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CH-1211 Genève 4, Switzerland
2Department of Metal and Semiconductor Physics,

National Technical University ”Kharkiv Polytechnic Institute”,

61002 Kharkiv, Ukraine

(Dated: June 13, 2013)

We calculate analytically the Floquet scattering matrix for a periodically driven double-barrier
structure. Our approach takes into account dynamical effects which become necessarily important
when electrons propagate through a system subject to a fast drive. It is convenient to represent
the Floquet scattering amplitude as a sum of amplitudes corresponding to different times spent by
an electron inside the structure. These amplitudes define dynamical scattering channels. Then we
represent the dc current generated by the structure as a sum of two generic contributions. The first
one is due to photon-assisted interference processes within the same channel and the second one
is due to inter-channel interference processes. At zero temperature both contributions are present
while at high temperatures and/or high driving frequencies only the former survives.

PACS numbers: 72.10.-d, 73.23.-b

I. INTRODUCTION

Conducting structures subject to periodically varying volt-
ages or magnetic fields are of a fundamental interest. A
phase-coherent conductor subject to a slow ac drive1 un-
der quite general conditions2 becomes a quantum pump3−17

which is able to generate a dc current. Such a current gen-
erated by an unbiased mesoscopic conductor was detected
experimentally.18−21 Theoretically the quantum pumps are
analyzed for both slow22−34 and high35−40 driving frequen-
cies.

Compared to adiabatic pumps, high-frequency pumps have
the advantage that the currents which are generated are
much larger. In addition, at low frequencies a proper pump
current is difficult to distinguish from a current generated
by rectification19,21. In contrast high-frequency pumps have
been realized in recent experiments41−45. These pumps might
find an application for metrological purposes46 and or as an
on demand electron source for solid state systems for future
quantum information processing. Possibly another applica-
tion is the generation of correlated particles47−49 of a pump
outside the quantized pumping regime.

Though several analytical results are available50−54, the
theoretical analysis of pumps at high driving frequencies is
based mainly on numerical calculations55−64. The aim of the
present paper is to develop an analytical approach allowing
to describe the scattering by mesoscopic systems at arbitrary
driving frequencies. We consider a model consisting of two
barriers with varying strength and with a uniform varying
potential in between them. Such a structure can serve as a
simple model of an actual structure used in experiments41−45

and can serve as a prototype of a quantum pump with im-
movable in space potentials. Our approach is based on the
Floquet scattering matrix formalism which we developed in
Ref. 7

The paper is organized as follows. In Sec.II we represent
the Floquet scattering matrix of a fast driven double-barrier
system as a sum of the contributions arising from different
reflection/transmission processes accompanying an electron
propagation through the system, Fig. 1. Our approach takes
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FIG. 1: Some processes contributing to reflection amplitude
Sin,11 (a) and to transmission amplitude Sin,21 (b) are de-
picted. The point-like scatterers located at x = 0 and x = d
are shown by vertical lines. The particle leaves the system
at time moment t. We also indicate the time moments when
the reflection/transmission at point-like scatterers occurs. τ
is the propagation time from one point-like scatterer to the
other.

into account effects due to finiteness of the time spent by
electrons inside the system. In Sec.III we find the dc gen-
erated current at arbitrary driving frequency and arbitrary
temperature. The correlation properties of currents which are
generated by the pump are explored in Sec.IV. The currents
flowing through the structure which in addition is subject to
an external dc or ac bias are calculated in Sec.V. The discus-
sion of our results and a conclusion are given in Sec.VI.

II. FLOQUET SCATTERING MATRIX

It is convenient to introduce the matrix Ŝin(t, E) which
gives the current amplitude of particles exciting the scatterer

http://arxiv.org/abs/0804.0430v1
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at time t if they have been incident (index in) on the scatterer
with energy E. The Fourier coefficients of this matrix define
the Floquet scattering matrix ŜF :

ŜF (En, E) =

T
Z

0

dt

T einΩtŜin(t, E) . (1)

Here T = 2π/Ω is the period of a parameter which describes
the modulation of the scattering matrix, and En = E + nh̄Ω,
is the energy of carriers which have absorbed n modulation
quanta. n is an integer.

