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Quantized dynamics of a coherent capacitor
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A quantum coherent capacitor subject to large amplitude pulse cycles can be made to emit or
reabsorb an electron in each half cycle. Quantized currents with pulse cycles in the GHz range
have been demonstrated experimentally. We develop a non-linear dynamical scattering theory for
arbitrary pulses to describe the properties of this very fast single electron source. Using our theory
we analyze the accuracy of the current quantization and investigate the noise of such a source. Our
results are important for future scientific and possible metrological applications of this source.

PACS numbers: 72.10.-d, 73.23.-b

Introduction.– Recent experiments have demonstrated
two quantization phenomena in mesoscopic capacitors
[1, 2]. The capacitor consists of a quantum dot which
can exchange carriers only via one quantum point con-
tact with an electron reservoir. Transport is induced by
varying the voltage at a gate to which the dot is coupled
capacitively (Fig.1). The first quantization phenomenon
is observed in the charge relaxation resistance Rq which
together with the capacitance determines the RC-time.
For small amplitude, sinusoidal voltages, the experiment
of Gabelli et al.[1] confirmed an earlier prediction [3] and
demonstrated a charge relaxation resistance Rq quan-
tized at half a resistance quantum. A necessary condition
is a contact which permits transmission of a single (spin
polarized) quantum channel. As long as electron motion
in the dot is coherent, the quantization of Rq holds for
arbitrary values of the transmission probability. This is
remarkable. Whereas the quantization of the Hall resis-
tance both in the integer [4] and fractional [5] quantized
Hall effect, as well as the quantization of conductance
in a ballistic contact [6] are due to perfect chiral trans-
mission channels for which back scattering is suppressed
[7], the quantization of the charge relaxation resistance
has an entirely different origin. It is due to the fact that
the mean square dwell time of a single scattering chan-
nel is equal to the square of the mean dwell time [8].
This equality holds independently of the degree of back
scattering in the channel and is valid in the presence of
interactions [9]. At frequencies larger than the inverse
RC-time, the capacitor can respond inductively [10, 11].

In a subsequent experiment Fève et al. [2] revealed a
second quantization effect. They subjected the capaci-
tor to square pulses with amplitudes sufficiently large to
drive a level of the capacitor through the Fermi energy. In
this non-linear regime, for an appropriate pulse voltage,
it was found that during the first half cycle an electron
is emitted from the capacitor and during the second half
cycle of the pulse an electron is reabsorbed. As a con-
sequence the first Fourier component of the alternating
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FIG. 1: (Color online) Inset: Quantum capacitor of Ref.[1, 2].
Electron motion is along an edge state. Transmission through
the QPC is shown as a dashed line. The hatched rectangle is
a back-gate inducing the potential U(t). Main: The charge
Q (red solid line) emitted for half of a period as a function
of the (large) amplitude of a slow excitation voltage U(t) =
U1 cos(Ωt). The black dashed line is the charge calculated
using only the first harmonic of the current. Parameters are:
kBθ = 0, T = 0.1. At U1 = 0 the Fermi energy coincides with
one of the energy levels of the dot.

current is quantized and given by

Iω = 2 e f (1)

with f = 1/T where T is the duration of the pulse.
Amazingly the quantized current was observed for fre-
quencies in the GHz range and is thus large (of the order
of several hundred pA). Such a fast quantized electron
source might be useful in testing systems against the ad-
dition or removal of a single electron. It might be useful
for metrological purposes [12, 13] and it might be inter-
esting for quantum computation schemes that use single
electrons generated on demand similar to linear optical
quantum computation schemes [14].

