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ABSTRACT

An accurate numerical-analytical method of solution of the problem of wave
diffraction by a perfectly conductive cylindrical body with a cross-section formed
by crossing of the "key” elements (such as flat strips and cylindrical screens) is
proposed. It is based on the ideas of the moment method and the partial inversion
technique of the initial problem operator. For this problem, Gegenbauer polynomi-
als form a complete orthogonal system of the basic functions. As a result, the initial
problem is reduced to the solving of infinite systems of linear algebraic equations.

Examples of the flat strip, two crossing cylinders (the cylindrical body with
an ogival cross-section) and four quadrangular bodies are studied. Surface cur-
rent density distributions, total scattering cross sections and radiation patterns are
investigated by means of computer calculations.

INTRODUCTION

The scattering of electromagnetic waves by perfectly conducting cylindrical
bodies with edges has attracted the notice and interest of investigators both today
and in the past. The various methods of solution of such problems effective for
the different bands of the dimensions of scatterers (low-frequency, resonant, high
frequency) are known. However, in the author’s opinion, the two basic approaches
of solution of this problem exist today.

The first approach is based on the consideration of the boundary of a cylindrical
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body with edges as a single complicated broken contour. One of the basic methods
of solving such a problem is reducing it to the solving of the integral equation
(LE.) of the first kind for the current density on the surface of the body. Such
an LE. solution may be arrived at only by numerical techniques (for example, by
any version of the moment method (MM)). As a result, the problem is reduced to
the solving of the system of linear algebraic equations (S.L.A.E.) [1-3]. If the field
singularity near the edges is taken into account analytically and correctly, then the
accuracy of the determination of the surface current density is raised significantly
(2,3]. In the high-frequency region for the asymptotic solution of this problem,
besides techniques based upon the geometrical theory of diffraction (GTD) [4],
hybrid methods are used, such as the method based on the combination of the GTD
and MM techniques. This was suggested for the solution of diffraction problems on
bodies with edges formed by joining flat surfaces [5,6].

Another group of methods of solution is connected with Rayleigh hypothesis
[7,8]. In references [7-12], the constructing of solution is based on the possibility
of expansion of the unknown scattered field over modal functions. For diffraction
of the bodies with limited cross-section these functions are defined as @,,(p) =
HV(kp) - exp(—im8), m = 0,£1; p = p(p, d), or as a plane wave for the scattering
by gra;ting. However, for the scatterers with a complex boundary or with edge points
the Rayleigh series can diverge, as several authors note [7,8]. Using the smoothing
procedure for bodies with complicated boundary of scatterers and the singular-
smoothing procedure for bodies with several edge points, further developments of
the conventional mode-matching method are fulfilled [9,12]. But, as noted, the
present algorithms are not general, since they are restricted by the number of the
edge points.

The main principle of the second approach is the consideration of the cylindrical
body as a composite body formed by the junction ("gluing”) of “key” elements
together. Every such element is a separate body facet. In this case, the problem
of wave diffraction by a polygonal cylindrical body (PCB) is similar to one by N
bodies. As a result, the scattered field may be represented as a superposition of fields
scattered by each facet of the body (i.e., in the form of the superposition of fields

excited by a corresponding surface current on the facets). The flat strip is often
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used as such a "key” element [13]. The diffraction problem by polygonal cylinders
with a cross-section formed by crossing the straight line segments is considered in
reference [14].

In this paper, we suggest an effective numerical-analytical method of solution to
the problem of diffraction by sufficiently wide class of complicated two-dimensional
scatterers. The contours of cross-sections of such structures are formed by super-
position of the segments of straight line and the circular arcs. This method is a
variety of the boundary I.LE. one and belongs to the second approach introduced
previously. The application of the Fourier transform (integral, in the case of a flat
facet, and discrete, in the case of a circular arc facet) to the unknown function of
surface current density is the main condition of such a technique. As a result, the
coupled dual integral or series equations are reduced to the solution of Fredholm’s
type S.L.A.E. The restriction of such method is the necessity of the equality of an-
gles in the apexes of the cross-section contour. New accurate solutions of the wave

diffraction problem by flat strips and circular arcs are contained in this method.
1. FORMULATION OF THE PROBLEM

