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Bessel functions series in two dimensional diffraction problems

E. I Veliev! and A. Oksasoglu

Department of Electrical and Electronics Engineering
Cukurova University
01330 Adana, Turkey

Abstract-Alternative representations as series of more elementary functions or an ana-
lytical form for the Schlémilch type series with the Bessel functions are derived. Various
special cases of such representations, which arise in different diffraction problems are pre-
sented. By detailed examinations of the convergence in numerical computation, a great
reduction in computation time is established. A new representation for the Bessel function
is also given.

I. INTRODUCTION

Alternative representations as series of more elementary functions or an analytical
form are obtained for the Schlémilch type series

o0
1
Sp=>. —Jksa(na), A2 0 (1)
n=1
=1
iy O —Jkea(ne)Jpu(na), A+p20 (2)
n=1

where Ji, )(z) is the Bessel function, and a € [0, 7], A, u,v are the real parame-
ters. These series are of interest in a variety of diffraction problems. In particular,
the special case of (2) with =X, »=2A+1 and A =0, which was considered
by Veliev at el. [1-3}, arises in the analysis of the scattering of a plane wave on

- cylindrical screen structure. For such problems, we have o = 6, where 6 is

the geometrical size of the screen. The different types of series (1) and (2) arise
for related waveguide problems [4], for radiation from the flanged parallel plate
waveguide [5]. It should be noted that only special cases of (1) and (2) with
k=p=0, v= X+ p are given in the reference book [6].

In general, the representations (1) and (2) converge too slowly for numerical
computations. The purpose of this paper is to derive an alternative representation
in explicit form or in terms of more elementary functions. In addition, a new
relation is established for the Bessel function as

Jpea(ma) 1 o 1 sina(m — n)
T = ;r-n=z-°° ;:\-Jk+,\(na)—-——_—n—-, A Z 0 (3)

1 E. Veliev is currently a visiting professor from the Academy of sciences,
Kharkov, Ukraine.
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II. MATHEMATICAL DERIVATIONS IN THE ANALYTICAL FORM

In this section, we will try to give alternative representations in an analytical form
for the expressions given in (1), (2), and (3).

2.1 Derivation of Relation (3)

First of all, we will try to establish the relation (3). Taking into account that
the series on the right-hand side of (3) is uniformly convergent, we can rewrite it
as follows:

1 sma(m—n) a [l iamy
. ; Jk+A( Sy —'2';/_16 Px(n, )dn (4)
where
- 1 —iany
Sp(ma)= D —Jk+a(nale (5)
n=-—0oo

According to Hoénl et al. [7, p. 435], the following formula holds

o0 1 o
_1_/’ Ju(ex) sinfe(z y)]dx _ Ju(ey) (6)
oo TH ) yH
for0<u<v,v=0,1,2..., with € being a real parameter. We now assume
that (6) is valid for any p and v such that 0 < g < v. Then, by setting
v=k+A p=) y=n (M
and substituting (6) in (5), we obtain
Jrra(az) —ianpSina(z —n
Pk(n,a) = / "“( Z “""”——(T-—)-dx (8)
-0 Z s x n

It is easy to show that the series in (8) can be given as

[o o] .
> emiannSNA(E =) _ o ociean o gy
2., € S
n=-0o0
which, in turn, gives
J|
d(n, @) =/ .ﬁ%g'?_). —iazn gy, (10)
—00 T

Now let us substitute (10) into (4) and integrate the result with respect to n over
L KS (—1 1). This yields

sina(m—n ® Jiea(za)sina(z — m)
LY LhneaRenon) 1 [® JeaEa)snabomly, ()

n—--—oo
Finally, we establish the desired result (3) by comparing (6) and (11). It should
be noted that the relation (3) is exactly analogous to the integral representation
(6). The equality (6) has been verified numerically (see Table 5).
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2.2 An Alternative Derivation for Expression (1)

