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PLANE WAVE DIFFRACTION BY A HALF-PLANE:
A NEW ANALYTICAL APPROACH
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Abstract-In this paper, a new analytical method essentially different
from the others is developed for obtaining a rigorous solution of a half-
plane diffraction problem.

1. INTRODUCTION

As is known, the half-plane is the simplest structure for the illustra-
tion of the fundamentals of various analytical or numerical methods.
There are two basic analytical methods commonly used for the solution
of half-plane type boundary-value problems, namely, the Wiener-Hopf
method and the Maliuzhinetz method. Although both methods have
well-established standard procedures, a common disadvantage of both
of them is the mathematical complexity of the solutions. In this pa-
per, a new analytical method essentially different from the others is
developed for obtaining a rigorous solution of diffraction problem by
an infinitesimally thin perfectly conducting half-plane.

2. FORMULATION OF THE PROBLEM E-POLARIZED
CASE

Let an infinitesimally thin perfectly conducting half-plane located in
the 0XY plane (y =0, £ > 0) be excited by an E} polarized plane
wave, E. = exp(—ik(zao + /1 — 0ody)), where k = 21/)\, ao = cos
with 6 being the incidence angle. The time factor is assumed to be
exp(—iwt) .
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The single nonzero component of the total electrical field is consid-
ered as a superposition of the incident and scattered fields as shown
below [1]:

E.(z,y) = E, + E;(z,9) (1)

An integral representation of the scattered field is given by [1]
i 20 . ! (1) 4 ’
Eg(x,y)=—1/ je(z )Hy ' | ky\/(z—2')2+y? ) dx (2)
0

where jg(z') is the surface current density, Hél)(x) denotes the zero
order Hankel function of the first kind, which is the two-dimensional
free space Green’s function.

As is well known, the boundary condition for a perfectly conducting
half-plane is given by:

E,(z,0) =0, x€(0, 00) (3)

In this equation by using (1) and (2), we obtain
* .
/ ip(@) Hy" (k [@=& |) dr' = —4ie™ k20 (4)
0

This is the integral equation (IE) of our problem, which will be con-
sidered to determine the unknown current density function jg(z’).

3. METHOD OF SOLUTION OF THE IE

Let us try to solve the IE in (4) by means of a more general and
quite simple method named the method of orthogonal polynomials
(OP) [2, 3]. This is a special implementation of the general scheme
of the method of moments (MM), but it differs from it in two points.
First, it is necessary to investigate the structure of the solution near
the edge points of the domain of integration. Second, the spectral
expressions for singular parts of the kernels with OP as eigenfunction
are to be constructed. We would like to note that the method of OP is
widely used for the solution of problems in the theory of elasticity and
continuous media mechanics [2]. Nevertheless, it has not yet found an
application in electromagnetic theory.
Let us rewrite the IE of (4) in the form

[Tie () (1= 1) =2k Q
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where

k=—ik, (=kz (6)
and Ko(z) =% él)(ix) is the MacDonald function.
From the Meixner’s edge condition [1] it follows that the unknown

function jg(z) = ]E(%’) must behave as

jE(i—:)W(c*%), as (=0 (7)

By taking this asymptotic behavior into account, we can express the
unknown function as follows:

(Y et gt

Here, Ly, ? (2( ) are the Laguerre polynomials and jZ are the unknown
coeflicients.
It is important to explain why the Laguerre polynomials are used

for the representation of the function jg (75,) . In general, the choice

of the type of the polynomials relies on two points:

i) The type of the polynomial chosen should involve the asymptotic
behavior implied by the edge condition and also should satisfy the
orthogonality condition together with the weight function. In this case,
the weight function is [exp(—()/+/¢] and the orthogonality condition
is expressed as [4]

2 M 5 9
/f 208 (20 = b (9)

Here, 6, is the Kronecker deltas and

F(n—i—l)

Tn T T+l (n

N

_), as n — oo, (10)

with I'(z) being the Gamma function.
ii) Since the purpose of this approach is to solve an IE, the polyno-
mial type should be the eigenfunction of the kernel. In this case, as
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has been shown by G. Popov [2], the Laguerre polynomials turn out
to be the eigenfunctions for the following integral operator

& 2Bt —¢ [l ~tpoh 0 m -1 _
/0 e ()& = Tfratege

Now let us substitute (8) into the IE of (5) and take into account the
spectral expression in (11). Then, we have

