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Abstract—Applications of fractional operators approach to electro-
magnetic waves reflection problems are considered. Reflection proper-
ties of fractional or intermediate solutions are analyzed. It is shown
that this approach is a useful technique for the description of solu-
tions to the reflection problems for some known media in terms of the
fractional order and also obtaining boundaries with new features. In
this paper intermediate boundaries are modeled with BI slab with a
PEC backing and also using anisotropic impedance boundary condi-
tions. The twist-polarizer effect (crosspolarizing reflector) is described
in terms of the specific value of the fractional order.

1. INTRODUCTION

Tools of fractional calculus have found many applications in various
problems of electromagnetics. Fractional operators are defined as
fractionalizations of some commonly used operators. In this paper
we consider fractional curl operator curl® with a fractional order ¢,
proposed in [1] as fractionalization of the conventional curl operator.
The order o can be real, 0 < a < 1, however, complex values of o can
be also considered. The curl® was introduced in [1] to fractionalize the
duality principle in electromagnetic theory. A new electromagnetic
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field (E",ngﬁ “) is defined by applying curl® to some known field

(E®, noH"), which is a solution of some electromagnetic problem with
certain values of input parameters:

E® = (zko)_acurlaEO
noH® = (tko)~*curl® (mH°) (1)

Here kg = w,/€ofip is the wave number in the medium with permittivity

€0 and permeability o, Mo = +/po/€o is the intrinsic impedance of
the medium. Time dependence is assumed to be e™*. The field

(Eo,noﬁo) is referred to as an “original” solution. We name the
field (E“,noﬁa) as "fractional” or “intermediate” solution between
the original and dual fields. If the original field (E?, noH®) is a given
solution of Maxwell's equations, then the fractional field (B, noH®)
defined by expressions (1) represents another solution of Maxwell's
equations with the same values of parameters o, po [1]. For o = 0 we
obtain the original field (E°, noH?), and for o = 1 the fractional field
corresponds to the dual solution (noH°, — E?).

If the original field is excited by some distribution of source
currents then the fractional field obtained from this field corresponds
to new ”fractional” sources, which generalize canonical sources such as
point dipoles and line sources.

Fractional dual solutions and corresponding sources were discussed
in [2-7]. Fractional field was analyzed by many authors in
various electromagnetic problems: propagation in chiral media [8-10],
waveguides [11], reflection problems with boundaries of impedance type
[12-14], and with surfaces with fractal properties [15].

We have applied the concept of the fractional operators to two-
dimensional (2D) problems of reflection from a media interface (the
medium can be modeled by the impedance boundary conditions
or can be a slab of some anisotropic or bi-anisotropic material,
etc). Our interest to fractional operators in reflection problems
is connected with the possibility of simple description of known
boundaries as intermediate between canonical ones, and also obtaining
the boundaries with new features.

Simple mathematical description of reflection properties of
boundaries in electromagnetic theory is a common task in the modeling
of scattering problems. Classic example of commonly used boundary
conditions (BC) are those of Leontovich type [16, 17]

iix E =it x (it x H), (2)

where 7 is a surface impedance, 7 is the normal unit vector to the
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boundary. Leontovich BC actually describe intermediate boundaries
between Perfect Electric Conductor (PEC) and Perfect Magnetic
Conductor (PMC) as special cases of impedance n = 0, n = oo,
respectively.

Lindell and Sihvola [18] introduced new boundary called Perfectly
Electromagnetic Conducting Boundary (PEMC) as a generalization of
PEC and PMC and defined by the boundary conditions (BC) with
admittance M . .

H+ME=0 (3

For M = 0 it is PMC boundary, for M = +oo it describes PEC.
Realization of PEMC was given in [19, 20].

Fractional operators approach (FOA) in electromagnetic problems
means utilization of fractional operators in description of solutions
which are effectively intermediate between canonical solutions of
the considered problem. In this paper FOA is used in reflection
problems; it is based on introducing new fractional field as the result of
application of curl® to the known “original” solution. Original solution
takes into account the main features of solution of original reflection
problem. Effect of the fractional order (FO) « yields a coupling of
electric and magnetic fields that means changing the polarization of
the original field. Fractional field can be considered as a solution of the
problem with the same geometry but with new boundary. Properties
of this fractional boundary will be defined by FO « and the original
boundary. It is evident that if the original solution is a solution for
a PEC (PMC) boundary then the fractional solution describes the
solution for the boundaries, which generalize PEC and PMC.