Returning to (1), we consider initially
o0

= 1
St= 3 —Jkma(na) A20 (12)

n=-—-o0

Using the Gegenbauer integral representation for the Bessel function (8, p. 50]
Jeea(na) _ x 1 ey gsk-3
no)r %k /;16 (1-7°) ’*’Ck(ﬂ)dnv (13)
where R(\) > —1/2, and C,’}(n) is the Gegenbaur Polinomials and
(-=i)k TEAT(k+1)

A
ap = 14
kT 90 DA+ 3Dk +2)) (14)
with T(z) being the Gamma function, we can rewrite (12) as

e RN

3) = ata) / ¢inan(y _ n2A=3C)(n)dn (15)

1 n=-—00
In writing (15), we have used the fact that the series in (12) is uniformly conver-
gent. If we replace the sum in (15) with

R (16)

n=-—o0

where 6(n) is the Dirack delta function, then the following formula holds:

5 = e} Z}(0) - an
where the Gegenbauer Polynomial C,’c\ (0), is given [9, p. 777] by
0, k=2m+1
Go={ COr(E+y 18)
e e e e s o e (X‘)'P’(§'+‘1‘) o e it e Y o
We now substitute (18) into (17), and simplify the result. This yields
gy L+ (DA (552
2= () 2
B+ ))
It’s easy to show that
3= (%) o+ 14 (-1HSE k20 (20)

F(A+1)
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where §x9=1 if k=0 and 0 if k # 0. Using (19) and (20), we obtain

_ r k+1
ng(g)* 1__(_—5)___(_‘;‘.)’\51_1(_‘5)\’%1_), A0 (21)

or (51 +2)

We have shown that the Schlomilch type series (1) can be given in the explicit
form of (21). Again, in the reference book [6, p.678], we find only special cases of
(21) when X is an integer. It should be emphasized that the representation (21)
is superior to (1) in terms of computational efficiency. This point is illustrated in
Table 1 for different values of A, alpha, and N where N indicates the number of
terms used in calculating the sum given by (1). All of the numerical simulations
in this paper are run on a 486 DX2 IBM compatible PC. The values in the last
column of Table 1 are obtained using (21). Each cell of the Computation Time
row shows the CPU time used in computing the values in the respective columns
as a whole. We see from Table 1 that a great reduction in computation time is
established by using (21).

Eq. (1), A=0.6, a=0.1 Eq. (21)
k N Exact
100 200 500

0 3.140474 2.954448 2.969827 2.994830

1 1.926517 1.790110 1.864076 1.854727

2 1.276188 1.433947 1.429102 1.403439

3 1.018130 1.232059 1.152026 1.159204

4 1.037893 0.997560 0.975689 1.002457

S 1.079373 0.814917 0.894016 0.8916%96
Computation 1.20 3.57 157 0.000000

Time (s)
Eq. (1), A=0.9, a=0.2 Eq. (21)
k N Exact |
N i SR 5 =5

0 1.180201 1.192931 1.191302 1.192006

1 0.645554 0.648681 0.655206 0.654486

2 0.459430 0.447669 0.449853 0.449091

3 0.355926 0.349517 0.343222 0.344467

4 0.274589 0.,283094 0.279823 0.280682

5 0.222861 0.233091 0.238744 0.237563
Computation 1.70 549 20.10 0.000000

Time (s)

Table 1. Comparison of Formulae (1) and (21) for different values of A
and a with computation time.
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2.3 Some Special Cases for the Series of (1)

Below are some examples of special cases of the series (1).

Case # 1: A=0
0 = 1 bk
Sy =" Ji(na) = e (22)
n=1
Case # 2: A =1
Sp = i b sl = rren e B (23)
k = ket k+1 4™
Case # 8: A =2
shf:l.f ) = _als (24)
& cap AN = RSk +1) 16 *0
Case # 4: k=0
oo
1 a\Ar-1 VT a\ A I
S()\ = Z -TJ,\(na) ={= —_— ) = (25)
If we use the fact that ([9, p. 257])
I'(z+a) a—b
bl ol e 26
T+ (2)
then the asymptotic behavior of S,’c\ as k — oo can be given as
A -2
St ™k (27)

An alternative derivation only for (22) is also given by Twersky [10].