Consider a two-dimensional, perfectly conducting cylindrical body with edges
as shown in Fig.l. The body’s cross-section, defined by contour L has a finite
number (N) of convex edge points. The contour part between the two neighboring
, edge points (¢ and g + 1) is designated as Ly (¢ = 1,...,N). This contour is either
a straight line or a circular arc. The angles between the tangential vectors at the
edges of the scatterer defined in the exterior are equal 8 (¢ = 1,...,N). In this

paper we consider the case:

b=p=--=0Bv=p

s .
Introduce the parameter v = —. In the case of the convex edge point contour

B

this, parameter belongs to the interval [1/2,1].
The E-polarized plane wave E(z,y) = ¢'k(@0z+80Y)  where B = cos o, ap =
9
singo, k = % - and A = a wave-length, is incident from the angle po. The angle

of incidence is arbitrary. An exp(—iwt) dependence is assumed and suppressed
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throughout. The determination of the scattered field is reduced to the solution
of the scalar Helmholtz equation, which must be complemented by a Sommerfeld
radiation condition, by Direchlet’s boundary condition (C2) at the surface of the
cylindrical body, and by Miexner’s edge condition (C3).

Applying the second Green’s formula for functions satisfying conditions C2 and

C3, we can write the following integral presentation for E:**(p):

o P(xy)
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S " r-F
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Lg *
'¥/ Ve 4

Fig.1. Geometry of problem (illustrated for a complicated cylindrical body).

B (p) = - § A B )G, )l + Eilo) (1
L

where 7' is the exterior normal to the contour L,p' = the point on the L and
G(p,p') = the two-dimensional free space Green’s function. It has been shown, that

the function p{p) =

pE E°!(p) coincides (with factor accuracy) with the current
density function on the surface of the scatterer.

Using the idea of the second approach, we consider the geometry of the scatter-
ing body with contour L as superposition of the ordinary scatterers with contours
L, (s =1,...,N) having joint points. The total field can be written as

N .
EX () ==Y [ oG + B (2)
"=1L,
where p°(p,) is the unknown surface current density function.

For definition of the functions p*(p),) the total field must satisfy condition C2:

N
(E:‘(p) +y E:<p>>

N
=0 pGL, L=UL3 (3)
L =1
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Consequently, to satisfy C2 on every facet, it is necessary to write fields E;(p) and
El(p), (¢ = 1,...,N) at the chosen local coordinate system connected wii;h facet
number s, (s = 1,...,N). Picking out the field E;(p) scattered by the S facet of
the body from the common number of the item, we obtain N coupled L.E. of the

first kind relatively of unknown functions, p*(p,):

N
/p’(pg)G(p,,,p',)dz, + S [ 0G0, Bl = Bi(pes), s =1,...,N.
a=1(a2)],

(4)
The following definitions are introduced here:
p, - the point of integration on the contour L;
pss - the L, contour point at the X;0,Y, coordinate system;
Dgs - the same contour point, but at the X;0,Y; coordinates system;

Py - the point of integration on the contour L, (see Fig.2).

Yy

e;s"p S5

Fig.2. Illustration for determination of a operator Dy.
Introduce:

(a) the operator of the fulfillment of boundary condition C2 on the s facet for
the field scattered by ¢ facet of the body:

! l I — o~
D;[pq(pq)] =% pq(pq)H(()l)(klpqs_pql)dlqv q:177N1 3=11"'7N; (5)
4
Lﬂ

where p,, = radius-vector corresponding to the point p,s on L, and ;i'q = radius-

vector corresponding to the point p'q on L,.
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(b) the Fourier presentation operator of the surface current density function

s(p') determined on the interval p), € L, and added by zero outside this one:
P \Ds

e <]
!
QL / ga(a)erkd.'aﬂ, da; n; P i’_ —straight line
d s
Blplpal = 2_co ' (6)
iTa, (z:)p;‘eine, By Ny = 9—:; —circular arc.

