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Abstract — Applications of fractional operators approach to
electromagnetic waves reflection and diffraction problems are
considered. Reflection properties of fractional or intermediate
solutions obtained using fractional curl operator are analyzed.
It is shown that this approach is a useful technique for the
description of solutions to the reflection problems for some
known mediums in terms of the fractional order. Also new
features of boundaries corresponding to fractional solutions
can be derived. In this paper intermediate boundaries are
modelled with BI slab with a PEC backing. Finally, using
fractional derivative new boundary conditions are introduced.
The problem of diffraction on strip with fractional boundary
conditions is solved.
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I. INTRODUCTION

During last fifteen years N. Engheta developed the
tools of fractional operators to solve in various problems of
electromagnetics [1], [2]. Fractional operators are defined
as fractionalizations of some commonly used operators. In
this paper fractional derivative (integral) or Riemann-

Louville type and fractional curl operator curl® with
fractional order (FO) ¢ [3] are considered.

We have applied the concept of the fractional operators
to two dimensional (2D) problems of reflection from a
media interface (the medium can be modeled by the
impedance boundary conditions or can be a slab of some
anisotropic or bi-anisotropic material, etc).

This approach is based on introducing new fractional
field as the result of application of cur/” to the known
“original” solution. Original solution takes into account the
main features of solution of original reflection problem.
Effect of the fractional order (FO) « yields a coupling of
electric and magnetic fields that means changing the
polarization of the original field. Similar effect is observed
in bi-isotropic (BI) media [4]. Therefore the model of the
fractional boundary using BI slab is considered. Fractional
field can be treated as a solution of the problem with the
same geometry but with new boundary. Properties of this
fractional boundary will be defined by FO « and the
original boundary.
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Fractional field was analyzed by many authors in
various electromagnetic problems: propagation in chiral
media [5], [6], waveguides [7], reflection problems with
boundaries of impedance type [8-10]. Our interest to
fractional operators in reflection problems is connected
with the possibility of simple description of known
boundaries as intermediate between canonical ones, and
also obtaining the boundaries with new features.

N. Engheta introduced the concept of “Intermediate
cases in electrodynamics” [1]. It means the following: if the

function f(y) and its first derivative f”(y) describe two
canonical case of electromagnetic field, then fractional
derivative DY f(y) defines an intermediate case between

two canonical cases. In this paper fractional derivative,
denoted as __ D f(y), is defined via Riemann-Liouville
integral [4], where fractional order v between zero and
unity (0 < <1). Following this concept new fractional
boundary conditions (FBC) are introduced, which are
intermediate between boundary conditions (BC) of
Dirichlet and Newmann type. FBC in respect to a function
U(x,y) on a plane boundary located at the plane y =0 are

defined as

DU, ) ],50=0, 0<a<l Q)

In this paper a problem of diffraction on finite strip with
such FBC is solved.

II. FRACTIONAL CURL OPERATOR AND
FRACTIONAL SOLUTIONS TO REFLECTION
PROBLEMS

A. Properties of the fractional field

In this section we consider operator cur/®, proposed in
[3] as fractionalization of the conventional curl operator.
The order @ can be real, 0 <a <1, however, complex

values of & can be also considered. The curl® was
introduced to fractionalize the duality principle in
electromagnetic theory [3]. A new electromagnetic field

(Ea,ﬂofl %) is defined by applying curl® to some
known field (EO,ﬂOI:I ®), which is a solution of some

electromagnetic problem with certain values of input
parameters:




E°= (iky) ™ curl®E°,
ﬂoﬁa = (iky) ™" curl® (ﬂoﬁo)
Here k =w,/e,u, is the wave number in the medium
with permittivity £, and permeability £,, 7, = /4, /&,
is the intrinsic impedance of the medium. Time dependence

is assumed to be €' . The field (Eo,ﬂoljl %) is referred
to as an “original” solution. We name the field

@

(E“,n,H") as “fractional” or intermediate” solution

between the original and dual fields. If the original field is a
given solution of Maxwell’s equations, then the fractional
field defined by expressions in Eqgs. (2) represents another
solution of Maxwell’s equations with the same values of

parameters &, /4, . For & =0 we obtain the original field
(E°,n,H°), and for a=1 the fractional field

corresponds to the dual solution (Uoﬁ ¥ . ~E 0) ;