2.4 A Closed Form Representation for (2)

___In this subsection, we try to obtain a more useful form for (2), which was
earlier given by

o0

~ 1
VW = Y kA (na)Jprp(ne) (28)
n=-00
where we consider the case
v=A+p (29)

Using the integral representation for the products of Bessel functions (8, p. 150]
we can write

2 (%
Jia(na)Jpipu(na) = ~ /0 Jk+prrtpu(2na cos‘a) cos(k—p+ XA —p)ddd (30)
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where R(A + p+ k& +p) > —1. Now, let us substitute (29) and (30) into (28),

in which case we obtain

£0 2no cos
Y "*”“*“Ai ) cos(k — p+ A — )8d8
nATH
n=-00
(31)

5

2
o+m=2 [
0
= %/S’\H‘ cos(k —p+ A — u)6do

0
where, as we have shown before (see (19)),

[o,<]
A+ 1
S I‘ E ;I\—ﬂJk+p+,\+”(2na cos 6)
n=—0oo

(32)

r (E52)
I‘(ﬁ'{ﬂ+/\+u)

Using (32) in (31) the following equation is obtained
aAe-1r (k+§+1)
k+p+1

x [1+ (=1)%+7] /07 cos"#~1 g cos(k — p + A~ )0d9

= [1 + (-1)¥*P)(c cos §)* t#~1
2

VPO +u) =

The integral on the right-hand side of (33) can be given ([11, p.372]) as

n

2
/ cos*# 1 g cos(k — p+ A — u)0do
0
7T\ + p) N TR _(3‘{)

Now, by substituting (34) into (33), we have

lf+,{‘("|”) ( )A v
' 1+ —-1"”’1')\+p1' —-g—k' L
[ ( ) ]( ) ( ) A+pu>0

xzr("—+5ﬂ-+x+p)r("——gﬂ+,\)r(2:’5i—l+u)’

It’s easy to show that

(35)

yPte

O+ = (2) M b0 (1 (1R VI ) (30)

TO+ Dl(p +1)



Bessel functions series in diffraction problems 499
Thus, we have
o\ A+p—1
VEO+m =(3)
T\ + )T ("—+g+—1)
X
2T (k—+§+—1+A+p)P(k—”§ﬂ+A)r(t§ﬂ+u)

a\Atu PN
- ('2‘) (A + D (p+ 1)’ RA+u)>0

Only special cases of our representation (37) when k = p =0, are found in the

reference book [6, p.683]. It should be noted that our results (21) and (37) for

the series (1) and (2) are analogous to the well known, so called discontinuous

Weber-Schafheitlin’s integral representation for the Bessel functions [8, p. 403; 6,

p. 211}. Indeed, these have the form [6, p.174, 211]

o0 - _ (.l
/0 Jk+z/\_§a_' )d:z; - (%)/\ IF(S_;—:TT_*_)_/\)' R(A) >0 (38)

(37)

and
/oo Ji 2 (az)Jpu(az) dr
0 AtH
(g " (4) 0 40 o
BRY

o8 (545 x )T (5 40 (25 4 )

where R(X + p) > 0. A quick comparison of the representations (21) and (37)
respectively with (38) and (39) shows that we have established representations
for the series (1) and (2) which are analogous to the integral representations
(38) and (39). Using (27) we obtain the asymptotic limits for V,f_:{‘ (A +p) as
follows:

ok At )y gp ~ KO

VA +u),_, ~ k208, (40)

VR ) ~ 720

Numerous special cases of interest are obtained by giving special values to the
constants A, u in (37). The following are some of the important special cases.

