45° 0.63133 0.73543 0.73765 0.73766 0.73766 0.73766
90° -0.1562 -0.1864 -0.1857 -0.1857 -0.1857 -0.1857
135° 0.12825 0.188556 0.18950 (0.18950 0.18950 0.18950

177.5° | 0.00582 0.01206 0.01267 0.01269 0.01269 0.01269
Im®(p)
2.5° -0.01632 -0.016565 -0.0164 -0.01641 -0.01641 -0.01641
45° -0.26932 -0.18202 -0.17636 -0.17628 -0.17628 -0.17628
90° 0.15452 0.08510 0.08096 0.08091 0.08091 0.08091
135° | -0.11856 -0.02106 -0.01527 -0.01519 -0.01519 -0.01519
177.5° 0.0081 0.00599 0.00630 0.00630 0.00630 0.00630
Table 2. Computational accuracy of the total SCS 05H/4a1 for various values of V.
€1 = ka; = \/i-g
0o = 45° 0o = 90°
N1 0’?/4(11 0’?/4(11
1 0.63133 1.037816
2 0.73543 1.042125
3 0.737654 1.04048
4 0.737655 1.04045
5 0.73765 1.040451
10 0.737655 1.040451

5. H-POLARIZED PLANE WAVE SCATTERING BY A
RECTANGULAR CYLINDER

Among a number of cylindrical structures treatable by the proposed approach, a cylinder

of rectangular cross section is typical. This is a sole structure formed by strips of different
widths and joined at the same (right) angles (the fact of identical corner geometries is
important for application of the method in the present version). In this case, the proper
behavior of the current at the cylinder’s edge point can be described by setting v = 2/3
in (10). It is obvious that the symmetry of the structure can simplify the computational
algorithm. The scatterer symmetry leads to the existence of a certain relationship between
the elements of separate matrix blocks, which simplifies calculation of the whole SLAE
matrix. When there is a higher degree of symmetry, more relationships hold. Thus blocks of
the SLAE matrix have simpler relationships in case of a square prism than of a rectangular
one, in other words, the elements of one block are expressed more easily via elements of
others for the square prism. This is true for any regular polygonal cylinders.

For the rectangular prism (N = 4,v = 2/3), the quantities A,, Bsg,and Cyq in the
expressions of matrix elements of the SLAE (47) have the form:
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0 -« V1i-a? a
Ayl oy B
{As}s =1 S 8 _a

4 s
{Bsq}a,q=l = e \/1_7 0 _m

0 D12 V 1 e a2 D14
{D }4 - D21 0 D23 AV 1-— 02
TR vV 1- a? D32 0 D34

D41 Vv 1- 012 D43 0

Di2(a) = Day(a) = Dys(—a); Dya(a) = D3z(a) = avcospiz + V1 — a?sinpgs
Dy (@) = Das(a) = Day(—a); Day(a) = Daz(a) = asinpiz + V1 — a®cos g

The block structure of the SLAE is illustrated in Fig.10. Four diagonal cells describe
the properties of four single-strip scatterers constructing the cylinder. Twelve non-diagonal
cells account for the mutual interaction of cylinder facets. The numbers of lines and columns
in these matrices correspond to the truncation parameters, which, in turn, depend on the
electrical dimension of the scatterer. Besides there are nine extra matrices caused by the
constants C?: four extra matrices have four columns and the row number is defined by
the truncation parameter, four other matrices have four rows but their column number is
defined by the truncation parameter and the ninth matrix has the size 4 x 4.

First of all, let us show that the matrices { P2} =0 give completely continuous op-
erators Py (s # ¢ = 1,2,3,4) (see Section 2). Two kinds of operators may be distinguished:
the operators describing the parallel-facet interaction and the operators of perpendicular-
facet interaction. The norms of the interaction operators Pa4, P13, Pi2, P31 for non-adjacent
facets are bounded in l,. It is sufficient to estimate the norm of one of them because the
rest norms of operators are similar. Now we obtain

2 2v— V &1V 2
1)7;":1 = ﬂmﬂn l\/Jm+ll+1/2(6:26")']n+u+1/2 520‘)( 1) (6 a)2"+1 1=2%da

\/—ﬂmﬂnQ;:_l (=)™ + (=1)")

V4 a? V
X/Jm+u+1/2(52a)Jn+u+1/2(52a)8w - e (64)

0
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Fig. 10. Block structure of the SLAE.