For h̄Ω ≪ E one can obtain an analytical expression for
Ŝin(t,E) of a periodically driven system consisting of two
point-like scatterers placed at a distance d of each other with
a potential U in between them. For a structure with contacts
labeled α, β, .. the matrix element Sin,αβ(t, E) can be given

as a sum over different paths L(q)
αβ which an electron incident

in contact β can follow to propagate through the system leav-
ing it at contact α with either transmission or reflection at

any point-like scatterer. Thus L(q)
αβ represents a classification

of paths according to contacts and the number of reflections.

We introduce a partial amplitude S(q,τ)
αβ (t, E) which describes

a process during which a particle with energy E enters the
system through the lead β, undergoes 2q − δαβ (for q 6= 0)
reflections, and leaves the system through the lead α at a time
moment t, see Fig. 1. Carriers take a time τ = d/v to propa-
gate from one barrier to the other. This amplitude is a prod-
uct of amplitudes corresponding to an instantaneous interac-
tion (reflection/transmission) with time-dependent point-like
barriers and amplitudes

e
i[kd− (e/h̄)

R tj
tj−τ

dt′ U(t′)]
(2)

corresponding to a free propagation (starting at time tj − τ
and having a duration of τ = d/v) between the two bar-
riers. The time moments, when the instantaneous reflec-
tion/transmission amplitudes are calculated, are counted
backward along the path in a descending order starting from
the time moment t when the particle leaves the system. The
detailed calculation is presented in Appendix A. We obtain

Sin,αβ(t, E) =

∞
X

q=0

e2i qαβ kd S(q,τ)
αβ (t,E) , (3)

where 2qαβ = 2q + 1 − δαβ, k is the wave number, and the

quantities S(q,τ)
αβ (t,E) are given in Eq. (A13a).

The matrix Ŝin(t) is periodic in time. This is due to the

time-periodicity of the frozen scattering matrices L̂, R̂ which
describe transmission and reflection at the left and right bar-
riers. Here we take these barriers to be point-like scatter-
ers. In addition Ŝin is periodic in the driving frequency Ω.
This follows from the observation that Eqs. (3), (A13) give the

same Ŝin for τ being a multiple of a driving period: τ = nT ,
where n is an integer. Therefore, Ŝin is the same for any
Ω = 2πnτ−1.

The Floquet scattering matrix is unitary:

∞
X

n=−∞

Ŝ†
F (Em, En)ŜF (En, E) = Îδm,0 , (4a)

∞
X

n=−∞

ŜF (Em, En)Ŝ†
F (En, E) = Îδm,0 . (4b)

Here Î is a unit matrix. Substituting Eq. (1) into Eq. (4a)
we get the following unitarity condition for the matrix
Ŝin(t, E):52

T
Z

0

dt

T Ŝ†
in(E, t)Ŝin(t,E) = Î . (5)

Note in Ref. 52 only the low frequency, Ω → 0, asymptotics
for Ŝin(t,E) was calculated. In contrast equation (3) is valid
at any frequency Ω ≪ µ of a drive. In the Appendix B we
make a connections between these two calculations.

III. DC GENERATED CURRENT

If the Floquet scattering matrix ŜF is known then the dc
current Iα flowing out of the structure through the lead α
can be calculated. To be definite we consider the usual set-
up for a mesoscopic electron quantum pump. The pump
connects Nr reservoirs. The reservoirs are in stationary
equilibrium states and have the same chemical potentials,
µα = µ, and temperatures, Tα = T . Then the distribution
function fα of reservoir α is the Fermi distribution function

fα(E) = f0(E) ≡
h

1 + exp
“

E−µ
kBT

”i−1

, where kB is the Boltz-

mann constant. The current is7,66

Iα =
e

h

Z

dE

Nr
X

β=1

∞
X

n=−∞

|SF,αβ(En, E)|2 [fβ(E) − fα(En)] . (6)

Using Eqs. (1), (3) and (A13) one can calculate the dc current
generated by the scatterer under consideration.