Case # 1: A=0, u=1

2cosT (EEE) a

rk+p+1)(p—k+1) 4

VPt = 60650 (41)
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Case # 2: A=1, u=0

2cosT (%‘2)

rk+p+1)(k—p+1)

[
V,f+1 (1) = Z5k06po (42)

Case # 3: A=p=1

4acosm (&Eﬂ) o?

Skobp (43)

+1 _— -
n = TG Tt = =

In obtaining the special cases above, we made use of the fact that ([9, p. 256])

I‘(%—m)l“(%-&-x):;sf;; (44)

A comparison of (2) and (37) in terms of computational efficiency is given in
Tables 2 and 3 for different values of &, A, and p. The computation times are
given for the whole k x p matrices calculated for different N . Again, it is clear
from Tables 2 and 3 that representation (37) greatly reduces the computation
time. Hence, we can say that representation (37) is far more efficient than (2)
from a numerical point of view.

Eq. (2) o= 0.1, p= 06, A=0.]
P Computation

k 0 1 2 3 4 [ time (3)
0] 0379189 | 0133901 | 0026231 | -0.008133 | -0.008931 | -0.001942
1| 0116451 | 0104794 | 0036393 | 0.015904 | -0.002970 | -0.008622

100 (2] 0015679 | 0050277 | 0052687 | 0.033597 | 0012731 | 0.000286 14.34
3 | 0010599 | 0010575 | 0030207 | 0033160 | 0022858 | 0.009900
4 | 0007793 | 0.004936 | 0.009551 | 0020941 | 0021904 | 0.015533
5 | 0000576 | 0.003413 | -0.001274 | 0.007906 | 0014430 | 0.015I98
0 | 082911 | 0.134441 | 0.0225% | 0010143 | -0.0063%0 | 0.001885
T [ 0113922 | 0108161 | 0.058211 | 0.013087 | -0.003731 | -0.004750

N 2 | ool 050576 | 0056688 | 0034926 | 0009471 | -0.003386 4285

200 [3 [ 0011711 | 0007365 | 0.030579 | 0.036333 | 0.0242¢3_|_ 0.007447. oz

— ~4 | 0004522 [ 0006944 | 0005781 | 0021419 | 0.025903 | 0017927
s | 0002923 | 0003667 | -0.004412 | 0.004833 | 0015959 | 0.019512
0 | 0384707 | 0.134810 | 0020837 | 0.010841 | -0.004825 | 0.003096
1| 0115764 | 0109794 | 0058553 | 0011516 | -0.006467 | -0.003423

2 | 0009558 | 0050401 | 0038481 | 0035437 | 0.007816 | -0.004442 186.97
500 | 3 | 0011906 | 0005697 | 0030587 | 0038207 | 0.024659 | 0.005504
4 | 0002770 | 0007202 | 0.003997 | 0021344 | 0.027665 | 0.018582
s | 0003709 | 0002091 | -0.005022 | 0003130 | 0016135 | 0021289

Eq. (37) a= 0.1, p~ 06 _3=07

0 | 0385447 | 0134996 | 0020100 | 0011005 | -0.004102 | 0.003333
1 | 0115711 _| 0.110551 | 0.05869¢ | 0.010768 | -0.006670 | -0.002699

7 | 0009213 | 0050309 | 0039224 | 0035572 | 0.007084 | -0.004653 0.055
3 | 0011837 | 0.004935 | 0030490 | 0038963 | 0.024818 | 0.003166
4| 0002019 | 0007174 | 0003247 | 0021272 | 0028410 | 0018730
S| 0003720 | 0001328 | 0.005005 | 0.02368 | 0016055 | 0.022043

