Diffraction of Waves by a Rectangular Cylinder*
E. L. VELIYEY, V. V. VEREMEY AND V. P. SHESTOPALOY

4 Tigorous methed four solving problems of the diffraction of waves by
an ideelly conducting rectangular cylinder, regarded as a composilte body
formed by "gluing together' flat ribbens, ie propesed. The mechod is based
on the idea of the method of partial inversiom of an operator and the method
of moments. A5 a rasult the problem 1s veduced to the solutlon of infinite
systene of linecar algebraic equations (SLAE). It is shown chat the methed
of reduction is applicable to the selutiopn of thase syestems. The unknowns
are the coefficients in the sxpansion of the densiry fuynctions of the sur-
face currents on the faces of the cylinder in a completa systam of Geaganbauer
polynomials with a weighcing factor taking into account the form of the be-
havior of the currents &t the edges. The proposed method Incorporstes, as a
-epacial case, a new tigorous solution of the preblem of diffractlon of waves
by a cellection of f£lar ribboos with parallel generatrices. -Tha character=, ..
igtics of the distributicn of the currents on the faces of a rectangular’
eylinder, the totsl scattering cross section, and the radiation pattern of
the scattered f£ield are studizsd based on a numeriecal calculations.

B & &

1. The waln approach to the solution of the problems of diffraction of waves by Ldeally
conducting polymomial cylimders (PC) is to reduce them to integral equations of the first kind
in the current deapeiry induced by the incident wave on bhe surface of the cylinder. These
integrel equations are solved by numerical mechods, in which the integral equations are reduced
to systems of linear algebralc equations {SLAE) [1-5]. The presence of corner polnte Ledges)
on the contour pf intepration, however, appraciably raduces the accuracy with which the fune-
tions of the current are determined Erom these integral equaticms. To dmprove the sltuaclen,
spproaches taking into account, by different methods, the conditions on the edge in axplicit
form heave been proposad [3-5]. In these papers the characteristies of the current dletribution
on the faces of the cylinders and the behavior of the fields in the far zone have haen grudiad
in patt. In [6, 7], 4in which a solution is obteined based on the geomerric theory of diffrac-
tion (GTD}, the asymptotic selution of the preblem in gquesticn in the short-wave Tegioon 1z CO0°
gidered.

Below we proposa a rilgorous method for solving the problem; the method enables us to deter”
mine the guantity required with any predetermined accuracy. The idez of the mathod is as follows:
the ideally conducting PG 1s regavded as a compesite body, fermed by key elements, such as d
flat ribbon, "glued together'" {see Filz. lb). In this formslation the problems of diffraction
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Fig. 1. The structures considered.

of waves by PC are clesely related to problems of diffractfen of waves by N bodies. In patti-
eular, the field scacrered by the PO can be regerded as s superposition of Flelds scatterad by
each Faek of the cylinder (I.2., #n the form of the superposition of fields generaced by the
corresponding currents oo the faces}: the scattered fields are expressed In terms of the
Fourder transformatfon of rhe density functions of the surface curreants oo che faces of rhe
cylinder.  Such representaticsns for the scattered fields give a number of important advantages
in the. construction of the solution of the problem. The boundary coodftions and the represzen=
tation e¢mployed for the scattered flelds lead to a system of peired integral equatione {with a
Eernel in the form of trigooometric functions) relacive to the woknown Pourier trensforms. Then
a hybrid (mixed) approach [B] emploving the idea of the marhod of parrifal invearsien of an opera-
toer [9] and the method of moments {7, 3], is used to solve thesa pairad integral equations.

The proposed method alse diffars considerably from the well-known methods employed to solve

2+ ~the problems of diffraction of waves by PC im that ir docludes ss & special case the solution

of the problam of diffraction of waves by a collection of "key' elements (for example, & system
of N = &4 ribbons (see Figs. lc and 4)}.

