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An efficient method of solution for problem of wave diffraction by a set of perfectly conducting
flat strips is presented, where both E- and H-polarizations are treated. By using a spectral
approach, the problem is reduced to a system of linear algebraic equations for the unknown Fourier
coefficients of the current density function. A truncation of the infinite system of equations can yield
the solution with any desired accuracy. Numerical results are presented for total cross sections of
a single strip and strip resonators. By detailed examinations of the convergence in numerical
computations, the criteria for truncation size are established. The limitation of this method on the

strip width is also revealed.
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1. Introduction

It is important to develop an accurate and.

efficient numerical algorithm for the wave
diffraction problems by conducting flat strips,
because it is a canonical problems of practical
structures such as resonators, reflectors, or
polygonal cylinders.

At low frequencies the wave diffraction by a strip
is analyzed easily, and this had been the problem in
the 1930s when computers were unavailable. For
large scatterers compared with the vw‘ravelength,
simple solutions based on Kirchhoff’s method or
GTD are applicable. In the resonance region (strip
width~0.5—5.04, A: wavelength), however, we
must rely on numerical techniques.

One of the powerful tools is the spectral domain
approach that employs Weber-Schafheitlin discon-
tinuous integral, and it has been applied to the strip/
slot problems"~, These are, however, restricted to
the case of a single strip/slot. The present authors
recently made an analysis of the diffraction by
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polygonal cylinders®, which includes mutual inter-
actions among different facets, and hence, becomes
an extension of Refs(1)~(3) (note that Ref. (4)
used different forms of basis functions from the
others]. This approach regards each facet as a flat
plate, and introduces correct wedge singularities of
an induced current, choosing the weighted
Gegenbauer polynomials as the bases. Whereas, in
the papers above®~®, no detailed discussion is
given for the relation between the errors and the
amount of computational labor.

In the present paper, we will focus our attention
only to the configulations constructed by separated
strips, which are special cases of Ref. (5). The
analysis is then projected on the framework of a set
of Chebyshev polynomials. This paper considers
both polarizations, although Ref. (5) treated only
the case of H-waves. The objectives of this paper
are

(i) toextend Refs (1)~(3) to a set of strips,

taking the multiple scattering among strip
conductors into account,



(ii)" to construct the criteria for the truncation
size in numerical computations, and

(jiii) to reveal the limitation on the strip size.
We use the Fourier transform to the unknown
current density, which is expanded in terms of
Chebyshev polynomials. Then the problem is
reduced to the system of linear algebraic equations
for the Fourier coefficients of the current. The solu-
tion of the linear equations can be obtained by
truncation with any desired accuracy. Numerical
results are presented for total cross sections of a
single strip and strip resonators.

2. Formulation of the problem

The strips are flat, negligibly thin, and uniform in
the z direction. We number them as p=1,2,**,N.
Fig. 1 shows the cross sections of representative two
strips. Let us denote the center of p-th strip by (xp0,
ypo) OF (7p0,@p0) in the fixed coordinate system, and
also by (7pe,9pq) in the relative system with regard
to g-th strip. We introduce the local coordinates

Tp

T )

where the angle @, is measured counterclockwise
from # to &» (the hat denotes a unit vector). The
p-th strip lies in —ap<xp< a@p, yp=0. We assume that
the strip conductors do not intersect each other.

Let us derive the integral equations for the sur-
face current density induced on the strips. We divide
the total electromagnetic field as
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Fig.1. Cross-sectional view of a set of flat
strips and coordinate systems.
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Hee=Hi+H, (H-wave)
where the superscript ¢ denotes the incident plane
wave, and the components without superscript are
the scattered fields that are radiated from the cur-
rent on the strip. With time dependence e™™
assumed, the incident field is written as

E}[ ;Hz’] - eik(l‘ao+ym)
where k=w/eu=27/A ¢=yule, and a= cos @:
(g:: incident angle). Then our objective is to deter-
mine E: and H: which satisfy

(i) Helmbholtz’s equation,
(ii) Sommerfeld’s radiation condition at
infinity,
(iii) Boundary conditions on the strips, and
(iv) Meixner’s edge condition.
Employing the conditions (i), (i) and Green’s
formulas, we can express the scattered fields as

EAr)=— z'kqf::laq [ iié"’(v)G(r,rq(rz))dv

............

..................

................................. (5)
EHAr)= 3 aq [ 1(2) 5= G(r,ro(n))dy
................................. (6)

where r=xi+yj, rdn)==xa+y«i+adies, 1=
Zq/aq, and the surface current density and Green's
function are defined by

Az + 5 (n)Ee=

G(r,r)=(i/)H"(klr—r')
(HE(z) : Hankel function). Using the integral rep-
resentation of the Hankel function, we have

N o __
B =12 [ 7@
X eih(zqnﬂyqlﬁfif)da/ /1_02 «(9)

. N .
(Hr) =~ Ssen(v) [ 7@
X eik(I¢ﬂ+|1lq|/1——7r)da

X CH(N( 77))]!/q=—0

......