Earlier, using curl®, FKEngheta obtained fractional boundary
characterized by the isotropic impedance 7, = g tan(ra/2) [1], as an
intermediate case between PEC and PMC for the problem of normal
incidence of a plane wave on a boundary. Generalization to this formula
was given in [14] in terms of anisotropic impedance.

As will be shown later, application of curl® to electromagnetic
field results in the coupling of electric and magnetic fields, when, for
example, fractional electric field is a combination of original electric
and magnetic fields. The same effect is observed in bi-isotropic (BI)
media [21]. Therefore we consider the model of the fractional boundary
using BI slab.

Proposed FOA can be a useful technique in the description of
solutions to reflection problems for some known media in terms of
FO «; besides, new boundaries with new features can be obtained.
Reflection properties of the fractional solution will be analyzed. In this
paper intermediate boundaries are modeled with BI slab with a PEC
backing and also using anisotropic impedance boundary conditions.
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The twist-polarizer effect (crosspolarizing reflector) can be described
in terms of specific value of FO a.

2. PROPERTIES OF THE FRACTIONAL FIELD

The following key feature of the fractional field can be shown: if
the original field is a field radiated by the "original” electric and
magnetic currents with volume densities jeo and ij, respectively, then
the fractional field represents the field radiated by new electric and

magnetic sources,j’e,a and jm‘a, found from the original ones and FO
a [6]:

- TN\ ~ . TN »
Je,a = CO8 7 Jeg + 8l 7 Jm0

7+ . T\ = T\ »
Jm.a = —sin (7) Jeo + cos <7> Jmo (4)

The currents (j&a,jm’a) are named “fractional currents” referring to
the currents, which correspond to the fractional field. Note that
fractional currents are distributed within the same volume as the
original ones.

To understand the key features of the fractional field, we consider a
simple case when the original field is a uniform plane wave propagating
along the direction given by the vector f(cos ¢,sin ¢, 0). This field can
be obtained from two independent components,

B = Dee@k(w cos ¢4y sin d))‘ .= Dmezk(w cos ¢4y sin ¢)’ (5)

where D,, Dy, are the amplitudes. Other components are derived from
these ones by using Maxwell’s equations.

The components of the fractional field Ea(Eg,Eg,Eg),

ngffa(nng,noH{},nOH?) are expressed via the components of the
original field [13, 14]:

E? = BE, + AngH,
nng = —AEZ + B'f)()Hz (G)

and other components

EY = BE; + AnoHy, E; = BE, + AngH,
moHg = BnoH, — AE;, noH, = BoHy, — AE, (7)
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A = sin (?) , B =cos (%) (8)

The expression for curl® acting on the function of one variable F(z) =
F,% + F,§ + F;Z, was presented in [1]:

Here we denote

curl®[F(2)] = (BD%Fy(z) — AD2F,(2))% +
(ADZ Fy(2) + BDF Fy(2))§ + 60a D5 F2(2)Z, (9)

where 8y, is the Kronecker delta and DY =_ D¢ is the Riemann-

Liouville fractional integral, defined [22] as

1 z
—olDaF (B8] = f(——_ajf (z—u) " f(u)duy, fora <0, z>a. (10)
For the fractional derivatives with o > 0, the above definition should be
used with additional step _., D% f(2) = (d/d2)" _ocD2~™f(2), where
m is chosen so that (o — m) is negative.

To derive expressions (6) we used the presentation for curl® of the

function of two variables F(x,y) = Ze@* ¥ [5, 6, 7],

b 4
(aZ + b2)(1—a)/2w -

7+ B(a® +b¥)¥/?3} (11)

Curla(gezaz—mby) — eza;v—i—zby{zaA

1“A

a
(a2 + b2)(1-2)/2

where A, B defined by equations (8). The choice of the appropriate
branches of the terms (a2 +b2)(1~-®)/2 (a2 4 b?)2/2 depends on physical
conditions.