It is known that the product of the Bessel functions can be expanded in terms of a
uniformly convergent power series of the argument [50]:

1 o0
Teavsr/2(E20) i 2(E20) = 7= 3 Q) (ean)TotbtmrebhEL
=0

(-1)*T'(p + L‘L"l%ﬂli_k DI(p + Mtzzilﬂ)
Tp+)(p+k+v+p+k+p+3lp+k+p+v-1)

Using this expression, (64) can be estimated as follows:

5 22!/—1 - 6,
IPr;;};l S 2VﬂmﬂnT_‘i‘{ Sc”n,:)pl S [ Zorn lI& (51)'

e” n+m+1 3 i m [ e ! n+m+1 3
(L O] Satzren (s (p+ 2221

2p+m4n-—-1
+ ﬂ_———— [511&'2(51)] }} (66)

ZpdmIn—1
661” m+n
where B(a, () is the Beta function; {K;(e1)} for j = 1,2 is the MacDonald function; 6o is
the Kronecker delta. Based on this estimation, it is easy to show that:

00 o 1/2
|P%) < {Z 3 i 2} <o (67)

n=0m=0

an‘: ,)p =

(65)
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To estimate the norm of the interaction operators of the adjacent facets, it is sufficient
to do this for the operator Pjy:

oo
2 v—-1 ae"“/l —-a?
Pon = VBafm(~ 1)"(5 &) 1/2 a(VI = a2y 172 Imvt1/2(e20)

X Imyvtrs2(€E1V1 = a?) [—e“""’ + (—1)"‘6“’“] da

Let
V1=a3
2 e’ . 1
mn( )= (o \/T_——C_l—)”+l/2 m+u+1/2(€20)~]m+v+1/°( V11—« )Ial—oooo pErE

Such a slow decay of the function N2 («) requires convergence acceleration. To this end,

let us investigate the asymptotic behavior of the function N2 (a). We find that

Pe—1e .
N2 (a) ol e ‘—ag.,—fm+u+1/2 (610) Jmpv41/2 (€20) [E N2 (a)]

where Iy, 41/2(€10) is the modified Bessel function. Then we can express Pl2 as

22v—l

(e o]
Pl = P~ BB~ o [ (V3 = (% (- — 2%
0

where
oC

92v—~1 ; ;
P,},zn = (- 1) vV ﬂn,@m )u VE /N12 ( u‘:a(_l)m _ e—ze:a) do
If €1 2 €9 then

u—l
Prigz - (—"l)n Vﬂnﬁm(_‘;‘w [ mn —( l)mB( )]

+utd
BE) — (:Fi)'"'"”'% (:F'el )P Py —m - DI(n+m+2)
S 27H2r  T(n—m+22)(m+v+ 3)

X gFy (1—21/+m+n,m+n+2,m+u+1;m—u+2,2m+2u+2;q:i?)
1

T 1 I'(m+1-v)T(2v)
t e T e T Tm+ 34 1)
x 3F4 (—-n —-vn+v+1,2v;m+3v+ ;v —m; :Fiz—z-)} (68)
1
where 3Fy(...,...,...,) is a generalized hypergeometric function. The corresponding hy-

pergeometric series is absolutely convergent for £; > €2, and the asymptotic behavior of the
n

. . e €2
series term is found to be O [n 261 (5_)
1
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The asymptotic limit of the matrix elements P,},";, for n,m — oo is derived by the
asymptotic behavior of the quantities P2 Even in the most unfavourable case due to
the properties of the hypergeometric functlon, the following expressions for P,},"’n can be
obtained:

ng m,r?ioo P'i'z" m.n=-‘oo o [(mn)_m’] (m # n,),
12 ., pl2 _ 2 _
Pon & _Fan = O ), v=2/3 (69)

Thus the operators corresponding to the matrices such as {P,},zn};’f"mzo are completely
continuous in the space 5. The system of linear algebraic equations (47) is solvable by the
truncation method. Two following statements should be made:

First, the complete continuity of the interaction operators for adjacent facets is provided
by the correct account of the singularity of current functions at the edges (at the joints);

Second, the continuous transition from a rectangular cylinder to a flat strip does not
take place because, as follows from (66), the norm of the operator Py4 increases unlimitedly
if the thickness a; tends to zero (¢ — 0).

The change to flat strip structures (Fig.1,b,c,g) must be realized in accordance with
Section 3.