Applying the integral and discrete presentations of the Hankel function Hél)
(k |7 — p'|) [18], and the expression (6), we find the operator in the explicit form:

o0
4 , 1
ga(a)K,(a)e'kd""”' da; K,(a) = ——;
vV1-a?
Di[p*(py)] = { —= )
prnl{,’"e""a'""? K2 = Jm(ka,)Hg)(ka’)_

(m)
Writing equations (4) in operator form and completing it by the condition of

the zero equality of the functions p*(p}) outside the contours L, (s = 1,...,N), we

receive the connected system of dual (integral or series) equations D(1,S5)E:

N
Dilp* ()] = Eitn) + D Dgle'l, sl <1,
g=1,9#s
Fy[p*(ns))=0, Ins| > 1,
where we have used the passage pss — 15 Dy — 7s-

Finnaly, we write the expression for the field scattered by L, body facet:

oo

L. s ik(z,oty, V1i—a )_ﬂ_ > —
ppm /g(a)e m7 ys 20, ps p(-r.nya)
E(ps) = -
53 ,{AAMJHSNMJ}ﬁW 4y <14
e 2,
P\ Jo(krs) HY (kas)

m=-=00

0> rs; Ps = P(Ts,05)-

(9)
2. THE METHOD OF SOLUTION FOR D(I, S)E (8).

For suggested method clearness we consider the simplified system D(, S)E, the

analogical system (8), with the arbitrary right-hand part f(n) (index s is omitted):

{ Dip(n")] = f(n), Il <1, (10)
Flp(n)] =0, ol % &
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Introduce the next system of definition:

ez{g‘f Eg;; €={§;; e(E)={g/Ez); 7(£)={I}’\Ez)- (11)

Here ¢(£) is the Fourier transform (integral or discrete) for function p(n) in (10).

Using (11) and introducing the operator A(¢) as:

A(g):{/...dg(A) or 3 ...(B)}

P €=—o0

we can write the system (10) as follows:

A©le(O)V(O) " = f(n), I <L
(12)
A)e(©)e™ M =0,  [nl> 1

The unknowns e(£) as follows from condition C3, belong to the space L, defined
as L, {e({).: AO[le(OP(1+16D7Y < oo} The thrigonometrical functions are a
kernel of such equations as (8). We investigate system (12) with following assump-
tions:

(a) The following expression for the function p(n) takes place:

2yv~—1 1

0, n ¢ [—1»113

where ((n) is a continuous function belonging to the space Ly ~'[-1,1; (1—9%)""1],
which is the space of regular functions with a scalar product of weight factor (1 —
7?)*~! [16]. The singularity of the field near the edge is taken into account in (13)
analytically.

(b) The value ¥(£) may be written in the form

W)= g -80), 8O ~ (€7, 0<rst (14

where C' is a constant.

(¢) The function f(n) is continuous and its derivative belongs to the space

v—1
oy,
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Since the continuous function ¢(n) belongs to the space Lj =1, in which the
Gegenbauer polynomials {C2~*(n)}2, form a basis, ¢(n) can be expanded in a

uniformly converging series for these polynomials. According to (13), we can write

pn)=(1—n)"" Y z.Co7P(m), w212 (15)

n=0
where {z,}72, are unknown coefficients.
Having used the expansion (15), we obtain the representation of the Fourier

coefficients {e(€)}g2_,, for the function p(7):

o o0
6'21 2v

e(§) = T —1/2) Z("i)nxmanjn+u—l/2(€ -€). (16)

The connection in (16) between e(£) and z, allows us to show that the homogeneous
equation in (10) is satisfied identically.

To determine the unknown {z,}32, , we substitute the representation (16) into
(12). Using the expansions of f(n) and e'“¢" for the Gegenbauer polynomial series,

we obtain the following infinite system of linear algebraic equations (S.L.A.E.) for

{I"};.lo=0:
oo

Z(—i)nxnﬂn[Qk,n i Lk,n] = Fk, k= 0,1,2, v (17)
n=0
where
_In+2v-1) - _ Jngw-172(2)
P = Ty et e
T I Ror ) TR S e
VI R T S kv - 172)

The specific form of the matrix elements {Qk,n}in=0 and {Lk,n}{ n=o depends
upon the form of the contour L, (s = 1,...,N) [14, 16]. It is important, that
the matrix elements {Qk,n}n=0o can be calculated analytically and the others,
e, {Lkn}in=0r {Tk}ieo, only numerically. The infinite S.L.A.E. (17) belongs
to the class of operator equations for which Fredholm’s alternative is valid. The
approximate solution of the system may be obtained with any desired accuracy by

truncation.

3. THE SOLUTION OF THE PROBLEM
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Using the solution of the system (17), we receive the infinite S.L.A.E. for the

unknown coefficients

oo N =)
SahlAia+Bi+ Y. Y oaiME =T}  k=012.. (18)
n=0 g=1,9%#s p=0

where the matrix elements {Aj ,}in=¢ and {B} ,}in—o are connected with

{Q%.2}n=0 and {L} ,}n=0, respectively. The matrix operator M?° defines the
value and character of the interaction between the facets with number ¢ and s.
Specific expression of the {MZ"H}‘;?":O is cumbrous and has been omitted. It is

calculated only numerically [14, 16].