To proceed analytically we assume the temperature to be
smaller than the Fermi energy,

kBT ≪ µ . (7)

Then calculating Eq. (6) we can safely neglect the dependence
on energy of the scattering matrices of the point-like scatter-
ers, see Eqs. (A13), and evaluate them at the Fermi energy,
E = µ. In addition we approximate the phase factor with a
linear in energy expansion away from its value at the Fermi
energy

eiqkd ≈ eiqkF deiq E−µ
h̄

τ0 . (8)

Thus from now on the propagation time is taken τ = τ0 =
d/vF , with vF the velocity of an electron with the Fermi en-
ergy.

With these approximations we perform an energy integra-
tion in Eq. (6) and find the dc current as a sum of a contri-

bution I
(0)
α diagonal in dynamical scattering channels and a

contribution I
(i)
α arising from interference of dynamical scat-

tering channels,

Iα = I(0)
α + I(i)

α . (9a)
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The diagonal part consists of contributions of different scat-
tering channels that can be labeled by an integer number q
which is related to the number of times a carrier is reflected
inside the structure,

I(0)
α =

∞
X

q=0

J(q)
α , (9b)

with the contribution of the q − th scattering channel given
by

J(q)
α = −i e

2π

T
Z

0

dt

T

 

Ŝ(q,τ0)(t, µ)
∂Ŝ(q,τ0)†(t, µ)

∂t

!

αα

. (9c)

The interference contribution is a sum of thermally smeared
non-diagonal currents

I(i)
α = Re

∞
X

q=1

q−1
X

q′=0

e2i(q−q′)kF dη(q − q′)J(q,q′)
α , (9d)

with

J
(q,q′)
α = −i e

2π

T
R

0

dt
T

×
„

Ŝ(q,τ0)(t, µ) Ŝ(q′,τ0)†(t,µ)−Ŝ(q′,τ0)†(t−2τ0[q−q′],µ)
τ0(q−q′)

«

αα

,

η(q − q′) = 2πkBT (q−q′)

h̄τ−1
0

sinh−1

„

2πkBT

h̄τ−1
0

[q − q′]

«

.

(9e)

The factor η describes the effect of averaging over different
energies of incoming electrons within a relevant energy win-
dow near the Fermi energy. Note from Eq.(C2a) it follows

that the quantity I
(0)
α , Eq. (9b), is real.

The time of flight τ0 = d/vF plays a twofold role in the
problem under consideration. On one hand, this time sep-
arates adiabatic T ≫ τ0 and non-adiabatic T ≤ τ0 regimes.
On the other hand it defines the energy scale T ⋆ = ∆/(2π2kB)
separating low and high temperature regimes. Here we have
introduced the level spacing ∆ = πh̄τ−1

0 (near the Fermi en-
ergy) for a double-barrier structure detached from the leads.
At low temperatures, T ≪ T ⋆, we have η = 1, while at high
temperatures, T ≫ T ⋆, the factor η is exponentially small,

η ≈ 2|q − q′| T
T ⋆

e−
T

T ⋆ |q−q′| (10)

and describes the exponential suppression of the interference
terms at large temperatures.

Note the effect of the temperature we consider is only due
to energy averaging. We do not consider dephasing but as-
sume that electrons preserve phase coherence as they prop-
agate through the sample. The crossover temperature T ⋆ is
familiar from the persistent current problem (see, e.g., Ref. 68)
and it appears as a characteristic temperature69 for interfer-
ence phenomena in single channel ballistic structures.

The two parts, I
(0)
α and I

(i)
α , of the pumped current result

from different processes that lead to different temperature

dependencies.70 The first part, I
(0)
α , is a sum of contribution,

J
(q)
αβ , arising from different electron’s paths inside the system.