Now let us make some remarks on numerical realization of the proposed approach.
Recall that the symmetry of structures provides simple relations between the interaction
matrices {P}1}{%,=0. For a rectangular cylinder, this enables one to calculate only four
interaction matrices instead of twelve ones.

The principal procedure in numerical computations is the calculation of the matrices

{Q ("H/Z)}k T {Pit}e . for the infinite SLAE (47). The elements of these matrices are

kn
represented by improper mtegrals, i.e., integrals over infinite intervals. However, when the in-
tegration parameter increases, the integrands in Qi’:ﬁ'l/ ? and Pii*! decrease as O(1/a®+3)
and O(1/a®*1), respectively. Then these integrals can be calculated directly by Simpson’s
rule. However, they can be also reduced to series representations. A brief summary of this
procedure is presented below.

Let the matrix elements be represented in the form:

(u+1/2) 1/'3(u+1/2)’3(u+1/2) [B(l) B(z)] [1+( 1)(k+n) (70)

where
v - do
By = Kugr2(&5) [ Trvwrrsa(€ialnrvprpa(ejea)r(a) =5, (71)
0
(o]
(2) do
B = Kus1/2(€5) | Jiwvt1/2(650) ntvirja(eja)y(e) —; (72)
1

After substitution of (65) into (71) and in view of y(a) = 1 + é\/ 1 — 2, the resultant

integral (see [51]) for B,(CL) can be evaluated in closed form and the result is:

il [ ! VAl + B | g

(1) vv  2ptkin
Bin = Kvsay2 51) v ZQ mpi +k+n+2 4T(p+2+ Hn)
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The expression (33) for the function v;(a) = ay(«) under & > 1 and a contour integral
representation [51] for products of the Bessel functions are necessary for calculation of the
integral (72):

ctioco
1 I'(—S) I(S + kdntledl)
Jk+u+l/2(5ja)Jn+v+1/2(€fa) = o 2
2 '(S+k £
c—100 \/7? ( tEE vy 2)

F(S + inizui )(E a)2:+k+n+2u+1
ds
I‘(S+L+n+v+ Or(S+k+n+2v+2)

(74)

where

—Re(k;n+u+1) <ReS=c¢< O

Computation of the appearing Euler integrals of the first kind [51] and the contour
integration on the basis of the residue theory yields

K (e5) 20 . 2mEktntl
(2) V+1/2 F] p+1 2p 1 (v,v) &

B 2\/7'; {Z( 1) 01/25 Lknp + Z::()Qk,n,m m+ g—p

tnp®Jj ¢ —_
+§:( 1) Cl/2 { T —_+ 1) 2ne; +P(p+v)+¥(p+v+ 2)
E—-n+1 —k+1
—lp—g+1) -9 (p+._’2’t_+.,) ~4 (p+"——§i—+u)
(v,v) 2m+k+n+2u+1
n+k = Qk n,m&j
- (p + )] + > (75)
2 m=0m#p—q Mg =p

k
where ¥(z) = [InT'(z)]’ is the y-function, ¢ = 1+ % ,
as
= Tp+v)T (p+v+13)
PP (p+ R ) 4T (p+ 25 + ) T (p+ 22 + 20 +1)

and Li,,, quantities are expressed

The series in (73) and (75) converge rapidly enough for small values of parameter ¢; ~ (0 :
10). .

Let us consider the improper integrals in the matrix elements PJ! again. As has been
noted in Section 4, the convergence of the integrals in the quantities sz with ¢ # j+1
describing the non-adjacent facet interaction, is sufficient for {¢; };=; not too small. As for
the matrices {P’ o 'H} a0, the improper integrals in their elements converge slowly. That
is why the convergence acceleration procedure is necessary (see (68)).

Now the question arises: What does such convergence acceleration of improper inte-
grals yield? The results of computation of the functions Ni2(a) (after application of the
convergence acceleration procedure and without it) presented in Fig.11 are the answer to this
question. They demonstrate evidently more rapid decaying of the integrand N}?(a)— N2 ()
at some values of parameters ¢ and indices k,n. As a result, the computation time for the
evaluation of the integrals decreases considerably, and a better accuracy is achieved.
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Fig. 11. Illustration of the convergence acceleration scheme for improper integrals.