A fractional wave is a wave propagating in the same direction
as the original field. Application of curl® (in the case of real values

of a) reduces to the rotation of vectors E,H by the angle ma/2 in
the plane perpendicular to the direction of wave propagation. It is
interesting to note that curl® yields the coupling of original electric and
magnetic fields (6), (7). Thus the curl® is an operator which changes
the polarization of the field. In the case when the original field is
linearly-polarized having some angle §y with the axis z, and real values
of a, the fractional field remains linearly polarized, but the polarization
vector is rotated by the angle §, = do+ma/2. It can be shown, that for
the complex values of a, application of curl® to the linearly-polarized
plane wave yields an elliptically polarized plane wave. Complex and
higher order fractional curl operator in electromagnetics was discussed
in [23].
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3. REFLECTION PROBLEMS

Now we consider fractional solutions to reflection problems. Consider
a classic 2D problem of the plane wave oblique incidence on a plane
boundary located at y = 0. Assume that the incident wave is the sum
of TM and TE waves defined by components E, = D)y, gireongpeind)
and H, = D,,ek@cos¢tysing) with amplitudes De, Dp,. ¢ is the angle
between axis x and the direction of wave propagation. The boundary
is characterized by isotropic impedance BC,

—

it x E =nit x (i x H) (12)

where E = E' + E", noH = mH! + H™ (y > 0) is the total field,
which is the sum of the incident (E, noH?) and the reflected (E", noH™)
waves and 7 is the surface impedance. The normal 77 of the impedance
boundary coincides with the axis y. As special cases, the BC (12)
generates a PEC boundary for 7 = 0, and a PMC boundary for n = oo.
Original solution can be described in terms of 2D reflection dyadic R
[18]:

E" = RE (13)

with R written in matrix form as

R:(ERH Rg) (14)

Reflection coefficients Rg, Ry for impedance boundary are defined as

1—n/nosin¢ _ 1—mno/nsing

R = - ) - = .
£ 1+ n/nosin ¢ # 1+ no/nsin¢

(15)

We assume that the original solution (E H ), from which we will build
the fractional one, is a known solution of this reflection problem with
a certain value of impedance 7.

The fractional field can be constructed in two ways:
(1) apply curl® to the total field, i.e., to the sum of incident and
reflected fields:

(E* noH®) = (tho) “curl®(E' + E",noH* + noH") (16)

(2) apply curl® only to the reflected field, while the incident field
remains unchanged:

(B>, moHoT) = (tko)~*curl™(E", moH")
(Bt o H) = (B, noHY) (17)
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Keeping in mind the properties of the operator curl®, it is
interesting to find the types of solutions that the fractional field can
represent in the case when the original solution is a solution of reflection
problem. Having the representation for the fractional field (expressed
via the original field components and FO «), the corresponding BC,
which the fractional field satisfies, can be derived. We are interested
in finding a model of the fractional boundary, which can adequately
describe intermediate reflection properties of the fractional solution.

In the first case (16) the fractional field describes the original
solution and the dual solution as special cases of & = 0 and o = 1,
respectively.

Duality principle in the reflection problems states that the dual
solution corresponds to
(i) PMC boundary when the original field is a solution for the PEC;
(i1) Impedance surface with impedance ! when the original solution
is a solution for the impedance 7;

(iii) Conductive surface when the original is a solution for the resistive
surface [17].

So fractional solution will correspond to some fractional boundaries
which are intermediate cases between the “original boundary” and the
"dual boundary”.

In the second case (17) fractional field also represents the solution
of reflection problem. But in the limit case of @ = 1 we have the
situation where the boundary is not “dual” -— this boundary acts as
some kind of a polarizer similar to the twist polarizer.

Apphcatlon of curl® to the incident field can be expressed in terms

of dyadic Lot

(tho) teurl®E* = L%E!, for y— +0 (18)
where
sai_f B —Asin ¢
L= = ( Asin~ !¢ B (19
For the reflected field, (tko) lcurl®E" = L®"E", where
Ta,r _ _ima B _ASin¢
Lo =e ( Asin~!g B (20}

For the normal incidence (¢ = 7/2) and real values of a, both

dyadics Lo LO‘ " represent rotation by the angle ma/2.
Flnally, reflection properties of the fractional boundary can be
described by the reflection dyadic R?:

Bor = Rege (21)
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Now we analyze the two models (16), (17) of the fractional solution.

3.1. Model 1. Anisotropic impedance boundary
Here, the fractional field is

Fet = feifi far _ for gir (22)
Substituting this into (21), and using the relation (13), we get the
fractional reflection dyadic:
Re = Tor p(Lei)-d (23)
Then R* can be found as

Ra — e —BQRH + AzRE —ABsin ¢(RH + RE) (24)
—ABsin ' ¢(Ry + RE) — ARy + B?Rg,

For ¢ = 0 and a = 1 we obtain

=~ —-R 0 = —R 0
Ra’azo = ( 0 H RE )7 Ra|a=1 - ( 0 < RH ) (25)

that corresponds to the original solution and the dual solution with
impedance n~' (using the property that Ry(n) = Rg(n™!)). Formula
(25) is in agreement with the duality principle.