In what follows our main attentioa will be deveoted to the problem of the diffrection of a
Plane f=polarized electromagnetic wave by a PC, since it Is praci=ely this case that is the
mpst difficolt Eo study.® Since the main ideas of the proposed method of sclution, as applied
to regular PC, have been published in [1G, Ll], in this paper an Infinfte SLAE, to which the
prablem reduces, 1s studied in detail using the example of & rectangular cylinder. The existence
and uniquenssa of the solutions and the applicability of the method of reduction to the solu-
tion of the problem are also copsidered. The computational results from the study of the pur-
rent discribution on the Faceps of the eylinder, the total scattering cross section, and the
radiaticn pattern of the field ave also amalyzed in detail.

2. let g plane f=polarized electromagnecic wave H S =exp [ib(aayi—alty)] (Wwhete L=2nn, &
is the waveleogth and @—cesfh) , varying in time as ¢ ™', be incident oo 2o ideally conducting
t¥linder at an angle # (see Figs. la and b). The cylinder is unbounded in the o direction
and has a rectangnlar cross section in the zoy plane. We introduce the following notation
(see Figs. la and b): {ijj§u1 ars the local coordinete syateme connected to the centers of the

faces of the cylindery [2a}ly are the widths of the faces; and, [q)i=: are the angles Fixing the

atlencation of the faces.
The problem consfists of determining the component Hz of the field scatterad by the cylinder.

The funcrion sought must satisfy Heloholtz's equation cutside the surface of the cylinder, the
Sommerfeld vadiatlon condition at infinity, the conditfon that the energy ia finite in any

e T————
*The case of F polarization can be studiled in an analogous manner.
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bounded volume of space (Miexner's condition on the edges), and Neumann's boundary condition on
the surface of the eylinder.
Starting from this model of the PC the eoral field can be represented in che form =87+

+ EHFJ, whers E’E':I} dascribes the scartered [ield, generated by the earface current on the

Juml

J=th face. These fields in local coordinate systems, as in the problem of diffractfon by a
flat ribbon in the case of A-polarized excication, can be represented in the Eorm {[12]

| Kitudexpttbluz AR i b, {0

! In

where s~ka;, while {hin}}is is the Fourier transform of the Funections

£ f .
E:I‘T’[ Ry (e exp (ikox)de,

{P—: {-"r}]'J:L !

describing the surface—current density on the faces of the FC; in additien, pizi=0 for |&|=e,
i.e., thess functions are continued by gere putside the intercval r=f{—g, g]. In {1} the braoch
of the functiom ¥Vi—a® for which Im Fi—="=0 as |g|++ 1is chosen. We note that for infinitely
thin sereens che current functione pi(z) are determined as jumps of the Ha components of the

tetal magnetic field, whereas zfor PC the function mle) is the limiting value of the Hﬂ Component

of the fiesld on the Faces of the PC, 1.e., wizd=H. (g, +0.2=[—a.a].
3. To determine the unkoowns {fu(c}lic we make the total field chey Neumaon's boundary cop-
ditioen on the surface of the cylinder

2 (& +§ )| =0 L -’QLLJ. (2)

Here L., is the contoutr of the face in the Ijajyj plane, while the nermal n 13 ariented alang the
axis o.y, » 0.

il . . 0 5 (q} L . o, 3

To gatisfy Eg. (2) the field Hz and 5'2 must be wriltten-in a coordinate system fixed.om ..

the j7-th Face {sse Fig. lb), VUsing the telatlonship between the coordinate systems, we obtain
the following representations for these fields in the coordinate system Ejﬂjyj:

o eexp fipdnd o) Fhidilo) [Hikruldlaal ],

T 3
HE ;—‘-I h{m) exp (e[ B (oh myHEed g (o} ] ikl Dy (e} } =
T_ -
L=,
Here we have introduced the followlng metationd
Ay fo) me siﬂ{m"lﬁJl-T 1—o® coa{qe—g,);
A ley ) ==, sin g+ ¥il—o,® cos gy,
By () =z coa(p;—q,) —FV 11— sin (g—g4) ;
(4]