The paths differ by incoming (β) and outgoing (α) leads, and
by the index q counting the number of reflections inside the
system. According to Ref. 67 the quantum pump effect (i.e.,
the effect which results in a dc current generated by the pe-
riodically driven mesoscopic system) is due to interference of
various photon-assisted amplitudes describing the interaction
of propagating electrons with a scatterer that varies period-
ically in time. Therefore, one can consider the contribution

J
(q)
αβ as due to photon-assisted interference processes taking

place at the same spatial path L(q)
αβ . Each such path can be

characterized by a delay time 2qαβτ , i.e., the difference of
times when an electron enters and leaves the system. If this
time is not small compared with the driving period then dy-
namical effects become important for an electron scattering

off the system. Therefore, one can consider the path L(q)
αβ as

an effective dynamical scattering channel. Then we interpret

J
(q)
α as arising due to intra-channel photon-assisted interfer-

ence processes. Since all the quantum-mechanical amplitudes
corresponding to such processes are multiplied by same dy-
namical factor e2iqαβkd, the corresponding probability is in-
dependent of energy. Consequently the energy integration
becomes trivial.

In contrast, the second part, I
(i)
α , due to interference be-

tween different paths (i.e., due to inter-channel interference) is
defined as a sum of terms oscillating in energy. Consequently
it vanishes at high temperatures.

Equation (9) gives the dc current generated by the double-
barrier structure at arbitrary temperature and at arbitrary
driving frequency. At slow driving, T ≫ τ , it agrees with the
famous Brouwer’s result2 for an adiabatic pumped current.
At larger driving frequencies, it reproduces the numerical re-
sults of Ref. 7 obtained for a double-barrier structure in the
zero temperature limit.

From Eq. (9) it follows that with increasing temperature
or driving frequency the different dynamical scattering chan-

nels contribute independently to the dc current, Iα ≈ I
(0)
α .

With regard to the frequency this follows from the observa-

tion that the ratio I
(0)
α /I

(i)
α behaves as Ωτ0. Therefore, at

Ω → ∞ the contribution I
(0)
α dominates. So we can con-

clude: (i) At high temperatures, T ≫ T ⋆ the dc current (both
adiabatic and non-adiabatic) is independent of the Fermi en-
ergy (over a scale much smaller than the Fermi energy itself).
(ii) At high driving frequencies, Ω ≫ πτ−1

0 , the dc current
becomes independent of the temperature. The latter is il-
lustrated in Fig. 2 (compare with Fig. 3 in Ref. 7), where we

give the high-temperature dc current I
(0)
α for a double-barrier

structure with and without the uniform oscillating potential
U(t) as a function of the driving frequency Ω. One can see,
that the presence of an oscillating uniform potential does not
change the universal high-frequency behavior of the resulting
dc current.

IV. ZERO FREQUENCY NOISE POWER

We consider the zero-frequency Fourier coefficient of the
correlation function of currents generated by the dynamic
scatterer:
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FIG. 2: (color online) The charge Q = 2πI(0)/Ω in units of
e pumped for a cycle as a function of Ω. The black solid
line is for eU = 0. The red dash-dotted (blue dashed) line
is for eU = 5∆ and ϕU = π/4 (ϕU = 0). The parameters
are: L = 200π; V01 = V02 = 20; V11 = V12 = 10; ϕ1 = 0;
ϕ2 = π/2. We use the units: 2m = h̄ = e = 1. The Fermi
energy is µ = 17.4 .