Model.– Quantization phenomena, especially in elec-
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trical transport [4, 5, 6] play an important role even be-
yond the purely scientific domain. It is thus desirable to
provide a theoretical understanding of the novel quan-
tization phenomena revealed by the recent experiments
[1, 2]. The quantized current, Eq.(1) is obtained for a
large amplitude voltage pulse. The theoretical challenge
is thus to provide a treatment of the non-linear dynam-
ical response of a quantum coherent capacitor. Below
we present such a treatment for a model [1, 2, 15] con-
sisting of a single circular edge state of circumference L
coupled via a quantum point contact (QPC) to an edge
state which is connected to a reservoir of electrons with
temperature θ and the Fermi energy µ, see inset of Fig.1.
A periodic in time potential U(t) = U(t + T ) is applied
uniformly over the quantum dot. We determine the non-
linear alternating current I(t) = I(t + T ).

We use the Floquet scattering matrix approach of
Ref.[16] for noninteracting electrons which has proved
useful to treat the problem of quantum pumping [17].
The Floquet scattering matrix element SF (En, E) is an
amplitude for an electron which enters the conductor
with energy E and exits the conductor with n additional
modulation quanta n~Ω = En − E with Ω = 2π/T and
where T is the period of the time-dependent potential
U . For a time-independent potential, the relevant en-
ergy scale of our scattering problem is the level spacing
∆ = h/τ of the dot, with τ = L/vD being the time taken
by a carrier to drift with velocity vd along the full circle
of the edge state inside the quantum dot. In contrast,
the scattering amplitudes r and t̃ for reflection at the
QPC can be taken to be energy independent. Therefore,
we can distinguish adiabatic and non-adiabatic regimes
depending on whether Ωτ ≪ 1 or Ωτ ≫ 1.

Adiabatic current.– We first consider the adiabatic
regime, Ωτ ≪ 1, where a simple and physically intu-
itive expression for the current can be found, a detailed
derivation is presented below. We find that the time-
dependent current can be expressed in terms of the in-
stantaneous density of states ν(t, E) = ν0(E − eU(t))
with ν0(E) = 1/(2πi)S⋆

0(E)∂S0/∂E being the density of
states and S0(E) being the scattering matrix of a sta-
tionary dot. Thus ν(t, E) is the density of states frozen
at time t. The current is the sum of a capacitive Ic and
dissipative Id contribution simply given by,

Ic(t) = e2
∫

dE
(

−∂f0

∂E

)

ν(t, E)∂U
∂t ,

Id(t) = −e2
∫

dE
(

−∂f0

∂E

)

h
2

∂
∂t

[

ν2(t, E)∂U
∂t

]

.

(2)

Here f0(E) is the Fermi distribution function. Terms of
order [Ωτ ]3 and higher are neglected. Importantly, using
the general adiabatic expansion for the Floquet scatter-
ing matrix [18], one can show that Eq.(2) remains valid
for an arbitrary spectrum of a capacitor. Eq. (2) is the
main result of the paper.

To gain insight into Eq. (2) we introduce a simple
electrical circuit to model our system. It is a capacitor
and a resistor coupled in series and subject to a volt-
age U(t). Generally such a circuit is a non-linear one.
Therefore, it is convenient to introduce a differential ca-
pacitance C∂ = ∂Q/∂UC (where Q is a charge and UC

is the voltage on the capacitor) and a differential resis-
tance R∂ = ∂UR/∂I (where UR = U − UC is the voltage
drop on the resistor). Then the low frequency current in
this circuit is: I(t) = C∂∂U/∂t − R∂C∂∂[C∂∂U/∂t]/∂t.
Comparing it with Eq. (2) we find:

C∂(t) = e2
∫

dE
(

−∂f0

∂E

)

ν(t, E),

R∂(t) = h
2e2

∫

dE
(

−∂f0

∂E

)

∂
∂t

[

ν2(t, E)∂U
∂t

]

×
{

∫

dE
(

−∂f0

∂E

)

ν(t, E)
∫

dE
(

−∂f0

∂E

)

∂
∂t

[

ν(t, E)∂U
∂t

]

}−1

.