\/_ Zy eS¢ = 2nk S0 (12)

Here, by using the orthogonality condition (9), we can find the un-
known coefficients jZ in explicit form as

§E = ﬁf—g, n=0,1,2,... (13)
()
where
= [T g (14)
" Jo N '

It can be shown that (see Appendix A)

& 1
0 . (L (15)

B
=t T

and as a consequence of this expression we obtain

’

g_4 ¢

= — 16
S T =
If we substitute (16) into (8) we have
¢ ) _4ke™¢ e~¢ q" -1
JE (2¢) (17)
< \/ 1 - aO n=0 'Y’E n

Series in (17) is convergent. Thus, by using the explicit form of this
sum (see Appendix B) in (17) we obtain

.
JE (%) = 2k %ﬂ(vl —ap1 F1 (1, %; L+ ao)C) (18)
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where 1Fj(a,b;2) is the Kummer hypergeometric function. This func-
tion may be represented with the error function erf(z) as done in [4]

1
1By (1,0 0)) = 1+ R aCers (VT aalc) ek
(19)
From (18) and (19) we see that the current density function j E(fr)
may be given as

e <k£)= 2% \e/;ig\/l_—a (14 VAT Fageltreker (VT + a0)C))
(20)

By using the asymptotical behavior for the function 1Fi(a,b;z) (see
Appendix B) and taking into account the notations in (6), we obtain
the following asymptotic expressions:

a)  —0
i _ 2 ikx—iZ% . 0 5 2 0 E 2 4 f
Je(z) = 2k4/ 3¢ Tsin 5 1 — 4i(kzx) cos 5 g (kz)* cos 0
+0 ((kx)%) (21)
b) z — o0
je(z) = 2ke~*=cs0=13 ging [ 1+ O —1—0— , 0#m. (22)

k 20
I COS 2

Note that the representations for the surface current density in (20)
and (21) coincide with the results previously obtained by other authors
[5] using the method of dual integral equations closely related to the
Wiener-Hopf method.

4. REPRESENTATION OF THE DIFFRACTED FIELD

Now we will investigate the scattered far field. " For this purpose,
we first note that the asymptotic behavior of the Hankel function

Hél) . (k\/(x —-z')2+ yz) for kr — oo is

H(gl) (k (x-z')2+ y2> - ﬁ—;eikr—i%e“ikx, Ly ((k:)%> .
(23)
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Here (r,¢) denotes the cylindrical polar coordinates, i.e.,

T=rcosp, y=rsing, r=+12+7y?

Substitution of (23) into (2) yields

2 k=it g () (24)

wkr

EZ(r,p) =

where
i o0 ’ k / / i
P5(p) = — /0 je(e ) =0da’ = L Ip(cos)  (26)

where Jg(cos ) is the Fourier transform of the function jg(z’).
In order to obtain Jg(cosy), let us substitute (18) into (25) and
take into account the definition of (6). Then, we obtain

g(cos p) —/ ]E( )e(cos‘pdc

~ \/__/ e~C(1—cos )
R

As was shown in [6], the integral in (26) can be expressed in the explicit
form (see Appendix B)

— 1A (L %; (1+ ao)C) dg¢ (26)

2\/l—cosgo\/l—ao
cos p + ap |

Jelcosg) = — (27)

Consequently, we obtain the following as the far field representation

7‘QSmi'gsmg i 1 1
& _ ! o - 28
£ (%) 2cosp+cos® 4 Cos(cp+0> Cos(w—a) > 428)
2 2

which is the well known result [1, 5].

5. H-POLARIZED CASE

In this section, we consider the diffraction of an H-polarized plane
wave. We will construct the solution of this problem by following
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a method similar to that discussed in the previous section. Let the
nonzero component of the total magnetic field H, be given as

H,(z,y) = Hi(z,y) + H3(z,y) (29)

An integral representation of the scattered field is now given by

Hi@y) = -3 [ )28 (ke =)+ ) (@)

where jg(z') is the surface current density. The boundary condition
in this case is given by

O0H,(z,y)

o =0 (31)

y=0

Substituting (29) and (30) into (31) we have

@ . e i p '
(‘9—342/0 ju(z YHy (k (x—2')2+ y2> dx -
— _4k/T = agetkaos (32)
where 2 o
v il <@ + kz) (33)

is obtained from Helmholtz equation. This yields

d2 o0 7 ! ! ;.
(Ei + k"‘) / in@)H (ko -2 ) da’ = —aky/T = age ",
0
(34)
This is the integro-differential equation (IDE) which needs to be solved
for the H-polarized case.