Pαβ =

T
Z

0

dt

T

∞
Z

−∞

dt′〈∆Îα(t)∆Îβ(t′) + ∆Îβ(t′)∆Îα(t)〉 , (11)

where ∆Î = Î − 〈Î〉, and 〈· · · 〉 denotes quantum-statistical
averaging. This quantity can be represented as a sum of a

thermal (Nyquist-Johnson) noise P
(th)
αβ and a shot noise P

(sh)
αβ ,

Pαβ = P
(th)
αβ + P

(sh)
αβ . Notice, each of these contributions

depends on both the temperature and the drive. The reason
to divide the whole noise into two parts is rather conventional:
The former contribution vanishes at zero temperature while
the latter one vanished in the absence of a drive. In terms of
the elements the matrix Ŝin(t, E) the noise is71

P
(th)
αβ = 2e2kBT

h

R

dE
`

− ∂f0
∂E

´

T
R

0

dt
T

„

− |Sin,αβ(t,E)|2

− |Sin,βα(t, E)|2 + δαβ

h

1 + Σ in,αα(t, t;E)
i

«

,

(12a)

P
(sh)
αβ = e2

h

R

dE
∞
P

m=−∞

[f0(E) − f0(Em)]2
R

T
R

0

dt1dt2
T 2

×eim(t2−t1)Σ⋆
in,αβ(t1, t2;E)Σin,αβ(t1, t2;Em) .

(12b)

Here Σ̂in is the two-particle scattering matrix:71

Σ̂in(t1, t2;E) = Ŝin(t1, E)Ŝ†
in(E, t2) . (13)

To calculate the noise power generated by a driven double-
barrier structure we use Eqs. (3), (7), (8) and (A13).

A. Thermal noise

The thermal noise can be further separated into two con-

tributions P
(th)
αβ = P

(th,0)
αβ + P

(th,i)
αβ , where

P
(th,0)
αβ = 2e2

h
kBT (2δαβ − gαβ − gβα) ,

gαβ =
T
R

0

dt
T
gαβ(t) , gαβ(t) =

∞
P

q=0

˛

˛

˛
S(q,τ0)

αβ (t, µ)
˛

˛

˛

2
(14a)

is the contribution that survives at high temperatures. Note
that the (dimensionless) matrix ĝ and hence P(th,0) is inde-
pendent of the oscillating potential U(t) of the well.

At low temperatures, T ≪ T ⋆ there exists an additional

contribution P
(th,i)
αβ to thermal noise:

P
(th,i)
αβ = 4e2

h
kBT Re

∞
P

q=1

q−1
P

q′=0

[q − q′]e2i(q−q′)kF d

×η(q − q′)
T
R

0

dt
T



δαβ

Nr
P

γ=1

S(q,τ)
αγ (t, µ)S(q′,τ)⋆

αγ (t, µ)

−S(q,τ)
αβ (t, µ)S(q′,τ)⋆

αβ (t, µ) − S(q,τ)
βα (t, µ)S(q′,τ)⋆

βα (t, µ)

ff

.

(14b)

The function η(q − q′) is defined in Eq. (9e).

At high temperatures the thermal noise of a driven sys-
tem depends on the matrix ĝ in the same manner as the
thermal noise of a stationary scatterer depends on the con-
ductance matrix.72 Therefore, we can treat ĝ as an effective
(high-temperature) conductance matrix of a driven scatterer.

At adiabatic driving, T ≫ τ0, the matrix ĝ(ad)(t) ≡
lim
Ω→0

ĝ(t) is independent of Ω. It can be expressed in terms of

reflection/transmission coefficients for point-like scatterers. If

L̂ and R̂ are symmetric in lead indices then we get,

1

g
(ad)
α6=β(t)

=
1

TL(t)
+

1

TR(t)
− 1 . (15)

Here TL = |L12|2, TR = |R12|2, and g
(ad)
αα (t) = 1 − g

(ad)
α6=β(t).

Note that the effective transmission coefficient g
(ad)
12 (t) dif-

fers from the probability for incoherent (sequential) tunneling

through two barriers, g
(seq)
12 (t) =

ˆ

T−1
L (t) + T−1

R (t)
˜−1

. The
latter is attributed to structures with inelastic relaxation pro-
cesses inside the well73 whereas Eq. (15) can be obtained as a
consequence of incoherent but energy conserving scattering74

in the well. Note also, that in Ref. 75 it was shown that in the
adiabatic regime the dc current pumped by the double barrier
structure with strong inelastic scattering is determined by the

sequential conductance g
(seq)
12 . In contrast the high tempera-

ture pumped current I(0), Eq. (9b), at Ω → 0 is determined

by the quasi-elastic adiabatic conductance g
(ad)
12 .