............

where the Fourier transform pair has been
introduced by (x¢=kaq; w=2,7)

(4)(0,) xqf ](Q)(”)e—quﬂdﬂ

(q)(”)______f ] (q)(a)eixqavda

Strictly speaking we must consider the a planes of
the same number as the strips, because the Fourier
transform axes generally intersect each other. In the

.........
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present paper, however, we will make formal discus-
sions, assuming the possibility of the linear superpo-
sition of the Fourier image of the current by the use
of only one variable a as Eqs (9) and (10).
Substituting the expressions of the total field into
the boundary conditions (iii) (the Dirichlet and
Neumann conditions for E- and H-waves, respec-
- tively) and taking the absence of current outside the
strips into account, we get the system of dual inte-
gral equations (p==1,2,---,N)

T wpan___dQ__
L Gt

. N ® - N
= -47re""‘”’— Zlf 7 ;q)(a)ezqu(a,n)
= - 00
by

da

X /1—_? (I2l<1)
[ 7e@)e e da=0 (I71>D)]
................................. (12)

[C 7o/ T=e o da ]

=—47e"*Msin (pp— @;)

N N )
- quf 75 a)Spola,@p)e 74P dy
by A

(In1<1)
(I71>1)

/ ] (P)(a)eixpaﬂda=0

where

Ap(7)=krpo cos (ppo— @:) + xp7 cos(pp— @:)

................................. (14)
Bpo(a,7)=kroaCha(@;@pe) + x57Cpal @, @»)
................................. (15)
Crol@,0)=cos(p— pq)a+ sy, sin(p—o,)
N T ST PR (16)
Sra(@,9)=—$pq sin (p— @q)a-+cos(p— ¢q)
Xofl1— @7 ceeeevereoriiioncnnnnns a7

with the notation spe=sgn(sin(gs;— @4)). The rela-
tion spe=1(—1) means that the p-th strip lies in the
upper (lower) half side of the xqy, plane. For conve-
nience of notations, we have assumed that the p-th
strip does not cross the x, axes (g=+p). It is possible
to remove this limitation (T-shaped geometry for
example), but in this case the expressions of Eqgs
(14) ~(17) become much complicated. Note that the
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second term in the right hand side of Eqs (12) and
(13) for |p|<1 describes the mutual interactions
among strips.

3. Solution of integral equations

Taking Meixner’s edge condition (iv) into
account, we expand the unknown functions as

(q)(v) El(q)Tm(ﬂ)/ /1_,72 ......... (18)
79 = 2]“”(]»:—1(77) /1— Plevernenenens 19)

where the bases are Chebyshev polynomials
Tmlcos 8)=cos(m8) } '''''' 20)
Un(cos 8)=sin{(m+1)8)/sin 6

Fourier transforms of Eqs (18) and (19) are

TEa)=xam 3 (~ i) (xe@) -+ (21)

“”(a)— s 2 (= )" "D T m(xa@) -~ (22)

where J.(x) is a Bassel function.

We substitute Egs (21) and (22) into Eqs (12) and
(13) for |7l<1, and employ the Chebyshev polyno-
mials as weighting functions. Thus we have the
system of linear algebraic equations

N o
qgmgo( — i)npg’gpv)j‘(?g) e Qﬁ(l’)

(p—lZ---N'm=0,1,---) ............ (23)
2 2(_,)n 1 PP [0 — OH®P)
(p=1,2,* N ; m=1,2,+) werrreeeees (24)

where

E(pq) _ -1 [ ikroaCoota,vpa)
Pry Xq 2)[;: e

X Jn(xoCoal @, 00)) Jn(xqa) W

Pg’gpq)=L f ¥ o#TraCoala,@pa) Seql@, @)
2 /e Croa,pp)a

X Im(xpCpa( @, 0)) Jn(xea)da

Q"’ll(!’)= i ZRU(P)eikTpo cos(Ppo—@r)

X]m(Zp COS(¢p o %)) ............ (27)
with R¥"=x;" and R"®=tan(g,— ¢:).
Employing the property of Weber-Schafheitlin
discontinuous integral, we can confirm that Eqs (12)
and (13) for |7|>1 are automatically satisfied. Note
that the present solution becomes identical to those



of Refs (1)~(3) if we set N=1inEqs (5)~(27).

4. Evaluation of integrals

The evaluation methods of the integrals in Eqs
(25) and (26) are summarized below.