B (o Y=g, cos pH¥i—o sln g,
Dylae) we=ct cos (B pr) —=F1~a’ sin(@e=—qu);
B (e} =1 co8 gout+¥1—a,® 8in g,

Npm=ty by w=Me; are che dimensionless coordinates, while the patamaters EJ'qJ Pﬂj and i are detel”

mined in Figs. la and b.
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Using now the representations (3) for the £iszlds and keeping in mind the facr that che

funetions ulr) are continued by zero cutside the fnterval [-a., ::_I.E, Fromw {2} wa pbtalin che
+ o

following system of paZred imtegral equatians with a kernel in rha form of trigoncostric fuge-
tivns in otdev Lo determlne the unknowns (4] b iet

_[ hila) it axp[aeju.m}dz-z—d {zra]

X explte,Bs{ae) n-HhraD (e 1+ —— E quh;{*x Ainla) %

qa | vl —=

X explte By () nobikl Dy () 1des, || <4,

(3]

J. Arledorp e da=0, |1

The functions {hy(a)}fea must satisEy, in addition to the system of squations (5), the re-
latlons

I Qal#0ne) [*duson,  j=t,... 8, (6)

which follow from the condition that the eaergy of the scattered waves muzt be finlte In any
bounded reglon aof space. It ecan be shown thac this condition in Miexzpner's form of rthe curren:
Functioas near the edges (at the vertices of the polygon)} lead to the Following restrictions:

pein) = CAt—mC (b (1), i

n=x|

where {£,}L: =re constants to be detelrmined‘
In addition, che funetions (pi{n}i-i must sardsfy the condition of continuity:

’J-J'[-_.'i:'""l'-u-u{_l.],nn]-h'-r:l:"'i]“]»l-tl:_”; Crp=Cy; =i, (8}
The candit:.nu on the edge (7) when trapeforming from PG to a collection of £lat ribbons by

meane af separatiun of the faces of the PC 13 writtea 1o the form py{q)ec~(1—4"1%, 1i.8., che

confficients {4 are mssumed to equai rero, while the parameter 4 = 172,
To satisfy candition (7) we represent the functionas {u,{:]]} fap in the Form of unifornly con-

verging series in tha complate and orthogonal system of Eegen:aue.r polymonials (€ "{n)}e, [£3]
with the weighting facror (l-v)%

u:linJ=C,Ki—n)+ﬂnui'l+ni+[1-n‘l*z iy

mmsi

(nl, (9}

where {p2'}l, are new unknown coefficients.
Relarions (3) lead to new represenrations for the Fourier transformariens of the functions
Wilnl. It can be verified that they will have the following form:

ofe) = 5“— [Cpuull, (=) —C i () T+

ot Fransy (Ba) {13
£y m Losenl®a)
T ),?_3.* Al
Hera
K,{tg]—up{ifz;m}—m.
£
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.:1!.= I‘{m+ 2"!"+1-:|
" T{m+i) '

where T'{x} is the gamaa function and J(z} is a Eessel Lunction. “

4. To solve the system of paired integral equations (5) we shall use the method of partial
inversion of an eperator [8]. To this end the operators generated by the left=hand =sides of Che
inhomogenoue equations in system (4) must be divided dinto principal® and complately contimuous
parts. Tnis procedure is realizad by introducing cthe gquantity v accerding to the formmla

ez

VITE=tlali =ik 1@~ 0 (). (1)

Substituting {i0) and {11} into {5) and making use of the completeness and orthogenalicy
fin the interval y=[—1, 1]} of the Gegenbauer polynowlsls and using the discentInuous Weber-
Shaficheytlin integrals [13], we obtain the following coupled infinice SLAE for finding the coef-
ficients {mm'}m=et

T g g J—c Lo - )+ (12)

=

30 (e Ll =47 U=

Fiiws ]

i [cﬁ,p'f-hc :J.”+2x"'ﬂ:=}. j=t,...,4

PRl M=l
Here the following notation has been intreduced:

_l:‘ }u. T '“':'I

Hm P

e “l gd

-

[ o : da
c‘[: 2t _ -;T-.- .ﬁ.""__I % izl KLl (g} e

I“(--hi)P(L+m+1) ' G

F(\." 1+k— m] ( 1+m— k)r(k+;+21r+i)

cli‘l iy

c g
'?Jm =h(E }J- T {2h ey {E.iz H g, (8728) ',‘_E:.