4. NUMERICAL RESULTS AND COMPARISON

The first stage of numerical experiments based on the developed calculative
algorithms studies the investigation of the efficiency of the suggested method. The
solutions of the diffraction problems for such "key” scatterers as circular cylindrical
screen and flat strip were obtained.

For a cylindrical screen, the comparative analysis of this method with other
methods previously proposed (for example, the method of the Riemann-Hilbert
problem (R. -H.P.) [17]) was carried out for both polarization cases. The absolute
values of the surface current density (E-pol case) |p(n)| calculated by both proposed
method and the R. -H.P. method are shown in Fig.3. Noticeable differences both in
the behavior of the functions |p(1)] and in its absolute values take place. The biggest
deflections of the current functions arrive above 40 per cents. The surface current
density calculation using (15) is more effective. This is connected with availability
of the weight factor, which takes into account the character of the singularity of the
function |p(n)| near the edges (n = +1) and more rapid convergence of the series.
Comparison of the obtained results with ones received by Ziolkovski at al [17],
where authors fulfilled the improvement of convergence of the Fourier series, gives
a good agreement. In the H-pol case (Fig.4), the absolute values of the surface
current density practically coincide for both cases. The Fig.5 shows the azimuthal
components for the light and shadow regions of the flat strip (E-pol).

The second stage studies the investigation of the E-pol scattering by a cylindri-
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cal body with complicated cross-section. Mainly attention is paid to the problem
of plane wave diffraction by a body with an ogival cross-section (Fig.6). This struc-
ture, formed by "gluing” the two circular arcs L, with different radii a, and extents
8, is the simplest one which can be studied by the suggested method. What'’s more,
the possibility of change in the field singularity near the edge points exists. The
obtained results were compared with the results of wave diffraction on canonical

scatterers, such as a flat strip and a circular cylinder.

Lp(%2)]

e 05 1

Fig.3. Magnitude of current density induced on the cylindrical screen (E-pol).
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a) ka = 1, b) ka = 27 and 6 = 90°, vy = 90°.
For computations of the total scattering cross section (TSCS) ¢Z and radiation

pattern (RF) |FE(p)| of the scattered field, the following formulas are applied:

N
1 4
E A A = a.
= ka; Z |pml%; Pm = ZzﬂﬁJ(kaq)J _m(qu,)e‘(" e
(m) 9=1 (p)
N
|FE(p)] = |3 eiroe 200 Y o8 I (kag)eim(e =12

9=1 (m)
where 7,4 and o, are the coordinates of the origin Og in the selected system,
usually connected with cylinder number 1. Using expressions (16) and (15), we can
calculate the Fourier coefficients and the surface current density p(n) (the azimuthal

component |H,(n)|), respectively.

| ()]

-1 -05

i i

=8l

Fig.4. Magnitude of current density induced on the cylindrical screen (H -pol).
ka =27, 8 = 90° and @o = 90°.
The frequency dependencies of the o for the plane wave incidence 0° and 90°

are plotted in Fig. 6.
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Fig.5. Normalized magnitude of azimuthal component |H,(n)| for flat strip on

the light and shadow regions. kd = 1 and 7, o = 90°.
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a 8
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X o . L Ka,
2 4

Fig.6. Total SCS for ogival cylinder. az/a; = 1,1/a; =1, ;2 = 60°, g = 0°
and @o = 90°

Fig.7 represents the RP change due to the change of the cross-section shape of
the body at the fixed incidence angle ©o = 90° (the transient dimensions equal A
and 2), respectively). Also, the RP for the flat strip (solid line) and the circular

cylinder (dashed line) are represented in Fig.7 (upper part).
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) Kd=7%
: 5
(1) Kd=2T
2)

Fig.7. RP for ogival cylinder ((1) - 6,2 = 80°, (2) - 61,2 = 20°) and for flat
strip (solid line) and circular cylinder (dashed line) in the upper part ( kd = 27 ).
a) kd =7, b) kd = 27 and o = 90°.