4.1 Analytical treatment when p=gq

The parity of the integrand leads us to

Pgr(zpp)‘—’l:wfm(xpa)]n(xpa)“/_ld%—a{ ...... (28)

pi = l w] n(xpa)] n(xpa)—az—'l_azda

if m+n is even, and they are zero if m+n is odd.
We divide the contour into two parts (0,1) and
(1,00), and apply the formulas given in Refs (6)
and (1) to the respective parts. Then we have

m+n oo
RePuph = ?fif" z=o[‘%"‘x'2’l ............... (30)
wpp) — 1 _(m+n)/2—1 " 2
Im Py m[ 2 Tanuxi
B Pl 2] oo (BD)
where &£=1, £¢¥=—1 and
0, fi) ( L) m_+71_>
rw=r(1+5)r(1+3 (2 0/
[1’(%*—”—+1+1)1‘(ﬂ;—”+1+1>

X]ﬂ<lz%iﬁi4-l4_1 ...............

)

Eu)
2 2
m n

e d)/

(r{d+1)r(m+I1+1)rn+1+1)
xI'm+n+{+1))

2 log 2o+ ¢(mT+"+1+§21)

f,';m=(—1)’r<

=

¢

m+n

+‘/’< )

—g(I+1)—d(m+1+1)—g(n+1+1)
—¢(m+n+1+1)
with a gamma function I'(z) and a digamma func-
tion ¢(x)=1"(x)/[(x).
4.2 Numerical treatment when p+g¢
Because we cannot generally reduce Eqgs (25) and
(26) to closed forms, numerical evaluations are
required. We first introduce the changes of variables

+1+1)
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a=cos 6 and a=cosh 8 for |a|<1 and |a} >1, respec-
tively. This cancels the singularities of the inte-
grand at |o]=1. Moreover the decrement of the
integrand as |a]— oo becomes a doubly exponential
type. This enables us to employ numerical qua-
drature formulas, after truncating the infinite con-
tour by a finite one.

5. Far scattered field

Let us introduce the cylindrical coordinate system
(7,9) by the relations x=7 cos ¢ and y=7 sin ¢.
Substituting the asymptotic expression of the
Hankel function into Egs (5) and (6), one can
write the far field in the form

EtH) ~ V2] (rkr) ¢*" ™% QEH)(p)

(r_, oo) ........................ (35)
where the pattern functions are written as
N <« .
05 (9)="2 33 10 22 ™88 T ma( ) oo+ (36)
4 &7 7
H & o im—1
0"(p)=— 2 tan(p—@a) 2j""'m
q=1 m=1
NGB T oma( @) weevenreeenereessenns (37)

With J mq(g)=e™#"ee s =90 (), cos(@— @q)). The
total scattering cross section is obtained from

2
or=2ak)" [ 105 (p)Pdp

The error on the optical theorem is defined by
eopt=2|61'_ 5T|/|O'T+ &Tl
where 6r=—(4/k)Re®(p;).

6. Numerical results

6.1 Convergence and accuracy

Let us confirm the convergence and accuracy of
the method by examining the total scattering cross
section for a single strip (N=1,710=¢p1=0) at nor-
mal incidence (g:=n/2). We will construct the
criteria for the truncation size, referring Tables 1
and 2. For Eqs (23) and (24) the equations and
terms are retained up to m,n=M, and for Egs (30)
and (31) up to /=L. Unless stated, the computation
is done by the use of the double precision (16-digit
in Fortran).

Table 1 tells us how to choose the proper number
M. As M increases, the cross sections approach the
exact values?” for ka;=4 and 8, and becomes stable
up to 5-6 decimal places for ka1=12. For a fixed
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Table 1.- Convergence of the total scattering
. cross section for a single strip at normal in-
cidence. Dependence on M.

(a) E-wave
or/(4ar)
M
kay=4 kay=8 kay=12
2 0.994642 1.004148 1.009558
4 0.998949 0.998871 1.003111
6 0.998956 0.999824 1.000627
8 0.998956 0.999763 1.000647
10 0.998956 0.999756 1.000180
12 0.998956 0.999756 1.000123
14 0.998956 0.999756 1.000121
16 0.998956 0.999756 1.000121
18 0.998956 0.999756 1.000121
exact” 0.99896 0.99976 ==
(b) H-wave
0'1‘/(4 al)
M
kay=4 kay=8 kar=12
2 0.997822 0.947193 0.935853
4 0.931685 1.023672 1.000852
6 0.942217 0.985744 1.015425
8 0.942435 1.019783 0.990447
10 0.942436 1.023231 1.009241
12 0.942436 1.023318 1.006758
14 0.942436 1.023319 1.004605
16 0.942436 1.023319 1.004399
18 0.942436 1.023319 1.004391
exact® 0.94244 1.02332 =

accuracy, wider strips require larger numbers of M.
To achieve the convergence up to 5-6 decimal
places, it is sufficient to set M=[ka)+4 ((x]): the
greatest integer not exceeding x).