6. METHOD OF SOLUTION OF THE IDE

We will construct the solution for the IDE of (34) by following the
method of OP. Let us rewrite the IDE of (34) in the form

(;;2 ~1) [ (-,E—) Ko(1¢= ¢ 1)d¢' = —2m/1 - agecor.

(35)
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In this case, Meixner’s edge condition [1] requires the unknown function

jH(%) to behave as
i (75-) ou B (c%) B Eill (36)

By taking into account this asymptotic behavior, the jH(fr) can be
expressed as follows:

in () = Ve <2J £} ) (57)

where L2(2¢) are the Laguerre polynomials. It can be shown that
(see Appendix C) the expression (37) follows from the fact that the
1

polynomials L2(2¢) are the eigenfunctions for the following integral

operator
(34—2—1>/ Ve Ko (10— ¢ 1) Ld (2¢) dc
= —nV2y L3 (20)e™¢ (38)

where v = I'(n + 3)/T'(n + 1) are the eigenvalues of the integral
operator in (38). Let us substitute (37) into the IDE of (35) and take
into account the spectral expression in (38). Then we have

W\/_Z]f L (2¢)e™¢ = 2my/1 — afe™t. (39)

Note that the orthogonality condition for L2 (2¢) is given by [4]

| exvetieorkeow - ”\’}&m (40)

which leads to

H _ 4 l—ao(ff")Q; f,llq:/o \/Ze_(l_a")cLé(QC)dC (41)
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It can be shown that (see Appendix B)

- ’7 ag+1
jg=—"—q", gq=
(1*‘&0)2 0‘0_1

(42)

Now if (41) and (42) are substituted into (37), the following analytical

expressions are obtained for the current density function jg( 57) (see
Appendix B):

arf €% _ V1+ao OOQ_%
- (F)~[11—<310\/Z z:: e-4 =

- ;Cr-(l + ap)e” 1 Fy (1, ; ¢+ aO))

— 2ef00gr f ( O+ ao)) . (43)

By using the asymptotical behavior for the ;Fi(a,b, z) (see Appendix
B), we obtain

o 0 [2kz Si(ke—3) 4 af T2 5 0\?
]H(:z:)—élcos2 - 1 3zka:cos 5 i kx cos 5

+0 ((kx)%) (44)
for x — 0;
juz)=2ew? l1p0[ ||, agr ()
kx cos? —
2
for £ — o0.

For the definition of the far field, it is necessary to use the asymptotic
expression for the Hankel function of zeroth order. It may be shown

that

2 ilk-)ap(p), (46)

H(r,p) =4/ =

with

o " 4 .
Bu(p) = gsin pJg(cos p); Jr(cos ) = / jH(.'L")e_lkx oS Y g
0
(47)



1448 Veliev

where Jp(cos¢) is the Fourier transform of the function jy(z').
If we substitute (43) into (46) we obtain

1 o s COS
JH(cos @) = F/o JH (f-) e =P d(

f o0
_ i/ 1+ (6 73] / \/_e—C(l—cosw)lFl (17 E; (1 + aO)C) dC
k s 0 2

(48)
The integral in (48) can be evaluated in explicit form (see Appendix
C) as
2 /1 1
Ju(cosp) = —= =0 (49)
k' /1 —cosyp cosp+ ag
Finally, for the far field we have
i vV1+ agy/T+cosy
Pr(p) = ~3
cosp + ap
_ cos g cos 5
cos ¢ + cos
1 1
’ (50)

4 cos g1 +cos P—9
2 2

It should be noted that the present method is also applicable to half-
plane structures with impedance boundary conditions.