Consider a simple case when the original field is a
uniform plane wave propagating along the direction given

by the vector / (cos @, sin @, 0) . This field can be obtained
from two independent components,

Ez . Deeik(xcos¢+ysin¢) , Hz - Dmeik(xcos¢+ysin¢z) , where
D,, D, are the amplitudes. Other components are derived

from these ones by using Maxwell’s equations.
The components of the fractional field E* (B BB s

H*(H®, HY,H?) are expressed via the components of
the original field [10] as

E? =cos(ma / 2)E, +sin(ma / 2)n,H,
nyH; =—sin(na / 2)E, + cos(nma / 2)n,H,

where other components can be obtained from Maxwell’s
equations.
A fractional wave is a wave propagating in the same

direction as the original field. Application of cur/” (in the
case of real values of a) reduces to the rotation of field

vectors (E,noﬁ) by the angle 7ax/2 in the plane

perpendicular to the direction of wave propagation. curl®
is an operator which changes the polarization of the field.
In the case when the original field is linearly-polarized

having some angle &, with the axis X, and real values of

« , the fractional field remains linearly polarized, but the
polarization vector is rotated by the angle

0,=0,+ma/2. For the complex values of «,

application of curl® to the linearly-polarized plane wave
yields an elliptically polarized plane wave.

B. Reflection problems

Consider a classic 2D problem of the plane wave oblique
incidence on a plane boundary located at y =0. Assume

that the incident wave (Ei,noﬁ ") is the sum of TM and

TE waves defined by components E, = D, g™ (*<*?*/s"?

and H, = D, """ with amplitudes D,, D, . ¢

is the angle between axis X and the direction of wave
propagation. The boundary is characterized by isotropic
impedance BC,

ixE=nnxrxH) @)

where 77 is the surface impedance, the normal 7=} .

Assuming that the original solution (E,r]oﬁ ) is a

known solution of this reflection problem with a certain
value of impedance 77, we build the fractional one as

follows: apply curl®to the reflected original field

(E & ﬂOH ") and remain the incident wave unchanged
(E* ,n,H*") = (ik,) * curl®(E",m,H")
(E*,mH*")=(E',n,H")

It can be shown that fractional field represents the
solution of reflection problem. Our aim is to find
corresponding BC, which the fractional field satisfies, and
find a model of the fractional boundary, which can
adequately describe intermediate reflection properties of
the fractional solution.

The reflection properties of the fractional boundary can

&)

be described in terms of the reflection dyadic 1%“ 3

Ea,r — kaEa,i (6)
It can be shown that for normal incidence R® is expressed
as
o —BR,, AR,
Ra 2= H E (7)
AR, BR,

where B=cos(na/2), A=sin(za/2), and
reflection coefficients R, R,, define reflection properties

of the original impedance boundary

_ _1-n/nysing _ _l=m,/nsing @®
1+n,/nsing

E

1+7/n,singp’

Such reflection properties defined by Eq. (7) can be
modelled by bi-isotropic (BI) slab (0 < y < L) with PEC
backing [4]. Bl medium is defined by constitutive relations:




D=g,E+&H, B=LE+uwH (9

where & = (¥, =1k, )\ Eotly » G2 = (X, +1K)\Eo ko
are presented in terms of the Tellegen parameter j, and

the chirality &, . Reflection from such a BI slab can be

described by reflection dyadic R

1’%_ Rco Rcr 10
=\ R R (10)

cr co
where

1 :

R, = %2770772 sin® Qsin 9, an

2

Z =n¢cos’ §, —(n: +n?)sin® Q +in,n, cos 9, sin2Q

Here we denoted &, =sind,, O =k,Lcos Y.

Comparing the reflection dyadic for the fractional
solution with coefficients for the BI slab, we conclude that
the fractional boundary can be identified as BI slab if we

choose the order « so that R_=-cos(ma/2),

co

R, =sin(ma/2). Such an & can be found from the
following equation
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Fig. 1. Fractional order for normal incidence as a function of the
normalized thickness k,L , for normalized impedance 7, /77, =1

and different values of the Tellegen parameter y,

For the case when 7, =7, we obtain from Eq. (11) the

relation

_ 2sin*(k,Lcos9,)sin 9,
cos’ 9,

Numerical results for this case are given in Fig.1.