For the investigation of scattering characteristics for a rectangular cylinder, a set of
computer codes has been developed. The infinite SLAE (47) is solvable by the truncation
method through the Crout algorithm [52], and the improper integrals are computed using
the convergence acceleration procedure. The computed surface current density functions
on facets and the RP for a rectangular cylinder are shown in Fig.12 for various values of
the frequency parameter € = ka and the incident angle 8y. These results show that at
normal incidence (6o = 90°), the current amplitude is much less in the shadow region of the
facet than in the lit region, and if € increases, the number of current oscillations evidently
increases in the shadow region. At an incident angle 6y = 45°, two cylinder’s facets are
lit up uniformly and hence, the amplitudes of their currents exceed those on the shadow
facets considerably. This current distribution causes the appearance of sidelobes in the RP
which are comparable with the specular and shadow-forming lobes. If o = 90° and ka > 1
then the RP resembles that for the flat strip (ripples of the RP near zero show a mutual
interaction between the neighboring facets). For ka < 1, the RP is similar to that for a
circular cylinder.
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{/‘J (?j)};-r
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Fig. 12. Current distribution function #(1) on the facets of a square rectangular cylinder and its
RP at different values of ka. Solid and dashed lines denote 8=90° and 6= 45", respectively.

The RP for the square cylinder of the electrical dimension ka = 27 (see Fig.13) agrees
within a graphic accuracy with the analogous result obtained on the basis of the spectral
diffraction theory in [16] (for the comparison with the work [16], we give RP data in decibel
scale as well).

Table 3 lists values of the total scattering cross-section for a square cylinder with dif-
ferent wave dimensions. Table 4 shows a connection between the accuracy of computations
and the values of the truncation number for the infinite SLAE (47).

Figures 14-18 show RP and surface current functions for an infinitesimally thin strip
and for a cylinder of rectangular cross-section at various values of frequency parameter,
incident angle and parameter S = a;/az which gives the "thickness” of the cylinder. The
following conclusions can be drawn from the analysis on these results.

1. For normal incidence (8 = 0°) upon a wide facet of the rectangular cylinder with
thickness 0.1 < S < 0.5, the RP is close to that for a flat strip. The difference is seen in the
fact that the far-field amplitude in backward direction slightly exceeds the field amplitude
in the shadow region, and the RP does not vanish in the directions ¢ = 90°and ¢ = 270°



Numerical-Analytical Approach

505
7
5 42 .
%’Z// i
/
X a8 ) S
7
S kasew
N '0'7,/ 7
[ 9
\V’VIV /’/
< 08 O 42
AN
i A\ 5
\ N
\\ 1
~ |
~
37
P-4
v
; ¥
i
NN VAVA 3 {
7 TN .
o ] w_ ¥ P R (L
i i, P i
' 1
10} '
-{ 0o 74 0 44 6 w44 o A %

Fig. 13. Current distribution function on the facets of a square rectangular cylinder and its RP for
ka=2x. Solid and dashed lines denote 6¢=90° and 6,=45°, respectively.
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Fig. 14. RP and surface current distribution for an infinitesimally thin strip (ka,=7) and a rec-

tangular cylinder (ka;=m, S=a,/a=0.125). Solid and dashed lines denote 6o=90° and o=
0°, respectively.
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flat strip

] ~——

Fig. 15. Comparison of RP for a flat strip (solid lme) and a rectangular cylinder with S=0.2

(dashed line) at ka,=2.5.

Table 3. Frequency dependence of the total SCS for a rectangular cylinder.

/
705 08 10

Ka=2.5
$=0.2

ka o /4a(0, = 90°) | oF/4a(6y = 45°)
0.4 0.36577 0.36989
0.8 0.62534 0.65542
1.2 0.90282 0.70981
1.6 1.1668 0.73359
2.0 1.15348 0.83477
2.2 1.1105 0.90396
2.6 1.0394 0.9791
3.0 0.9791 1.1476
3.4 0.98767 1.18519
3.8 0.94205 1.31141
4.2 0.7041 1.3839
Table 4. Computational accuracy of the total SCS depending on the truncation order N .
ka = 1.5, 6y = 90°
Ny o® /4a
3 1.1529
5 1.1515
7 1.1507
1.1505
11 1.1505

due to the contribution of the side facets. However, if an integer number of half-wavelengths
fits across the wide facet of rectangular cylinder, the difference between its RP and RP of a
flat strip decreases.