Table 2. Comparison of Formulae (2) and (37) for a = 0.1, # = 0.6, and
A = 0.7 with computation time.
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Eq. (2) a= 0.2, u= 07, A=05
P Computation
k 0 1 2 3 4 3 time (3)
0] 0.571088 0.164204 0.005243 £0.022386 0.005287 0.006767
1 0.226266 0.176111 0.075591 0.005092 -0.014017 -0.005128
100 2 0.041172 0.102139 0.095424 0.047349 0.005277 -0.009345 2153
3 -0.018259 0.024767 0.062824 0.062951 0.034231 0.005264
4 -0.012483 0.010390 0.018282 0.044460 0.045520 0.026094
3 0.003180 -0.009417 -0.006039 0.014648 0.033321 0.034744
'] 0.574070 0.163516 0.002177 <0.022326 -0.002222 0.007797
1 0.227356 0.178782 0.074837 0.002263 -0.014046 <0.002308
N 2 0.038316 0.103126 0.098403 0.046972 0.002209 0.010058 6730
200 3 -0.019892 0.022277 0.064142 0.065719 0.033680 0.002291
4 -0.010072 -0.012024 0.015664 0.0433563 0.048436 0.026021
5 0.005627 -0.007475 -0.008243 0.012241 0.034857 0.037717
0 0.575494 0.163087 0.000727 -0.022035 -0.000736 0.007750
1 0.227861 0.180267 0.074424 0.000739 -0.013834 -0.000748
2 0.036919 0.103634 0.09983 0.046599 0.000733 -0.009928 234.34
500 3 -0.020519 0.020836 0.06468 0.067211 0.033139 0.000744
4 -0.008754 -0.012712 0.01430. 0.046123 0.049871 0.025697
5 0.006460 -0.006147 -0.008995 0.010840 0.035424 0.039213
Eq. (37) a= 0.2, u= 07, A=05
0 0.576217 0.163238 0.000000 -0.021823 0.000000 0.007578
1 0.228534 0.180998 0.074199 0.000000 -0.013640 0.000000
2 0.036200 0.103879 0.100353 0.046373 0.000000 0.009743 0.055
3 -0.020776 0.020111 0.064924 0.067942 0.013125 0.000000
4 | -0.008044 -0.012985 0.013588 0.046378 0.050595 0.025481
3 0.006752 -0.005435 -0.009275 0.010119 0.035673 0.039944
Table 3. Comparison of Formulae (2) and (37) for a = 0.2, p = 0.7, and

A = 0.5 with computation time.

III. ELEMENTARY FUNCTION REPRESENTATON

Finally, we will try to find an alternative representation for the series (2) in terms

of more of an elementary function, when

Jk4p+u+r(2nacosf) =

k+p=even >0 .

(2na cos )24

v=A+pu+1l

We will further assume that, in (2)

QA+u=1D(\ + p)
x sinF TP+l g cos?A 281 gdgy R(A 4+ p) >0

(45)

R . T

The conditions (45) and (46) are just what arise in a variety of diffraction prob-
lems [1-5]. Alternative derivations of (2) for the case of p = A and v =2X +1
are given in [4]. The present derivation is more general. We will again make use
of the integral representation (30) for the Bessel function, and the Sonine’s first
finite integral representation [8, p. 373), i.e.,

]
/ Ji+p(2nc cos @ sin ¢) x
0

(47)

At this point, let us use k + p = even, and the following integral representation

for Jiip(z) [8, p- 21]
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Ji4p(T) = -3;/0” cos(z sin @) cos(k + p)pde (48)

Substituting (48) into (47), and later (47) into (30), we obtain

e}
Jrra(na)Jppp(na) = 42 I(,(RIL”;/ / / cos(k —p+ A — p)fcos 49

X {sink'*"""1 ¢ cos2AH2u—1 @[cos(2na cos §sin @ sin ) cos(k + p)y]}dfdedy
(49

Substituting the integral representation (49) into (2) with v = A+ pu+1, we
obtain

4 ot 5 0% (m
VPP RO+ u+1 =——————-————/ / / cos(k +p+ X — p)fcos* 4@
s (A+p+1) 20Tl Jo Lo (k+p 1)

X {sink""""1 ¢ costAtm-14 cos(k + p)¥ In2sin(a cos 8 sin ¢ sin ) }dOd@dy
(50

In deriving (50), we made use of the fact that ([11, p. 38])