Values of o close to unity correspond to R — 0, that is

o
tan(— 13
n(2) (13)

a twist polarizer effect.

III. PROBLEM OF DIFFRACTION ON STRIP WITH
FRACTIONAL BOUNDARY CONDITIONS

In this section new FBC defined by Eq. (1) are
considered. These FBC are intermediate between BC of
Dirichlet and Newmann type. Using these FBC we will
build the solution of two-dimensional problem of
diffraction of electromagnetic waves on a plane strip. Let

the electromagnetic wave with a given intensity U, (x, )

be incident on a strip of width 2a (—a < x <a), located in
the plane y =0, and infinite along the axis z. The field

U,(x,y) is going from the half-space y >0 and is

; o
expressed as Uo(x’y)zelk(xao+y 1-a5)

, where a, =cos 9,
9, - the incidence angle. For TM polarization case the
function U, (x,y) denotes z-component of the electric
field U, (x,y)=E.(x,y). The total field U(x,y) is the
sum of the incident U (x,y) and the diffracted field

U (x,y). The solution U, (x,y) of the problem must

satisfy Helmholtz equation everywhere out of the strip,
radiation conditions, edge conditions, and also FBC on the
strip x € (—a,a):

-0 DI;U(st’) |y=o= 0,xe(-a,a) (4)
The function U, (x,y) can be presented by using

fractional Green’s function G [3]:

Uxy)=[ /)6 x-x\yd' (9

where G“ in 2D case is expressed as

i
G*(xy)=-7 WDRHP (kyx*+y*)  (16)
Here H(()” is the Hankel function of the first kind.

The function f'*(x), which describes the potential

density in Eq. (15), is defined as the discontinuity of the
fractional derivative of U(x, y), i.e.

I = B e =By U g a7

To obtain the function f'"*(x) we use FBC in Eq. (14),
and in terms of the Fourier transform of the function
f"%(x) we obtain dual integral equations (DIE)



[ @ a- gy dp=p@), g
[ Fepe®dp=0, |&>1

where

P(&) = —drmi(l—al)*? ™"
Fr@=ar@) . f=2el-Ll) . 5= ka
F(f) = [lil—a (E)e P dg £i5)

It is interesting to note, that for the special case @ = 0.5
from Eqgs. (18) we can easily obtain the solution in the
following form:

fO 5 (g) _ —28(1 a; )]/4 ieay+in/4 (20)

and Fourier image

114 yi/4 sine(a —ay)

F () =—4(1-a?) — e

In general case the system in Eqs. (18) can be solved by
using the method proposed in [11]. We present f' (&)

as series of Gegenbauer polynoms C, (&) with the
appropriate weight function:

Fre@=0=-)""23" fICHE) @)

where f” are unknown coefficients. Then e 7
satisfies edge condition of the following form

@ =0-&)"), £ >l (23)

From Eq. (19) F'™* (,B) can be expressed as series

l-a et a a‘]n+a(€ﬂ)
F(B) g );( iy £y G 4)

I'(n+2a)
C(n+1)
Substituting (22) into Eqgs. (16), the second equation is

satisfied automatically, and from the first equation we
obtain the infinite system of linear algebraic equations

(SLAE) to obtain the unknown coefficients f*. By the

where J,,_(x) are Bessel functions, y, =

method of reduction coefficients f,” can be found with
any given accuracy [11]. With the known f,* density

function 7'"%(&) and its Fourier image F'*(/3) can be
defined from Egs. (22), (23), respectively.

IV. CONCLUSION

Proposed FOA can be a useful technique in the
description of solutions to reflection problems for some
known media in terms of FO «; besides, new boundaries
with new features are obtained. Reflection properties of the
fractional solution are analyzed. The model of BI slab with
a PEC backing is proposed to describe fractional boundary.
The twist-polarizer effect can be described in terms of
specific value of FO a. New fractional BC are introduced
for plane boundaries and the diffraction problem on a strip
is solved.
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