At high driving frequencies ĝ becomes dependent on Ω. In
Fig. 3 we give the transmission probability g12 as a function
of the non-adiabaticity parameter Ωτ0.
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FIG. 3: The effective transmission probability g12 as a func-
tion of Ω. The parameters are the same as in Fig. 2.

B. Shot noise

Similar to the thermal noise, the shot noise has a part which
vanishes at T ≫ T ⋆. To show this we use Eq. (3) and repre-

sent the two-particle scattering matrix Σ̂in, Eq. (13), as fol-
lows:

Σin,αβ(t1, t2;E) =
P

γ

∞
P

q=−∞

e2iQ
(q)
αβ;γ

kd
Σ

(q)
αβ;γ(t1, t2;E),

Q
(q)
αβ;γ = q +

δβγ−δαγ

2
,

Σ
(q≥0)
αβ;γ (t1, t2;E) =

∞
P

r=0

S(r+q,τ)
αγ (t1, E)S(r,τ)⋆

βγ (t2, E) ,

Σ
(q<0)
αβ;γ (t1, t2;E) =

∞
P

r=0

S(r,τ)
αγ (t1, E)S(r−q,τ)⋆

βγ (t2, E) ,

(16)

Substituting this equation into Eq. (12b) and integrating
over energy we obtain the following:

P
(sh)
αβ = 2e2

h

∞
P

q1,q2=−∞

P

γ,δ

e
2ikF dΘ

(−)
γδ

[q1,q2]P(sh)
γδ (q1, q2) ,

P(sh)
γδ =

R

T
R

0

dt1dt2
2T 2

∞
P

m=−∞

e
im

“

t2−t1+Ωτ0Θ
(+)
γδ

[q1,q2]
”

×F(q1q2)
γδ (m)Σ

(q1)⋆
αβ;γ (t1, t2;µ)Σ

(q2)
αβ;δ(t1, t2;µ) ,

(17)

where

Θ
(±)
γδ [q1, q2] = Q

(q2)
αβ;δ ±Q

(q1)
αβ;γ ,

F(q1q2)
γδ = η

“

Θ
(−)
γδ [q1, q2]

”



− 2kBT cos
“

mΩτ0Θ
(−)
γδ [q1, q2]

”

+h̄ coth
“

m h̄Ω
2kBT

”

sin
“

mΩτ0Θ
(−)
γδ

[q1,q2]
”

τ0Θ
(−)
γδ

[q1,q2]

ff

.

At high temperatures, T ≫ T ⋆ ∼ τ−1
0 , only terms with

Q
(q2)
αβ;δ = Q

(q1)
αβ;γ contribute to the shot noise. In this limit, for

instance, the auto-correlations are:

P
(sh,0)
αα = 2e2

h

R

T
R

0

dt1dt2
T 2

∞
P

q=0

FT (t2 − t1 + 2qΩτ0)

×(2 − δq0)

˛

˛

˛

˛

˛

P

γ

Σ
(q)
αα;γ(t1, t2;µ)

˛

˛

˛

˛

˛

2

,

FT (t) = 2kBT
∞
P

m=1

cos(mt)
n

mh̄Ω
2kBT

coth
“

mh̄Ω
2kBT

”

− 1
o

.

(18)

From Eq. (18) it follows that for h̄Ω ≪ kBT the shot

noise is inversely proportional to the temperature: P(sh,0) ∼
(kBT )−1. The dependence on frequency Ω is more subtle.
For adiabatic driving Ω ≪ τ−1

0 only FT depends on the
driving frequency, FT ∼ Ω2. Therefore, in this case we get
P(sh,0) ∼ Ω2/(kBT ) in accordance with Refs. 71,76. In con-
trast, for non-adiabatic driving, τ−1

0 ≪ Ω ≪ kBT/h̄, the

matrix Ŝin and hence Σ̂ oscillates in Ω. As a consequence the
shot noise oscillates in Ω with increasing (∼ Ω2) amplitude.
Since h̄Ω ≪ kBT the thermal noise dominates over the shot
noise in both the adiabatic and the non-adiabatic regimes.