(3)
These time-dependent quantities generalize the linear re-
sponse capacitance Cq and charge relaxation resistance
Rq of a mesoscopic capacitor introduced in Ref. [3] and
experimentally investigated in Ref. [1], to the non-linear
regime. Thus, in the non-linear regime, the frozen den-
sity of states ν(t, E) defines a differential capacitance in
the same way as the stationary density of states ν0(E) de-
fines a quantum capacitance: C∂(t) = Cq(t). In contrast,
the non-linear differential resistance can not be simply re-
lated to a linear response one: R∂(t) 6= Rq(t). However,
as will be shown below, the noise generated is propor-
tional to Rq(t) rather than R∂ .

Eq. (2) allows us to analyze the general conditions for
the appearance of a quantized alternating current. This
current corresponds to emission (absorption) of an inte-
ger number of electrons for half of a period when the
driving voltage changes from a minimal Umin to a maxi-
mal Umax value. To find the charge Q flowing out of the
capacitor we integrate Eq. (2) over half of a period and
find to leading order in Ω:

Q = Qd(Umin) − Qd(Umax) + O(Ωτ), (4)

where Qd(U) = e
∫

dEf0(E)ν0(E − eU) is the charge of
the dot in a stationary potential U . Thus for slow driving
the emitted charge is directly related to the change of the
frozen charge on the dot. With increasing frequency this
relation breaks down. If the electron levels in the dot
have a small width and the temperature is low enough
then the emitted/absorbed charge is quantized in units
of e. The value of Q is proportional to the number of
electron levels which pass through the Fermi level when
the potential changes from Umin to Umax.

Turning to our dot model with an equidistant spec-
trum, the situation is even better. For a periodic density
of states, ν0(E) = ν0(E + ∆), we conclude from Eq. (4)
that the emitted charge is quantized, Q = en, if the
difference eδU = eUmax − eUmin is exactly equal to an
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integer number of level spacings, eδU = n∆. This holds
for arbitrary QPC transparency T and temperature θ.

As an illustration we calculate the charge Q emitted
for half of a period using Eq. (2) for a monochromatic ex-
citation U(t) = U1 cos(Ωt) and an equidistant spectrum
and plot the dependence Q(U1) in Fig. 1. In addition we
plot the corresponding amount of charge carried by the
first harmonic of the current. From Fig. 1 we can see
that the first harmonic of the current reflects correctly
the quantization of the emitted charge only within the
first plateau. At higher excitation amplitudes the higher
harmonics of the current need to be taken into account.

Importantly, the charge quantization is perfect at
eδU = n∆. However if the potential difference devi-
ates from this special value, eu = eδU − n∆ > 0, then
the deviation of the charge from the quantized value,
δQ = Q − en, will depend on both the transmission T
and the temperature kBθ.

For θ = 0 and T → 0 in the special case that
the Fermi level µ lies exactly in the middle between
two levels of a dot at U = Umin we find the plateau:
Q = e

[[

1
2 + eδU

∆

]]

, where [[X ]] is the integer part of
X . At small temperatures, kBθ ≪ ∆ we have δQ =
2eu/(kBθ) exp{−∆/(2kBθ)} at eu → 0. The violation
of charge quantization is exponentially small at low tem-
peratures unless we are at the transition point from one
plateau to another, δQ = ±1/2 at eu = ∆/2 ∓ 0. Note
to get δQ at eu → ∆ one needs to replace eu by eu−∆.

Next we consider the effect of a non-zero QPC trans-
mission probability on δQ at zero temperature. At T ≪ 1
the density of states for our model can be approximated
as a sum of Breit-Wigner resonances. Then we find at
eu → 0: δQ = Teu/(π2∆). In contrast to the temper-
ature, the effect of a finite QPC transmission is more
crucial, since δQ is linear in transmission T . Moreover,
strictly speaking, the condition for the low frequency
regime considered here is Ωτ ≪ T . Therefore, with de-
creasing transmission we have to decrease the driving fre-
quency to obtain charge quantization with a good accu-
racy. To avoid the competition between the operating
speed and the quantization accuracy one needs to tune
the driving amplitude eδU as close as possible to n∆.