.00
Z % cos(2nacos @ sin ¢sin ¥) = — In 2sin(a cos 8 sin ¢ sin ¥) (51)
n=1

Using the series representation for the function In(2sinz) as ([11, p. 46})

. _ s ((2s) z\2s
In(2sinz) = In2z — ; g (;) (52)

where ((2s) is the Riemann Zeta function [9, p. 807], we can represent the
VP A+ p+1) as follows:

s o i im e as s VETEE S5 1) —Q(1)+Q(2) e (B3)-
where
p+A
QY = :2 r("j\ 143 B G n(20) + O By 45 +Ci 43 By + A3 By Cy)
(54)
and
2 ¢(2s) (a\2s
Q@ = 2I‘(A+u) Z (2)" asB3C (55)
with e
%
Ag: = /0 { lnc%)sﬁ } cos(k —p+ A — p)f cos '\+”+',’9d9 (56)

b . .
Bf = /(; { In s%n 0 } sin (S+HE+P+1) ;05 20420 lodp (57)
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G = [ {nelny Joott + Ppsinvay (58)

The integrals in (56)-(58) are the table integrals [11], and can be calculated in
analytical form (see the Appendix ). As a result, we obtain

QL)
(1) _ ~kp
% =7 +p
_ (g)z\+y T+ p+ 1) (5‘52)
2 2F(5§B+A+1)1‘(?—5ﬁ+p+1)r(!‘-§2+,\+u+1)’
k+p>0 (59)
i 2s ¢(2

o =13 ()" Clapcy ()
where
Qy(s)

L(2s +A+u+ 10 (s+1+452)

a\A+p
~(5) I‘(5}’-’+A+s+1)1‘(1’—5£+p+s+1)1‘(’°—'§2+/\+u+8+1)

(61)
Eq. (6), A=p= 12 a=n/2
p
k 0 1 2 3 4 5
o] 1.7510° 0 2.14 10* 0 -3.9710* 0
] 0 3.1310° 0 -9.04 10* 0 2.4 107
2| 2.1410-4 0 1.17 10-5 0 4.47 10-7 0
3 0 -9.04 10* 0 5.47 107 0 -2.38 10"
4 | 39710° 0 4.47107 0 281107 0
5 0 24107 0 2.3810° 0 1.53 107
) L (60) , A=u=12 a=m/10 .. . . .__ . .. .. .o
0] -6510" 0 2.710" 0 -1.6 10° 0
1 0 4.0 10”7 0 4.0107 0 34107
21 27107 0 53107 0 6.9 100 0
3 0 40107 [ 8.6107 0 1.3 107
4| -1610° 0 6.9 107 0 -1.510"7 0
[ 0 34107 0 13107 0 30107 |

Table 4.  Values of Equation (60) for different values of a.
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The expression for CJ, presented in the Appendix (A. 3) Using (26) and (44)
we may estimate the following asymptotic limits for V[:‘ : '\1 A+p+1):

k v o
Vk:,\u(/\+u+1)k"’°°~Q§g[3k_, sk A—pu—1
) - _
mﬂf0+u+1hﬂx~Qg~¢2uw)z (655
1% ) ¥
lff,{‘(,\+#+1)p_4°°~Q§cp)~p 2(A+p)—2

In the same fashion , we can find the representation for Vf_:(‘ (A+p+1) when

k=p=0,\=p as follows:

VE oy =2 @A +1) = Q) + QY (63)

where

2)
oW =-(3) érT(/li-_*_—l){Zlna-H/J (A+1/2)=9% (A + 1)+9 (1)=9 (22 + 1)}
(64)
2 '
QR =23 ()" L2k ()G, lempo (63
s=1

with ¥ (z) is the psi function. It is very important to note that, as our numeri-
cal experiments have shown, when a < 7 the leading terms of V,:’_:')’“ (A+p+1)
are given by