Table 2 is employed to determine the number L.
We introduce the relative value L(=L/(kai+1)),
because larger L is desired as ka: increases. The
cross section and the error on the optical theorem
become stable when we choose =3 and 4, respec-
tively. From this we can conclude setting L=4({ka:
+1)) is sufficient.

Next we discuss the limitation of the method on
the strip size in Fig. 2. The notation sng. means that
summing in Eqs (30) and (31) was done by the
single precision (7-digit). Following the above
criteria on M and L, we plotted the error on the
optical theorem. The errors are sensitive to the
number of digits, because the evaluations of
the alternating series in Eqs (30) and (31) are
accompanied by subtractive cancellations. If we set
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Table2. Convergence of the total scattering
cross section for a single strip at normal
incidence. Dependence on L (= L/(ka:+1)).

(a) E-wave

kar=4 ka,=8
L
or/(4ar) Eopt or/(dar) Eopt
2 0.996276 1.3x10°2 0.695261 1.7x10°!
3 0.998056 | 3.4x10° | 0.999756 | 8.6x10°"
4 0.998956 3.1x10°12 0.999756 2.8X10°°
5 0.998956 3.1%x10°12 0.999756 2.8x10°1°
exact® | 0.99896 - 0.99976 -
(b) H-wave
kai=4 kay=8
i
: or/(dar) Eopt or/{dar) Eopt
2 0.942433 1.1Xx10- 1.023256 3.1X10°%
3 0.942435 4.3x10°12 1.023318 2.9x10-%2
4 0.942435 3.2x10-12 1.023318 2.9X10-'2
5 0.942435 3.2x10-12 1.023318 2.9%10*
exact® 0.94244 - 1.02332 —
10—
101
1 L. )
S
. promomfmfmmmaf e
w
01t
001+
0001 |
2 6 10 14 18 22
ka1

Fig.2. Comparison of the error on the
optical theorem between the single (sng.)
and double (dbl.) precision calculations.

the permissible error at 0.1% (3 significant figures),
ka1 <16(<20) must be hold for E- and (H-) waves.
These maximum widths are reduced by half in the
sng. results. ‘

We further compared with the tables in Ref. (2)
(ka1<5; normal and oblique incidence) and Ref.
(3) (ka1<16; normal incidence). Because the ana-
lyses are equivalent, agreement must be complete.
Whereas, in some data, slight discrepancies (less
than 3) were observed at the last figure. As regards
Ref. (4), infinite integrals concern the spherical



Bessel functions (due to the different bases), and
then require numerical quadratures. The present ap-
proach is therefore more advantageous than Ref, (4 )
from the viewpoint of CPU time. The merit of Ref.
(4) is the applicability to wider strips (ka:<10x).

6.2 Strip resonators

Fig. 3 shows the frequency dependence of the total
scattering cross section for a parallel strip
resonator. The resonances concern the excitations
of quasi-natural oscillations : the first peak at ka, =
1.2=x/2 (the second peak at kz1=3.3=nx) corre-
sponds to the resonance between the open ends
(between the strip walls).

Similar characteristics for a square strip
resonator are shown in Fig. 4. The resonance
property is prominent especially for narrow slots.

2Cl|

to

3

Fig.3. Frequency dependence of the total
scattering cross section for a parallel strip
resonator at H-wave incidence. ‘
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Fig.4. Frequency dependence of the total
scattering cross section for a square strip
resonator at H-wave incidence.
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Let us discuss the solid line (a:/a=0.9) for example.
The first peak at kz=0.8=7/(2/2) is due to the
renonance between the diagonal slots. Besides, near
the second peak at kz=1.9= #/2, the field formation
is close to one of the internal eigenmodes of the
closed (a X a) waveguide.

7. Conclusion

We have developed a powerful approach to the
wave diffraction problems by a set of perfectly
conducting flat strips. By examining the accuracy of
the numerical solution for a single strip, the criteria
for truncation sizes have been established. We found
that the number of significant figures for the far field
is more than 3 if the strip is narrower than 54
(A: wavelength), which means the method covers
the resonance region. We furthermore carried out
computations for some strip resonators, and showed
their physical properties.

We can extend this method to smoothly curved
strips. Nevertheless, we have no proof yet with
regard to the possibility of the linear operation of
the Fourier images, which was assumed in the spec-
tral representation of the scattered fields. This is the
future problem.

(Manuscript received July 22, 92,

revised Dec. 28, ’92)
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