General current expression.– We will now derive a
general expression for the time dependent current I(t),
valid for a pulse with arbitrary amplitude and frequency.
For this we need the Floquet scattering matrix for a
quantum dot subject to an arbitrary but periodic time
dependent U(t). It is useful to introduce the phase

Φq(t) = e
~

∫ t

t−qτ(E)
dt′U(t′) accumulated in the time in-

terval t, t− qτ it takes a carrier to execute q round trips.
This carrier, exiting at time t has entered the quantum
dot at time t − qτ . Thus we get,

Sin(t, E) = r + t̃2
∞
∑

q=1

rq−1ei{qϕ(E)−Φq(t)}, (5)

where the phase ϕ(E) = ϕ(µ) + τ~
−1(E − µ) with

τ = τ(µ). Note that this is a Fabry-Perot type scat-
tering matrix now including appropriate time-dependent
phases. The Floquet scattering matrix is obtained from
Sin(t, E) through a Fourier transform SF (En, E) =
∫ T

0
dt
T einΩtSin(t, E). In the stationary case, U(t) = const,

only the term with n = 0 remains. In this case we recover
the stationary scattering amplitude SF (E, E) = S0(E).

The current I(t) in terms of SF is presented in Ref. [19].
For the subsequent discussion it is convenient to write the
current, I(t) = I(l)(t) + I(nl)(t), as a sum of linear and
non-linear terms in U(t). Using Eq.(5) we get

I(l)(t) = e2

h T 2
∞
∑

q=1
Rq−1 {U(t) − U(t − qτ)} ,

I(nl)(t) = eT 2

πτ ℑ
∞
∑

p=1

∞
∑

q=1

1
pη

(

p θ
θ⋆

)

rpeipϕ(µ)Rq−1

×
(

e−iΦp(t−qτ) − e−iΦp(t)
)

.

(6)

Here R = |r|2 and T = |t̃|2 are the reflection and trans-
mission probabilities of the QPC, kBθ⋆ = ∆/(2π2) and
η(x) = x/ sinh(x). Taking the low frequency limit of
Eq. (6) we arrive at our main result Eq. (2).

Square pulse excitation.– With Eq. (6) we can now in-
vestigate the real-time response to a square pulse excita-
tion of duration T which is of much experimental inter-
est. Suppose that at the time t0 the potential changes
from zero to δU . This change occurs on a short time scale
δt ≪ τ . Therefore, it is an essentially non-adiabatic exci-
tation even if the pulse duration T ≫ τ . Experimentally
it was found for eδU = n∆ at low temperatures that the
current decays exponentially in time until the next po-
tential jump occurs [2]. The theory developed in Ref. [2]
for a square pulsed excitation gives a relaxation current
I(t) = q/τ̃e−(t−t0)/τ̃ with an initial charge q and a time
constant τ̃ . In the high temperature limit θ ≫ θ⋆ or for
the case eδU = n∆ these parameters are predicted to be
q = e2δU/∆ and τ̃ = (2 − T )h/(2T∆).

The calculations based on our general expression,
Eq. (6), show the following: At high temperatures I(nl)(t)
vanishes and we find (T > t − t0 > 0):

I(t) = e2δUTRN(t)/h, θ ≫ θ⋆, (7)

where the integer N(t) = [[(t − t0)/τ ]]. The current de-
creases with time in a step-like manner being constant
over a time interval τ . At t − t0 ≫ τ we can write
I(t) ∼ e−(t−t0)/τD with decay time τD = h/(∆ ln(1/R)).
This agrees well with Ref. [2] since τD ≈ τ̃ unless T ∼ 1.
Eq. (7) leads to an emitted charge: Q = e2δU/∆, i.e. at
high temperatures the emitted charge is not quantized.