2. At oblique incidence (see Figs.15,16) on a thin rectangular cylinder (on a fiat strip of
finite thickness), the RP becomes asymmetric as compared to the RP of an infinitesimally
thin strip. The thickness of the strip has a noticeable effect on the RP. The current amplitude
on the side facet is large because the function of the current density on the cylinder facets is
piecewise continuous in the case of H-polarized wave scattering. In other words, in this case,
the surface current (by passing the edge) effectively penetrates the shadow zone through the
side facets.
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Fig. 16. Surface current distribution on facets of a rectangular cylinder with S=0.2 (a) and on a
flat strip (b) at ka,=2.5. Top and bottom results denote oblique and normal incidence, respec-
tively.
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Fig. 17. RP and surface current distribution on facets of a rectangular cylinder for ka,=n, S=
0.5. Solid and dashed lines denote 6=0° and €= 90°, respectively.
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Fig. 18. Comparative plots of the surface current distribution on facets of a rectangular cylinder
for different values of the truncation order. N;=35 (short-dashed line), N,= 11 (long-dashed
line), Ny =13 (solid line).

Note that at oblique plane wave incidence on a rectangular cylinder of small thickness,
it is necessary to increase the truncation order N; of the infinite SLAE for obtaining all the
physical quantities with the preassigned accuracy. It is obvious from the plots of the current
density distributions on the cylinder’s facets for different N; (Fig.18). With a decrease of
the strip ”thickness” (value of the parameter S), a greater N; is required.

6. E-POLARIZED PLANE WAVE SCATTERING BY A REGULAR
POLYGONAL CYLINDER
Let us formulate the problem for an E-polarized plane wave
e‘l) = eif(a0z+/1-agy) , (g = cosby)
incident on the PC. It is necessary to find the total electric field component e, in the form
N .
e; =el+el :eS-}-Zeg’)
i=1

where the functions {e(z-")}j-":l denote the fields generated by the corresponding currents on
the PC facets. The field 1s to satisfy the Helmholtz equation outside the cylinder surface
and the Dirichlet boundary condition

N
eg+’ze£j)
F=1

on the cylinder’s surface, the Sommerfeld radiation condition in far zone and the Meixner
condition (10) at the edges of the PC.
It can be shown that the fields {eg’)}f’:I may be represented as [44]:

N
=0, L= (76)
L j=1

0
0 = 2 [ o;(a)eieslanrvimanc] __do
€z I / eJ(a)e \/-1-—_(15 (77)
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* 1 /

where ¢;(= ka;), u} (E %—) , and ( (E Z—J) are the normalized coordinates, and the
j i

functions {ej(a)}f;l are the Fourier transforms of the current density functions {pj(r))}]l-"=1

on the PC facets. The definition of these functions is extended such that they vanish outside

the interval under consideration, i.e., p(n) = 0 for |n| > 1.

The behavior of the functions {pj(n)}f;l is to be associated with the Meixner condition
(10). In order to take into account the Meixner condition, it is convenient to expand these
functions in terms of a complete orthogonal system of the Gegenbauer polynomials with the
corresponding weighting factor:

<v<l (78)

D =

00 g
i) = (1=t pPCm * (),

m=0

The problem is then to find the unknown coeflicients {p4)}%2_,. The Fourier transform of
(78) can be represented as

_ 2 > am (5) (u—%)Jm+u—1/2(5ja) 1
CJ(a) = F(V — -:12_) ng;:o(—l) Pm ﬂm (26]'0)”_1/2 s v > ’2' (79)
whe
e ﬁ(v—1/2) _ I'(m+2v—1)
m T I(m+1)

Now it is clear from (79) that e;j(a) ~ O(a™) for |a| — oo; in other words, there is a
relation between the decreasing order of the Fourier transform of the function p; (n) and
their behavior near the endpoints of the interval € [—1,1]. The fulfilment of the boundary
condition (76) yields the following coupled system of dual integral equations with the kernel
in trigonometric functions, which should be solved for the functions {e; (a)}jy:l:

;o0
/ czj(¢3z)e"‘1'°"'‘/-—151_?—T—2 = —9ricitinBi(ao)+ikro; Dj(xo)
oo .
U =3 [ ega)efemBat@rtitiaDin@dg,  |n] <1 (80)
9#i=1 "0
/ej(a)ei"'“"da= 0, Inl>1
\ —00

Here the quantities {B,-(ao)}f;l, {Dj(ao)};y:b {qu}j-\,’qﬂ, and {D',q};\,lq=1, have been de-
fined in connection with (8). The functions {ej(a)};-\”q__.l are subjected to the relationship

o0
lej ()P 2
/ lOl|+1cloz<oo, g= b N (81)
—-00

which follows from the condition of finite energy in any bounded domain [38,44]. The class
of functions satisfying these conditions is denoted by La(—0c0,00).
Since the unknown functions {ej(a)};-v___l are expressed via the unknown coefficients