P, f;s*(h) j',i,,.;qwr;m}x

exp[iﬁinﬂ;;{cd 1

[Bidz) ]+, 'r*+*+'-'n{5r3u'[ﬂ]'} =

| { . )5 ja,g{au_m“(m}x

BIP[’kﬁfﬂufall
[l (=) ]+"

a 1
=K. (6070 v+ ) explthruDy ) 1 4, (a) X

'Ta+-+'\'|{!JBJ EG;)} et zrt{"r+t"llij
D ( ) F(2v)

Hoypepy (6,80} ) du,

=

*The principal parc of the integral operater <corresponds to the case when the wave number .
w0, i.2., £F correspends to the stakic situstlien.
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KH=20e 0 Tl /e,

The coefficients (€)=t in the SLAE {12) are given by cha relatiouns

expl—ieB) (.} Fikr D {o) | E {E pl e 4 (13)

@emi Tl el mLaml

HCpths = Cpth | fm=1,, .04,

which fellow from the defindclon ¢f the current functicns on the faces bf che PG and from the
conditions on the edge (7} and {B). Ia (13) the gquantities {en'}mes {.p,",,"}]','.,,«,.,1 are dafined as
followst

G
g

(o) iRy} | 22

I — Eq

LS (2 J'*J'I'{‘-""L:'r }
+l—'kjmﬂ:vl:m] ] T 4
=4

j 1.1+.+|_5 EE;I} ESPE_EEJBuffﬂ o

It has been proved that the Fredhelm alternative iz valid for the Infinire SLAE (12},
The proof 15 based op the fact that, first,the finlteness of the norm in rhe Hilbert spaca 32

of the matrix operators (&, (Gphs (Pplnemt, &0 which the matrices {Chali me (Chale mes and

[P e, Tespectively, corcespond, has been established end, gecend, the positiva—definitaness
of thea cperators {5‘("':']'?_1 has been proved. In other words, in tha zpaca 12 the marrix gperakprs
{G‘,}}u.;. {P}q};nq-i are completely contimuous aperators, while the operators {Gm}j-_l have 3 bi-
lateral conkitmous inverse operdtor. Lt has glso been shown thar thae numerical sequences

e  CEEhEL, @dEhe, pFLR, beleng te the space F.z. It can therefgre bBe aszerted chat
the dnfinice SLAE (12) belongs to the class of operator eguaticons (see [14}) for which Fredholm's
alternative 1z walid.

. A= anm ewample wa shall make the follawin_g estipates for r.he norms of the Bperators {Pﬂ]‘j.'l.ql-\]'_,.
which describe the interactinn of the faces o: the PC: ' .

(g&e =T (v} [ 1

= Si2v)—
2¥a et - Til42v)

12:=02] =

—v{2eh L (2L ]ﬂ e,

=<y =,

|a| ki

(14]
1Pl Pl = 2 et { e Ry 2e) o (60—

T (=) {nt mvH1)
L Eo
: gz_‘, o Tin+H1) T {atmby T 2mta s 2et2)

aSrhﬁJm—l {K&I{EE’}
Xﬂ[zs._:l""“"""' L {EEI} ]]'-.':m

Here L{z} is the Riemann zeta functlon, A..(z} are spherical MacDonald functions, and
', di. 2. (2.) are quantities that depend on the parameters v aod €, raspectively.
The approximate solutions of the infinite SLAE (12} can be found by the method of reduc-

Cion, Indeed, sioce the posicive~definite operatons {ﬂ"”}]_l can be represented in the form (see
(5] CmT el , whers I'J Lz a positive operator, J is the unitc aperater, and o 15 & real oun-

ber, teking into account the fect that the operators {@ . and [P} e, BT completely contincus
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we artive at the conclusion (see [16]) that the merhod of reducticon is applicable to the soluricp
af the infinire SLAE ([12).