7. CONCLUSIONS

As we have mentioned before, the method of OP is a more general
and quite simple method for the solution of IE, which arises in various
diffraction problems. The universality of the method of OP resides
in the opportunity to construct the spectral relationships for different
singular kernels where OP plays the role of the eigenfunctions. As an
example it seems reasonable to cite the following spectral relationships
[2, 8]:

1 1 Tn(C) wn=1n2, n=20
= =2 e —nldn = <1 1
= oy ot ¢ —nldn=wnTu(n), <1y _ =, n#0
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. ¢

sin —

T2n a
1 ro 1 sin — & sin%

— In cos —d¢ = o9, 1"
o ol ¢ = ¢o|\/2(cosp —cosa) 2 =i sin 2
sm—2— 2
(52)

Here {oon}n.o are eigenvalues of integral operator equal to

!
—Insin—, n=0

Oon = 1 0
‘2_77,’ n:,é

(y)dy = —m(n + 1)Up(z) (53)

dmz_/ V1i—y ln

Here U,(y) are the Chebyshev s polynomials of the second kind.

i [1Cep(arccos(,”) (2) M €n (0 9) y
z Hy e
2/, W 1( ¢ |) (= e (O,g) Cen(arccos(', g)

(54)
where g = %, {Cen(arccos(,g)}oeo are the Mathieu’s functions.

/1 Cg (y)dy _ T(n+v) CE(x) (55)

L3 |p—=gl" (1 —g ¥ —Trr("‘i’l) I‘(u)cosz;—y

These spectral relationships can be used to solve various scattering
problems with both the Dirichlet and Neumann boundary conditions.

It should be noted that the problem of wave scattering by polyg-
onal cylinders and cylindrical structures has been investigated by the
method of OP [9, 10].

APPENDIX A

For the calculation of integrals in (13) and (38) it is necessary to use
the following representation 5]

e TA+n+1)(p—c)"
A—prrA .
/0 ge PP L (cx)ds T(n 1 Dprril

Re(p) >0, Re(A)>-1 (A1)
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In our case Azﬂ:%; p=1—aqay c=2.

APPENDIX B
As shown in [5]

T\ e~ D+ ora, L o
I'(b) ;F(k+/\+1tl’k(w)—(1—t) 18 A+ 1 1_—_Z>

[ #]< L (B.1)

In our case Azi%; b="T1; tz‘;—g%%; z=2C.

As it is well known, the function ;Fj(a;b;x) may be represented as
follows [7]

k
T(k+1)

b (oo}
1F1(a b :L‘ a Z

x=0

(B.2)

Using this equality we can obtain the asymptotical expression for the
function 1Fi(a,b;z) when z — 0

1Fi(a, by z) = I'(b) [F(a) I'(a+1) Fa+2) ,

T(a) [T() " Tb+1)" F@+mm}+OWW(B$

When z tends to 400, we can use the asymptotical expression [7]

) = Tgwabu+0(*n (B.4)

APPENDIX C

As was shown in [6], for the integrals in (26) and (48) the following
representation can be used:

/oo e P2zl Fy (a, b; ca)dz = T(b)p*b(p — ¢) ¢,
0
Re(p), Re(b), Re(p—c)>0 (C.1)

In our case
b=% or %; p=1—cosp; c=1+ayg.
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APPENDIX D

Here we will prove equation (38). For this purpose it is necessary to
1

give a new representation for the Laguerre polynomials L, 2(2¢) in
(11) via the recurrence formula [4]

L megs M raeg. @O
"+§ "*5

In3(2¢) =

This leads to

[ Vet Ko (1¢-¢ 1) theae) = 2 (s 5)

?lmbe0 - o)
(D.2)
Here, if we use the other recurrence formula for Ly ?(2¢) [4]
L73(20) = —Ln*(20) + L3, (X) (D3)

and take into account that

T = <n+%>vf= <n+%> F(n+%) = F<n+g> (D.4)

L(n+1) ~ T(n+1)
then we obtain
® = / 1 / r e ¢ g
[ Vet R (10-¢ ) B ()l = Tt zE 0. 09

Now it is necessary to determine the second order derivative of the
equation (D.5). We have

«?/ VT Ko (1¢— ¢ 1) L (2¢) ¢

g 'fIl{ d - 2
= 2\/§dC2[ Ln+1(2C)] (D.6)
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It can be shown that

dd—; [e‘ n+1(24)] P as [Ln 2 (20) + 4L3(2 C)J (D.7)

Substituting (D.7) into (D.6), we have

dcg/ f Ko (1¢-¢1) 24 (%) d¢
:_m% { n+l(2<)+4Ln(2C)] (D.8)

Now by using equation (D.5) and (D.8) it can be easily shown that the
equation (35) is valid.
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