{pU¥)}2_,, the DIE system (80) is to be solved for {pi9)}2°_,. To find them, first of all,

m=0-
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principal and completely continuous parts (in the space Ly(—oo, 00)) of the integral operator
of the left-hand side of the inhomogeneous equation in the DIE (80) will be separated. This
procedure is realized by introducing the function é(«) by the formula

1 i ‘ A
o [1=6()]; &) Tl s o (ag) (82)

Let us substitute (82) and (79) into the inhomogeneous equation of the system (80) and
recall that

eleion — 2 ”-1/21‘ 1—l iik k-i-l/-i-1 J, (€ )C”—%( ); . 1
- Ejx 2 k=0 2 k+u—é~ SqI K0 2 RUR

Then in view of the completeness of the set of Gegenbauer polynomials, the infinite coupled
SLAE for the unknowns {p,(,;{)}f,f:o is obtained as follows:

(o o] X ("_ l) . N o .
DD+ VNG =T - 3T S APEL, =12, (89)
m=0 g=1,9#j m=0

In (83), the following notation has been used:

2v-1 2 1
29 = (—iympp N 2T oo (3) 2 (v + 3)
LR 19=\G)  TTan

o]
(V—%) e 2 . da . —
Noo =2 Ju_%(e,ot)o[zy_1 k=m=0
0

(P -aliP), Eempo

-1
i <

da

av

Cg:%) . I\,y_%-(sj)/Jk+u—-}(€ja)‘]m+u—§(€ja)
0

M (v + T (H2)
- T k
T (v+ m—zk 1)F(u+’°":_',‘il)I‘(2u+£déﬂ)’ +m#0

v— 5 7 ' . d
dﬁm H) = Ii.,_;f(ej)/5(0)Jk+u-g(€ja)Jm+u-g(eja)a—;;, k+m#0
0

o £ ¢ A eikliqDjq(@) da
Pkm = I<u—§(€j) .E_q _<°/° Jk+v-§(6ijq(a))Jm+V—‘}(eqa) \/1 — al [aqu(a)]""§
: P -\ Jrpv-1(€j Bj(@0)) . 2m
I-\(J) = K o etkroiDi(ao) R : k=— 4
k u—%(EJ) me [aB_,-(ao)]"'% b (8 )

Here, the unknowns {27}, belong to the class of numerical sequences I (u - -;—) defined
as

1 D 1201 4+ 3 (200l
Iy (V—§) =429 |2y |c+Z|Z,({)|Cm, Y <ooyp, c: const

n=1
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because the functions {e; (cv)};\’=1 are taken from Ly(—o0, 00) (see (81)). Aftrer transforming
the original unknowns to the new ones belonging to the space I3, the Fredholm SLAE of the
second kind may be generated. Hence, the unknowns can be found with any preassigned
accuracy by means of the truncation method. One can make sure that for the elements of

o o0
matrices {d;;:n'l/ % fmo and {P,S:,_ Y 2)}k o their estimates, asymptotic expressions
t,m= m=

and recurrence relations analogous to those obtained in Sections 2.2, 2.3 and 4 are derived.

7. CONCLUSION

The diffraction of an H-polarized wave scattering by a rectangular (square) cylinder
has been studied as one of the simplest problems associated with polygonal cylinders. First
of all, this selection has been motivated by the possibility of principal investigations such as
the comparison of various methods and the scattered field feature analysis.

This problem analysis is far from covering all the advantages of this method. The basic
ideas combining the partial inversion of the operator and the moment method (the hybrid
approach) are fruitful and can be effectively used in many problems of electromagnetics.

In view of this, the following directions of possible applications of the proposed method
can be pointed out:

I. Scattering problems for polygonal cylinders formed by

a) an intersection of circular cylinders (the contour of PC cross-section is a joint of
circular arcs (see [53]));

b) an intersection of a circular cylinder with planes (the contour of PC cross-section is
a joint of straight intervals and circular arcs (see [54]));

II. Scattering problems for an arbitrary PC with the facets such as flat strips and similar
problems for the piecewise continuous cylindrical surfaces (see Fig.1f,g).

III. The developed method for solving the dual integral equations with the kernel in

trigonometric functions can be generalized to those with the kernel in Bessel functions
appearing in problems of wave scattering by disks (including a disk of finite thickness).
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