5. The specific value of the parameter v, which iz determined by the condition on the edze
(in the case under study v = 2f3), was not substlruted in all of the foregoing formulas. This
is hecsuse one must also be able ta phtain, in a special case, the new rigorcus solutilon of the
problam of diffraccien oF waves by & collection of key elements. It 1s clear that 1F v = 1/2 is
substituted and 1t 15 assumed that the dimensions of the £lst tibhons {e)j=i are such that the

ribbons do not Eouch one another [the faces of the ractangle are separated), then with the help
of tha infinfte SLAE from (12} it is possibie to obtain the exact solution of the problem af
diffraction of waves by a system of four Tibbonz. (In so doing, as pointed out in Sec. 3, che

coefficlents {ﬂ,}?_1 in the SLAE (12) tmat be set equal to zere.} In addicion, for such values

of the parameters w and {0}jm the syatem of eguacions (123} transforms into a Fredholm BLAE of
the second kind with respect to the coefficients {p.P}% . This follows Erom the fact thab the

matrix [1+(—1)*"]1C8"5, Yemf,. becomes diagonal (fy . 1s the Kronecker delta). Thus che selucion

cbtafned is of general form for structures consiscing of afinite number of Elar ribbons with
parallel peneratrices (ribbon resopmators (Figs. lc=e) and reflactors close to corner reflectors
(Fig. 1f), ate.). The set of such structures is limited coly by the fect that the surfaces of
the Tibbuns as well as their contimuatien should not cross the surface of neighboring ribbons.
6. The most important part of the numerical implementation of this appreach is Ehe calen-
lation of the matrix elements of the SLAE (12}, which are not characteristic integrals. It has
been aszablished that as the varisble of integraticn Incresses the integrand in the quantities

Ot and P, decresses as O ﬂ-’T) and O —— g respectively. This decrease of the functions
in the integrend leads to the fact that as the indices inersase the guanticies Qm and F..'*

EI.EI:IEE.EEE as

Ll [ : ]; P wen o |: v 1)

feme ;\:, s II:.F:FH:IIW I:km} 2

From hare 1t may be congluded rhat the integrals in the quantities i.?m can be evaluated,
for exsmple, by Simpsen's mathod. As regards the integrals In F 12, to ehbtain reliable numeri-

cal results the conwvergsnce of the integrand ouwet be lmprowved. 'I'he simplest way eco de this 1s
to subtraet and add the ssyvmprotic form nf the Integrand. i2
We note hete that the aayaproblc behaviar {153} of the marceix elements Pkm gnd the estl-

.mata tE che -n_crm oF the cperators generated by these watrices (see {14}) enabled us te draw two
very important conclusicns. First, this aspproach does not cnable one to pass conrinucusly’ from:"
the polygon to a flat ribbon, i.e., for example, the height of the recranple @, <annat be made

ta spprosch zers, since the norm of the operator [|Pul increases in an unbounded fashion {es
followe from (143}, The transfer to a ribbon and to other ribbon structures can be made as indi-
cated im Sec. 5. Second, 1t is impossible ee Join infinitely thin ribbens without changing the
conditions on the edge (at the joining point), since if we set v = L/2 in the SLAE (11}, the
QpECALeT -‘3‘2 will not he completely continuous.

4 package of ALGOL-GDR programs has been developed for the BESM-6 computer, The results
ptesented belew wars obtained using these programs.