In contrast, at low temperatures, Eq. (6) leads to a
quantized emitted charge. Its value depends on the po-
tential change δU in the same way as for a monochro-
matic excitation (see, Fig. 1). The part I(l) of the total
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FIG. 2: (Color online) The Fourier harmonics of the squared
frozen density of states {ν2(t, µ)}l in units of 1/∆2 calculated
at the Fermi energy as a function of U1 determine the noise
of the emitter. l = 0 (solid black line); 2 (dashed red line); 4
(dash-dotted blue line). For the parameters chosen (the same
as in Fig. 1) the odd harmonics are absent.

current remains the same for low and high temperatures.
Therefore, the contribution due to I(nl) is crucial for the
appearance of charge quantization at low temperatures.

Noise.– We next examine the noise of this fast elec-
tron emitter. For a periodically driven quantum con-
ductor the symmetrized correlation function P (ω, ω′) =
∑∞

l=−∞ 2πδ(ω+ω′− lΩ)Pl(ω) for currents at frequencies
ω and ω′ depends on both frequencies. The expression
for Pl(ω) in terms of the Floquet scattering matrix ele-
ments is presented in Ref. [19]. Using Eq. (5) we find for
Ωτ, ωτ ≪ 1 and at low temperatures, kBθ ≪ ~Ω, ~ω:

Pl(ω) = ω(ω − lΩ)
h2e2

4π

∞
∑

q=−∞

|(l − q)Ω − ω| νl−qνq, (8)

where νl−q and νq are Fourier coefficients of the frozen
density of states ν(t, E). At higher temperatures or at
high observation frequency we can represent the noise in
the form which is closely related to the noise of a capac-
itor in the linear response regime (see Ref [3]):

Pl(ω) = ω(ω − lΩ)
{

C2
q Rq

}

l







~|ω|, ~ω ≫ ~Ω, kBθ,

2kBθ, kBθ ≫ ~Ω, ~ω,

C2
q (t)Rq(t) = he2

2

∫

dE
(

−∂f0

∂E

)

ν2(t, E).

(9)
Notice that the quantity Rq(t) introduced above is dif-
ferent from R∂(t) given in Eq. (3). At zero temperature
Rq tends to its quantized linear response value h/2e2.

In Fig. 2 we plot several Fourier harmonics for the
squared density of states [which defines the noise power

Eq. (9)] as a function of the amplitude of a monochro-
matic potential for the same parameters as in Fig. 1. As
one can expect the noise power peaks at those amplitudes
which correspond to transitions from one plateau to an-
other. Correspondingly the noise power is minimal in the
region where the emitted/absorbed charge is quantized,
i.e., where the quantum dot emits electrons (holes) regu-
larly. For a regularly emitting source the zero-frequency
noise power is zero. However the quantum capacitor un-
der consideration does not produce a zero-frequency noise
at all. Instead, as we see, the frequency dependent noise
can be used to detect whether the particles are emitted
regularly or not.

In conclusion we have developed a non-linear dynam-
ical scattering theory for a recently discovered high fre-
quency quantized electron emitter. Our theory allows to
investigate analytically properties of such an emitter and
to optimize them over a wide range of parameters.
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97, 206804 (2006).
[10] J. Wang, B. Wang and H. Guo, Phys. Rev. B 75, 155336

(2007).
[11] J. Gabelli, et al. Phys. Rev. Lett. 98, 166806 (2007).
[12] M.W. Keller, et al. Phys. Rev. Lett. 80, 4530 (1998); F.

Piquemal and G. Geneves, Metrologia 37, 207 (2000).
[13] For recent adavances on the generation of quantized

dc currents see: D. Blumenthal et al. Nature Physics
3, 343 (2007); B. Kaestner, et al., (unpublished)
arXiv:0707.0993

[14] E. Knill, R. Laflamme, G. J. Milburn, Nature 409, 46
(2001).

[15] A. Prêtre, H. Thomas and M. Büttiker, Phys. Rev. B 54,
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[19] M. Moskalets and M. Büttiker, Phys. Rev. B 75, 035315
(2007).