For the normal incidence R® can be written in simple form as

Re REe”m‘I where I is the unit dyadic. If the original solution is a
solution for PEC (n = 0), then

LY, (26)

From this equation, impedance 7, can be obtained as
T
o = o tan(") 27)

It means that for the case when original boundary is PEC the fractional
boundary can be modeled as an isotropic impedance boundary with
the value of impedance expressed from « (27). The same formula was
derived by Engheta in [1].

In general, fractional boundary for intermediate cases (0 < a < 1)
can be modeled by anisotropic impedance BC

7l x E® = fjam x (i x H*) (28)
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where the impedance 7,, in general, can be written as a tensor

. o N2
Mo = 29)
“ (n& 152 {

For simplification purposes we consider important special case of
the tensor (29) corresponding to 7fy = 1% = 0. Then coefficients
n%, ng, are expressed as

_ B . ER

77(111 = 'ﬁg, Moo = H_g (30)

Here, we assumed that TE and TM parts of the original field have the
same amplitudes, i.e. D, = D,,. Coeflicients (30) can be obtained as

1 e™(B— A)+ BRg + ARy

a
B = sin¢n0 e™(B — A) — (BRg + ARyg)’
. e (B + A)+ AR — BRy
[
= = 1
22 SN ¢1jg e™*(B + A) — (ARg — BRpy) .

In the limit cases: we obtain a) a = 0: 0§ = n% = 7, b) a = 1
ny =n%=n""

If we assume that the original field is solution for the PEC
boundary, i.e., n = 0, then we obtain

1 T T
Y = me tan (7) , Moo = tsin¢np tan <7> (32)
This equation for fractional anisotropic impedance generalizes (27) for
the case of oblique incidence.

Numerical results for absolute values of fractional anisotropic
impedance are shown in Figures 1-3. Figures 1-2 show absolute values
of nfy, 1%, as a function of « for fixed value of the original impedance
n/me = 0.5. For a = 1 both elements of the fractional impedance
equal to 7% /mola=1 = 7% /M0la=1 = 2, that corresponds to isotropic
impedance (n/mp)~" = 2. For intermediate values of 0 < o < 1
elements 0%, ng, are not equal to each other, while their absolute
values are equal 94| = || for the normal incidence only. For oblique
incidence (¢ # 7/2), the graphic of |n%| has local maximas for a = 0.5,
while the graphic of |79 | has no local maximas. As seen from (31) for
the value @ = 0.5 (A = B = 1/1/2) we obtain 1§} /no = 1/ sin ¢ for any
value of the original impedance. For the normal incidence the value of
the original impedance 7 = 1 describes the case of no reflection (fully
absorber) when Rg = Ry = 0; in this case the fractional impedance
is an isotropic impedance with 1, /no = nS,/no = —1 for any value of
a (see Fig. 3).
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Figure 1. Absolute value of the fractional impedance |nf;/mol, as a
function of the FO « for the value of the original impedance 7/ng = 0.5
and for different incidence angles ¢.

Ah h(zxz m, |

1,5 1
1,0 4

0,5 1 --"'—’

00 +———T——T——T——T——
0,0 0.2 04 06 08 1,0

Figure 2. Absolute value of the fractional impedance |19, /mno| for the
same values of parameters as on Fig. 1.
3.2. Model 2. Bi-isotropic Slab with PEC Backing

Here, the fractional solution is expressed as
E_I’a,i = E‘i’ E"‘a.r — Ea.rE’r (33)
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Figure 3. Absolute value of the fractional impedance |1, /n0|, as a
function of the original impedance 7/ng for values of o = 0.2;0.5; 0.8,
for the normal incidence.

Then R® = E‘”}AE, and for the normal incidence we obtain
= —~BRy AR
B*=( 4p," BRp) (34)

In the case of PEC, we obtain

F=-(%,3) (35)

For the real o this is a rotation dyadic by the angle (7 — 7a/2).

