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1. INTRODUCTION

The analysis of the scattering by imperfectly conducting and absorbing strips is an important subject in antenna
and radar cross section (RCS) studies since this geometry serves as a suitable model of finite metal-backed
dielectric layers and dielectric-coated wires. The diffraction by strips with impedance and related approximate
boundary conditions has been investigated thus far using function-theoretic and high-frequency methods [1-3].
In [4], we have considered a two-dimensional (2-D) strip with different impedances on its two surfaces, and solved
the E-polarized plane wave diffraction rigorously using the analytical-numerical approach [5]. This approach is
based on the orthogonal polynomial expansion in conjuction with the Fourier transform, and is entirely different
from the methods employed previously for analyzing scattering problems related to the impedance strip. In this
paper, we shall analyze the diffraction problem involving the same impedance strip as in [4] for the H-polarized
plane wave incidence by means of the analytical-numerical approach.

Applying the boundary condition to an integral representation of the scattered field, the problem is formu-
lated as simultaneous integral equations satisfied by the electric and magnetic current density functions. The
integral equations are reduced to two infinite systems of linear algebraic equations (SLAE) using a method
similar to that employed for the E-polarized case [4], which are solved numerically with high accuracy via a
truncation procedure. Physical quantities are then expressed in terms of the solution of the SLAE. Tllustrative
numerical examples on the monostatic and bistatic RCS are presented, and the far field scattering characteristics
are discussed. Some comparisons with Tiberio et al. [3] are given to validate the present method.

The time factor is assumed to be e~*“* and suppressed throughout the following analysis.

2. SOLUTION BASED ON THE ANALYTICAL-NUMERICAL APPROACH

We consider a 2-D impedance strip of zero thickness illuminated by an H-polarized plane wave, as shown in Fig. 1,
where (; and {; denote the normalized impedance of the upper and lower surfaces of the strip, respectively.
Let the total magnetic field be H,(z,y) = Hi(z,y) + H2(z,y), where Hi(z,y) [= ¢tk (saotyy 1_m?’)] is the
incident field with ag = cos8 for 0 < § < 7 and k = w,/g€p being the free-space wavenumber. Here, H:(z,y)
is the unknown scattered field. The total field satisfies the boundary condition as given by 8H,(z,+0)/dy &
(¢k¢1,2)H (7, £0) = 0 for |z| < a. Using Green’s formula, we can express the scattered field as
8 P

Hj(:c,y) = -—%/ [fl(z’)+f2(1;’)5;] H{SI) (k‘/(l‘—qj’)Z +y2) dz’ (1)
with H{"(-) being the Hankel function of the first kind, where fi(z) [= 8H,(z,+0)/dy — OH,(z,-0)/dy] and
f2(z) [= H,(z,+0) — H,(z,~0)] are the unknown magnetic and electric current density functions, respectively.
Taking into account the boundary condition on the strip, we obtain from (1) that
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Fig. 1. Geometry of the problem.
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where Zy = 2/(C1 +(2)s Z2 = 9(G1 — (2)/($1 + G2), and Z = 2G1G/ (61 + G2)-
Taking the finite Fourier transform of (2a,b) over the interval |z| < a and using the integral representation

of the Hankel function, we are led to
sin & (e + 3) + 1 /°° Fl(a)sinn(a -f) da
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where "
F2(a) =/ f172(z')e'ikz’°‘d:c', k= ka. 4)

It can be shown that the unknown functions fi o(z) in (4) are expanded in the form

fila) = ——— | fi + 2\2 g, (;f—)] C he=y1-(8) if,‘:vn 2). (%)

ay/1 - (z/a)’
where T,,(-) and U,,(-) denote the Chebyshev polynomial of the first and second kinds, respectively. In (5), f12
for n=0,1,2, .. are unknown coefficients. Substituting (5) into (3a,b) and carrying out some manipulations,
we arrive at the two infinite systems of linear algebraic equations (SLAE) as in

[ <] o0
= 2 (Z14mn+ Bmn) = Z2 Y 2%Conn = 4im, (6a)
n=0 n=0
oo x
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2 Y onAmn+ Y 25 (Z3Cmn + Dinn) = 4y/1 - 0dvm (6b)
n=0 n=0
for m = 0,1,2,---, where z} = f}, zl, = 2(=1)"f}/n for n = 1,2,3,---, and 22 = (=)™ (n + 1)fZ for n =
0,1,2,---. In (6a,b), Ann, Bmn, Cmns Dimn, and 7, are known coefficients. The unknowns f}' can be

determined with high accuracy by solving (6a,b) numerically via appropriate truncation.

3. NUMERICAL RESULTS AND DISCUSSION

We shall now discuss the far field scattering characteristics of the strip based on mmerical examples of the
RCS. Figure 2 illustrates the monostatic RCS as a function of incidence angle for ka = 5.0,15.0. In order to
investigate the effect of the surface impedance on the scattered far field, four different cases have been considered
as in ((1,¢2) = (1.5,3.0), (1.5,1.5), (3.0,3.0), (0.0,0.0), where (1,2 = 0.0 corresponds to a perfectly conducting
strip. Comparing the results between the impedance and perfectly conducting strips, the RCS reduction is
observed for the impedance case as expected. In view of the three RCS curves for the impedance strip, the
backscattered field is not affected by the impedance of the strip surface in the shadow region. Shown in Fig. 3
is the bistatic RCS as a function of observation angle for # = 60° and ka = 5.0,15.0. It is seen that the RCS
level of the impedance strip is lower than the perfectly conducting case for z > 0, whereas all the four curves
are close to each other for z < 0 and hence the RCS does not much depend on the surface impedance in that
region. Figure 4 shows comparison with the results obtained by Tiberio et al. [3] using the geometrical theory
of diffraction (GTD) together with the Maliuzhinetz method, where the bistatic RCS is illustrated as a function
of observation angle for § = 180°, ke = 10.0, and (¢1,(z) = (4.0,0.0). We see from the figure that our RCS
results agree quite well with the results presented in [3].
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Fig. 4. Bistatic RCS [dB] for 6 = 180°, ka = 10.0, (i = 4.0, (2 = 0.0 and its comparison with Tiberio et al. [3].
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