VEH O+ p+1) = Q) +0(1079) (66)

which means that Q(2) = 0(10™%). Thus, in this case we can say that we have
kp

the analytical representation for V,f_:',{‘ (A+p+1). Our numerical experiments
also show that the series in (60) has a very fast convergence rate for a < 7.
The following are some of the important special cases in the application of our
representation to the solution of various diffraction problems:

C;J.se #1: A=p=0

Q(l) _ gsinw%’z 1
Pm k=gt (k) (BE 1)
i _ (67)
% k=P

0 k#p, k+p=even

Q) =-mm (%) (68)
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Case #2: A=0, p=1

505

(69)

k—
Q(l) sm gl 1
2 . p2 -k k
¥ (1’—2—+1)( a +1)
a
= k=p
4k(k +1)
0 k#p, k+p=even
1 W dna!m-n}
;—_Z";T"ld("a) m-n
== | Jiilma NN=S NN=10 NN=50 NN=100 | NN=300
1.570796 %2
k=1, 2.497016¢-01 | 2.400811c-01 | 2.469212¢-01 | 2.494357c-01 | 2.496069¢-01 | 2.496931¢-01
A=l .
mx]
k=3, 1.399604c-02 | 2.5733420-02 | 1.721381¢-02 | 1.427329¢-02 | 1.409291e-02 | 1.400461c-02
Aml,
mx1
k=S, 2.9834760-04 |-8.549538c-03 | -3.266610c-03 | 3.746473¢c-06 | 1.981240c-04 | 2.897138c-04
A=,
m=1
k=1, | 3.009402c07 |-3.013641c-01 | 3.314777c07 | -3.036101c-01 |-3.018839¢-02 |-3.010255¢-02
Axi,
n=s
Tﬂ, 21.389344¢-02 | 1.079264c-02 |-1.034994¢-02 [-1.361507c-02 | -1.379647¢-02 |-1.338487¢-02
A=t,
n=S
k=S, 6.918731c-02 | 5.379513c-02 | 6.526445¢-02 | 6.8391500-02 | 6.908698¢-02 | 6.917867¢-02
A=l,
(=3
Table 5. Values of the truncated series (3) with various values of the

IV. CONCLUSION

truncation parameter.

We have shown that the Schlomilch type series with Bessel functions as in (1) and

(2) can be represented in terms of more of elementary functions or an analytical
form. Various special cases of (1) and (2) arise in different diffraction problems.
Our results are also interesting from a mathematical point of view. They can be
considered as the Weber-Schafheitlin representation for the Schlomilch type series
(1) and (2). It should be noted that only special cases of our representation are

given in the mathematical reference books.
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APPENDIX
Evaluation of A¥, B, C¥
1. The expression for Ag‘: has the form [11, p. 372, 587]

AT (s+A+p+1) .
2S+A+u+!1‘(&31’-+,\+s+1)r(&55+p+s+1) : =

= ; l
4‘%—‘“:}\:1; [w(z\+s+§)—¢(s+/\+1)], A=u, k=p=0
(A.1)

where 1(z) is the psi function. It should be noted that for any A, u and k,p the
A5, must be calculated only numerically

= o
s

2. For BE we have (11, p. 369, 587

PO+w)T (52 +s+1)
; A+pu>0 k+p>0
Bf = 2r‘(£¥}’-’+s+,\+pq 4 p
DINEN
JEA O (s 4+ 1) = p(s+ A+ p+ 1)), A+p>0, k=p=0
: (A.2)
3. For C¥ we have [11, p. 373, 584, 587]
(=1 F2r(2s11) s>kt
CH, = { 2r(st1+852)r(s+1-42)" 77 (A.3)
0, s< &t
+_ [ k=p=0
Co {0 k+p>0 (A4)
s k-+.p=-even>0 . i e e
o Gy = { T (A.5)

—7ln2 k=p=0

c;:?%}?[w(wé)—xﬁ(sﬂ)] b (A.6)
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