Consider a problem of reflection from BI slab with PEC backing
[21]. The upper half plane (y > L) is an isotropic medium with
parameters g, g, with the PEC plane located at y = 0. BI media
(0 <y < L) is defined by constitutive relations:

[j = EQE + fzﬁ, E = CQE + ugﬁ (36)

where parameters €g, 2, &2, (2 are all scalars, ey is the permittivity, po
is the permeability. Parameters &3, (2 can be represented as

§2 = (x2 — w2) Voo, (2 = (X2 + 152)V/€oto (37)

in terms of the Tellegen parameter xo and the chirality x9. Reflection
from this BI slab can be expressed in terms of reflection dyadic R:

E™ = RE? (38)
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where for the case of normal incidence
D _ Rco Rcr
o= ( _Rcr Rco (39)

Reflection coefficients R.o, R.r are determined by parameters of
the media 79, x2 and thickness L [21]:

(ng — m3) sin® @ — n cos? 6
ng cos? 0y — (ng + n3)sin? Q + wmong cos 62 5in(2Q)
B 2107y sin Oy sin? Q
8 cos2 0y — (g + n3) sin? Q + wnon2 cos B, sin(2Q)
Here we denoted @Q = kyLcosfa. mo = +/po/eo, M2 = H2/€2,

§2 = sinfz, and wavenumber kz = w,/€2i2.

Comparing the reflection dyadic for the fractional solution (35)
with coefficients for the BI slab (40), we conclude that the fractional
boundary can be identified as BI slab if we choose the order o so that

R¢, = —cos (%) , Rer = sin (%) . (41)

Such an « can be found from the following equation

Rco =

Rer (40)

tan (E) e Rer 2nonz sin By sin?(ka L cos 6-)
‘ 2 )  Rep (g —mn3)sin®(keL cosfz) — ng cos? 6y

For the given value of a, a fractional solution can be simulated with a
BI slab backed by a PEC plane with parameters satistying the above
equation.

For the case when 7y = 79 we obtain from (42) the relation

(42)

(Wa ) 2 sin 6, sin?(ky L cos 63)
tan =

£l cos? 6y (43)

2
In the special case of 8 = 71/2 (x2 = 1), a = %arctan(—Qng(kgL)Q).
The results in Fig. 4, Fig. 5 and Fig. 6 show FO « as a function
of the normalized thickness koL for various values of the Tellegen
parameter y2 and normalized impedance 12 /7.
In the case when Tellegen parameter has the extreme value x2 = 1,

we obtain (haL)?
o 2non2(k2L
tan (—> = (44)
2/ (0§ —m3)(kaL)? — nj
As seen from Fig. 4 a can be zero not only for the evident case
when k;L = 0: a = 0 also when kgLcosfy = mn, n = 0,1,2,... It
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o 1,04

0,54

0,0

Figure 4. Fractional order o for normal incidence, as a function of
the normalized thickness koL, for normalized impedance 12/mp = 1 and
different values of the Tellegen parameter x» from 0.2 to 1.0.

o 2,0-
1,8
16
1,4
1,2
1,0
0.8-
0,6
04d

0.2 3

0,0 4

Figure 5. Fractional order a for normal incidence, as a function of
the normalized thickness koL, for xo = 1 and different values 12/7o
from 0.5 to 2.0.

means, that for each value of the Tellegen parameter xg < 1 (62 # 7/2)
one can define the non-zero thicknesses L, so that a = 0.

Values of a close to unity correspond to Re — 0, that is a twist
polarizer effect.
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o 2.0 T12/]10
1,8
1,6
1,44
12
1,0 N A 0"
0,8
0,6
0.4
0,2

0,0 ' T " T ' T : T : 1
0 1 2 3 4 sk,L

Figure 6. Fractional order «, as a function of the normalized thickness
koL, for x2 = 0.1 and various values of the 72 /no near 0.1.

Considering transmission through BI slab, similar results can
be observed, ie., a BI slab acts as a polarization rotator for the
transmitted wave [21]. In this case the same fractional model can
be applied, with transmitted wave presented as a fractional field, but
FO o will be related to chirality parameter kg, because the Tellegen
parameter x2 has no effect on the transmitted wave.

4. CONCLUSION

In this paper, reflection properties of the fractional field are
analyzed. Corresponding ”‘fractional”’ or ”‘intermediate”’ boundary is
modeled by anisotropic impedance BC or Bl slab with PEC backing.
Dependence of FO on parameters of Bl slab has been studied. It
is shown that fractional boundary has the polarization transforming
properties. Also a twist polarizer effect is described in terms of the
limit value of FO a = 1. Considered FOA in reflection problems is one
of the possible applications of fractional operators in electromagnetic
problems.
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