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1. Introduction

The scattering from imperfectly conducting and absorbing strips is an important subject in antenna and
radar cross section (RCS) studies since this geometry serves as a suitable model of finite metal-backed
dielectric layers and dielectric-coated wires. The diffraction by strips with impedance and related ap-
proximate boundary conditions has been investigated thus far using function-theoretic and high-frequency
methods [1-3]. In Part I [4] of this two-part paper, we have considered a two-dimensional (2-D) strip
with different impedances on its two surfaces, and solved the E-polarized plane wave diffraction rigorously
using the analytical-numerical approach [5]. This approach is based on the orthogonal polynomial expan-
sion in conjunction with the Fourier transform, and is different from the methods employed previously for
analyzing scattering problems related to the impedance strip. In this second part, we shall analyze the
diffraction problem involving the same impedance strip as in [4] for the H-polarized plane wave incidence
by means of the analytical-numerical approach.

Applying the boundary condition to an integral representation of the scattered field, the problem is
formulated in terms of simultaneous integral equations satisfied by the current density functions. The
integral equations are reduced to two infinite systems of linear algebraic equations (SLAE) using a method
similar to that employed for the E-polarized case [4], which are solved numerically with high accuracy
via a truncation procedure. Physical quantities are then expressed in terms of the solution of the SLAE.
Illustrative numerical examples on the monostatic and bistatic RCS are presented, and the far field
scattering characteristics are discussed. Some comparisons with Tiberio et al. [3] are given to validate
the present method.

In the following, we shall use abbreviated citation of equations in Part I such as (I.1) if necessary,
where the prefix I and the second number in the parentheses denote Part I and the equation number,
respectivery. The time factor is assumed to be e~*** and suppressed throughout this paper.

2. Formulation of the Problem

We consider a 2-D impedance strip of zero thickness illuminated by an H-polarized plane wave, as shown
in Fig. 1, where ¢; and {; denote the normalized impedance of the upper and lower surfaces of the strip,
respectively. Let the total magnetic field be
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is the incident field for 0 < 8 < 7 with k = w,/fig€; being the free-space wavenumber. The total field
satisfies the boundary condition
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Fig. 1. Geometry of the problem.
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for |z| < a. The scattered field H3(z,y) in (1) has the integral representation

H;(z,y) = -ji' ‘/:‘ {fl () + fz(ﬂ:')%} Hél) (k\/ (z—2z')2 +9?)da’ (4)

with H,(,l)(-) being the Hankel function of the first kind, where f1(z) and f2(z) are the unknown magnetic
and electric current density functions, respectively, which are defined by
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Taking into account the boundary condition as given by (3), it follows from (1), (2), and (4) that
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Equations (6a,b) are the integral equations satisfied by the current density functions.

3. Solution of the Integral Equations

We take the finite Fourier transform of (6a,b) with respect to z over the range |z| < a and arrange the
results with the aid of the Fourier integral representation of the Hankel function. This leads to
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with k = ka, where F} 3(a) denote the finite Fourier transforms of f;;(z) in (5) (see (1.9)). As in the
E-polarized case [4], f1,2(z) are expanded into the infinite series
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with f12 for n = 0,1,2,-- being unknown coefficients, where T},(-) and U,(-) denote the Chebyshev
polynomial of the first and second kinds, respectively. We now substitute (9) into (8a,b) and arrange the
results. This leads to the two infinite systems of linear algebraic equations (SLAE) as in
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In (10a,b), the coefficients Ym, bmn, ¢mn, d%,,, and dl,. are defined by (1.13), (I.14a,b), and (I.15a,b).
The unknowns z1? can be determined by solving (10a,b) numerically via a truncation procedure.

4. Scattered Far Field
Taking into account the asymptotic expansion of the Hankel function, we find from (4) that

B(r,9) ~ | e ™ 00(g),  kr — o0 (12)

with (r, ¢) being the cylindrical coordinate defined by = = rcosé, y = rsin¢ for —7 < ¢ < m, where
®(¢) is the pattern function expressed in terms of the coefficients z12 as follows:

o(¢) = "‘541 z zpJa(k cos ) + %tancﬁ Z 22 Jni1(K cos @). (13)
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Physical quantities are therefore computed by using (13).
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5. Numerical Results and Discussion

We shall now discuss the far field scattering characteristics of the strip based on numerical examples
of the RCS. Figure 2 shows the monostatic RCS as a function of incidence angle ¢ for ka = 5.0,15.0,
where the surface impedances (1 and (; have been chosen to be the same as in the E-polarized case [4],
namely, (¢1,¢z) = (0.0,0.0), (1.5,3.0), (1.5,1.5), (3.0,3.0). Here (1,2 = 0.0 implies the case of a perfectly
conducting strip. Comparing the results between the impedance and perfectly conducting strips, the
RCS reduction is observed except near § = 0° for the impedance case. In view of the three curves for the
impedance strip, the RCS characteristics for the strip with different surface impedances are close to the
results for the same impedance case with ¢; 2 = 1.5 over 30° < § < 90° and to those with {; 5 = 3.0 over
-90° < @ < —30°. It is therefore inferred that the difference on the surface impedance in the shadow
region does not affect the backscattered far field except near the grazing incidence. We have presented in
Fig. 3 the bistatic RCS as a function of observation angle ¢ for § = 60° and ka = 5.0, 15.0. It is seen that
the RCS of the impedance strip is lower than the perfectly conducting case for —40° < 8 < 170° with
6 % 0°, whereas the results for both the perfectly conducting and impedance strips show close features
in the neighborhood of the incident shadow boundary (¢ = —120°). Figure 4 illustrates comparison with
the results obtained by Tiberio et al. [3] using the geometrical theory of diffraction (GTD) together
with the Maliuzhinetz method, where the bistatic RCS is shown as a function of observation angle ¢ for
0 = 180°, ka = 10.0, and (¢1,¢2) = (4.0,0.0). We see from the figure that our RCS results agree quite
well with the results presented in {3].
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0 and its comparison with Tiberio et al. [3].
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