The situation is different in the strongly non-adiabatic
regime, τ−1

0 ≪ kBT ≪ h̄Ω. In this case FT ∼ Ω. Therefore,
the shot noise is temperature independent and it oscillates
in frequency with amplitude growing linearly in Ω. In this
regime the shot noise exceeds the thermal noise.

V. THE EFFECT OF AN EXTERNAL BIAS

In this section we extend the formalism presented above to
the case when there is in addition an external bias. Several
factors make such a consideration important.66 First, usually
the mesoscopic structure is a part of some electrical circuit
with non-zero impedance used to measure a current. In the
presence of a pump current the voltage arising at the exter-
nal impedance acts back on the sample. Second, the gates
with oscillating voltages used to drive the sample can produce
oscillating voltages at all the terminals.19 The rectification
of ac currents due to external ac voltages by the oscillating
scatterer19,77,78,79 can lead to a dc current in addition to a
pumped current.

A. The effect of a dc bias

To be definite we assume that the dc voltage eV is applied
to the right reservoir:

µ1 = µ , µ2 = µ+ eV , eV ≪ µ . (19)

We calculate the dc current, I1, via Eq. (6). In the high-

temperature limit, T ≫ T ⋆ we find: I1 = I
(0)
1 + I

(dc)
1 . Here

I
(0)
1 is the pumped current, Eq. (9a), and I

(dc)
1 is a current

due to a dc voltage:

I
(dc)
1 = V G0g12 , T ≫ T ⋆ , (20)

where G0 = e2/h is the conductance quantum (per single spin
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channel), the effective conductance g12 is defined in Eq. (14a).
Note that the pumped current and the dc voltage-driven cur-

rent are conserved separately,
P

α I
(0)
α = 0 and

P

α I
(dc)
α = 0.

In the two terminal case of interest here, the last equation
leads to g12 = g21. In addition using Eqs. (14a) and (C2a) we
find that the sum over all the incoming leads equals to unity,
P

β gαβ(t) = 1. This condition allows us to interpret gαβ(t)

as equal-arrival-time transmission (for α 6= β) or reflection
(for α = β) probabilities for the particles with Fermi energy.
In other words, the quantity gαβ(t) in Eq. (14a), is a probabil-
ity for an electron entering the system through the lead β to
leave the system at a given time moment t through the lead α.

This probability is a sum of probabilities,
˛

˛

˛
S(q,τ0)

αβ (t, µ)
˛

˛

˛

2

, cor-

responding to electrons entering the system at time moments
t − τ0(2q + 1 − δαβ). We emphasize that this interpretation
applies at high temperatures, T ≫ T ⋆. At lower tempera-
tures only the relation Eq. (5), averaged over a pumping cycle,
holds.

In the non-adiabatic, high-temperature regime, Ωτ0 ≫ 1
and T ≫ T ⋆, both the pumped current I(0) and the dc
voltage-driven current I(dc) oscillate at the driving frequency
(see Fig. 2 and Fig. 3) with the same period. The important

difference is that the amplitude of oscillations of I(0) grows lin-
early with Ω. The pumped current can be expressed in terms
of the average charge transferred per cycle Q(Ω) multiplied

by the frequency, I(0) = QΩ/(2π). The charge Q pumped
per cycle as a function of the pump frequency Ω is given in
Fig. 2. The amplitude of oscillations of I(dc) is linear in the
dc voltage V . Therefore, varying both Ω and V one can, in
principle, distinguish between the pumped current and the
external voltage-driven current.