Based on the coefficients {.r... Ymei found from the SLAE {12} the surface current densities
ware calculated using Eq. (%), while the total scaktbering cross geetion and the DF of the
acarrered Field were determined from the formulas

o = —-%—P.e O,

D {p)m=— %—Z g; zin{p—g ) exp[ikr,; chs gy ]

b 4

X{E ot {q ¢l [C’ K= cos(y—gqy) | —C. K {coalg—q,) }+
1 COE )

2= c o .f,.‘w.-.-_l::Balw f'[li-{l'»r}:'
+1‘[~-:—‘;='=§m'° [Ze.coz(g—g,) " ]}
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Fig. 2. DLstribution of the currentc density function

Imsin)f—z on the faces of a square ¢ylinder for different
values of & = ka; the radiation pactern of the field for
ﬂn m 40° (rhe solid line) and 43" (rha dashed line},

which can ba derived using the expressioa for the scatraered fields in the far zone and the apti-
tal theorem [12]. Figure 2 shows the distribution of the curface ecurrent densities on the Eaces
af the cylinder with a square cross section for different values oF Ehe Erequency pATAMELET £ =
= ka and angle of incidence f,. One can see from thesa figures that For @ normally incident
VEVE {ﬂu = 90%) the smplitude of the currént en the faces in the region of the shade i3 much

smaller than the illumlnated replon, and as & increases in the shaded region the number of cscil-

lations of the current increases appreciably. Fer an angle of incidence ﬁﬂ = 45 the two lateral

boundaries of the cylinder are i1lluminated unifermly, so that the amplitudes of the currents an
them 2re appreciably higher than those of the currents on the unilluminated faces. This eur-
teat distributivn leads te the appearance in the radiation pattern of the sideloba fields
{see Fig. 2), comparsble with the main and shade-forming lobes. The radlarion pattern for

ﬁG ™ 90° and ke » | is reminiscent of rha radfation pattern of a flat ribbon (the frregularity

of the radlation pattern near zero is associated with the effect of rha side boundaries), whila
Far ka < 1 it 1s reminizcent of the radiation pattera of & circular cylinder.

Flgure 3 shows the current distributlon and the radiatilon pattern of the £isld for a cylin-
der with a Bquare cross section with %o = Zm. The DP of the field for cylinders wirh a rec-

tangular cross section for different values of kal and % are presented in Fig. &. Wote chat

the radiarien pattara of the fialds 4n Fig. 3 is idencieal, eo within grephical accuracy, with
the radiacion pattern presented in [7].
Table 1 gives the values of EEH Eor differeat walvues of kg apnd &0, Figure 5 shows, as an

##ample, the freguency dependences of DEH for a flar ribbon resonator for § = h/az = 0.5 and 1

2% well as the radiation pactern and che current distributions or ribbons. These resules mgree
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2 a b

Fiz. 3. Square ecylinder with the wave size ka = Im;
a) radiarion pattern of the field; b) distributicn of the
current densiry functien for ﬁu = 90° {the solid line)} and

45° {the dashed 1line}.

Fig. %. Radiation pattern of tha field for a rectangular
eylinder for different values of Ra and ﬁﬂ: a] kal = 4 for

B = 0 (rhe eolid line), 30° (the dashed line), aud 60°

{the dot-dash line); b) Ral = 3 for ﬁu m O {the solid

- © 1ine} and 45° (the dashed 1ine].

|1zt
=

Fig. 5. Frequency dependences of the toial transverse
cross saction o.M4e For f=fja=05 and 1, and also the dis-
tripucion functilen of the current deaslty |g;imilizy; on the

surface of the resenator ribbons and the radlation pattern
of the filald for ke =nf2, & = 1, ﬂﬂ = q0°,
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coppletely with the data of [17]. As follows Efrom Fiz. 5, the dependedces of EEH oo kz have a

resonance form. The resonance are assoclated wich the excitation of guasicharecteristic cscil-
lations of the tibbon resonator [17].

In conplusfion we note that tha proposed method has alsp been employed to salve the problems

of diffraction by polygonal cylinders with a more complicated transverse cross section [18, 19].

10.
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We thank Professer A.5. Ll'inskiy, for discussing the results and for valuable remarks.
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