Lt

lH2)l | |Hp 12)]

.4 _4
8=6,=8011) Kd=%
8,=8,22072)

(2)
-2 \/_2
/ (1)
y,
. ) {‘ 2 : . 2
-1 0 f -1 0 1

Fig.8. Normalized magnitude of azimuthal component |H,(n)| for ogival cylin-

der. o = 90°.
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With decreasing of the values 6, (in this case §; = 6;), the shape of the
cross-section draws nearer the flat strip. The back lobe becomes longer. The main
lobe does not change practically. Fig.8 shows the |H,(n)| distributions on the light
and shadow facets of the body. When the body shape approaches the flat strip, the
values |H,(7n)| on both facets approximate to the corresponding characteristics for
the flat strip. When the cross-section is increased and draws nearer to the shape of
the circular cylinder, the current on the light facet is decreased and its distribution
character is changed and resembles the facet shape. Excluding the edge points, the

current on the shadow region is practically constant.

50°
8,~8,=80° s
kd =3
00
N

IF(¢)}| 9O° IR

N2

Fig.9. RP for ogival cylinder. 6; , = 80° and @o = 0° (kd = 7 + 3n).

Consider another cases of the plahe wave incidence. If the extent angles 6, »
equal 80° and the incidence angle is changed, the main lode of RP does not practi-

cally change at the fixed frequency parameter kd = 7,27 and 3. The side radiation
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shape is not significantly changed (more noticeably for the cases kd = 27, 3w). For

three value kd and the incidence angle ¢ = 0° the RP are presented in the Fig.9.

90° |

OO

NS 2d-2

[F(e)]t 90
]
45"&:7‘ N\'
&

9
8-6,-20° AN 2d=2a
90°

o

OO

2d=31

Fig.10. RP for ogival cylinder. 8; » = 20° and @q = 43° (kd = 7 + 3m).

The analogous calculations were fulfilled for the other extent angles. For 6,2 =
45° the dependence of the RP shape from incidence angle becomes more visible.
When the body shape approaches the flat strip (6;,2 = 20°), then this dependence is
significant, especially with the increasing of the frequency parameter. For example,
the RP change at the change of kd from 7 to 37 is shown in Fig.10. We see that
the RP is modified noticeably, but that some of its main features (the directions
of the main and the basic side lobes) are kept, although the lobes are narrowed
and become more broken. Fig.11 shows the smooth change of the surface current

density from the maximum on the light region to the minimum on the shadow one.
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Fig. 11. Magnitude of current density induced on the ogival cylinder.

The change of the RP at the change of the shadow facet shape (the light part
of the body remains the same) is also studied (Fig. 12). At the gradual decrease
of the extent angle §; of the shadow region from 6, = 80° to 20°, the main RP
lobe is negligibly widened. The back lobe becomes longer. However, its change is

insignificant at §; = 40°. In this situation the shadow facet of the body does not

influence the RP shape.

- 50°
xkd=% —-— 80°
7 ) S
4 -
(!

Fig.12. RP for ogival cylinder with variable shadow facet. @o = 90°, 6, = 30°
and 6, = 20°-80°.

The RPs of the scattered field at the two wave incidence angles for the scatterer
formed by crossing the four circular arcs are plotted in Fig.13. For the case of
wo = 90°, the RP has main and back lobes only. Another situation takes place in

the case of wo = 90°. The back lobe becomes insignificant (5 times smaller than
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the main lobe).
i BT ) 4=390°
Ka,=%
9’=82=93-84 "45°

00

Fig.13. RP quadrangular cylinder.

It is necessary to note that the suggested method of solution allows us to
investigate the dependencies 02, RP and |H,(n)| at the change of the parameter v
in the limits from 1/2 to 1. The complete numerical analysis shows that

a) af and RP do not practically change;

b) the change of the values of the component |H,(n)| does not compose more
than 1-3 per cent in the interval n €[-1,1].

This fact tells us that the accuracy of taking into account the field behavior
near the edge points of a body is not significant for the far field calculation, and it

is necessary only for calculation of such data as ohmic loses.

CONCLUSION

A hybrid MM and partial inversion technique has been applied in this paper to
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treat the problem of electromagnetic diffraction on a cylindrical body with edges.
Use of the Gegenbaur polynoimials leads to the evident taking into account of field
singularities near the edge points of the body. The efficiency of this technique for
the resonance case has been demonstrated. The scattering problem discussed here
is important not only for the theory of diffraction, but also for the open resonator

theory and for the antenna applications.
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