We reemphasize that the quantities gαβ define both the
thermal noise and the dc conductance of a driven scatterer.
In contrast the rectification of currents due to external ac
voltages is defined by different quantities.

B. The effect of an ac bias

Let us suppose that ac voltages are applied to the contacts
of a dynamic scatterer (α = 1, 2, · · · , Nr):

Vα(t) = V0,α + Vα cos(Ωt+ ϕVα), eV0,α, eVα ≪ µα . (21)

Then the dc current flowing through lead α is66

Ĩα = e
h

∞
R

0

dE

(

− fα(E) +
P

β

∞
P

n=−∞

fβ(E − nh̄Ω)

×
∞
P

m,q=−∞

S∗
F,αβ(E,Eq)SF,αβ(E,Em)Υ⋆

β,n+qΥβ,n+m

)

.

(22)

Here Υβ,n is the Fourier coefficient for the function Υβ(t).
The latter is given by Eq. (A4) with eU and ϕU being re-
placed by eVβ and ϕVβ

, respectively. We use the symbol tilde

to indicate that the dc current Ĩα is calculated in the pres-
ence of external ac voltages. The Fermi functions fα(β) enter-
ing Eq. (22) depend on the corresponding chemical potentials
µα(β) = µ+ eV0,α(β).

To simplify the equation given above, we introduce the ma-
trix Ŝout(E, t) whose Fourier coefficients define the elements
of the Floquet scattering matrix in the following way:66

Ŝout,n(E) = ŜF (E,E−n) . (23)

The lower index ”out” indicates that the matrix introduced
in this way depends on an outgoing energy entering the cor-
responding element of the Floquet scattering matrix. In con-
trast the matrix Ŝin which we introduced earlier is a function
of an incoming energy.

Substituting Eq. (23) into Eq. (4b) we derive the following

constraint to the matrix Ŝout(E, t) [compare with Eq. (5)]:

T
Z

0

dt

T Ŝout(E, t)Ŝ
†
out(t, E) = Î . (24)

To calculate this scattering matrix we find ŜF (En, E) using
Eqs. (1), (3) and (A13). Then with the help of Eqs. (23) after
the inverse Fourier transformation we find:

Sout,αβ(E, t) =
∞
P

q=0

e2iqαβkdS̃(q,τ)
αβ (E, t) ,

S̃(q,τ)
αβ (E, t) = S(q,τ)

αβ (t+ 2qαβτ, E) .

(25)

The amplitudes S(q,τ)
αβ (t,E) are defined in Eq. (A13). We in-

terpret Sout,αβ(E, t) as an amplitude corresponding to scat-
tering of an electron which enters the system through the lead
β at time moment t and leaves the system through the lead α
with energy E. Since the energy of the outgoing state is fixed,
the time when the particle leaves the system is not fixed. Cor-
respondingly, since the time moment when the particle enters
the system is fixed, the incoming energy is not fixed.

Now we proceed with the calculation of the current. After
simple transformations we rewrite Eq. (22) in the following
way:

Ĩα = Iα + I(ex)
α , (26)

where the current Iα is the pumped current, Eq. (6), in the
absence of the oscillating voltages at contacts. The excess

current I
(ex)
α due to ac voltages is

I
(ex)
α = e

h

R

dE
P

β

∞
P

n=−∞

ˆ

fβ(E−n) − fα(E)
˜

×
n

˛

˛(Sout,αβΥβ)n

˛

˛

2 − |Sout,αβ,n|2
o

.

(27)

The effect of oscillating potentials at external reservoirs is
formally only a phase shift [see Eq. (A4)] of the correspond-

ing elements of the scattering matrix Ŝout. However due
to the directional asymmetry of time-dependent scattering,

Sout,αβ 6= Sout,βα, the current I
(ex)
α can be non-zero even

if the voltages at all the contacts are the same, Vα(t) =
V (t). Therefore, in accordance with the conclusion reached in
Ref. 66 the excess current contains two generic contributions,

I
(ex)
α = I

(rect)
α + I

(int)
α . The first one, I

(rect)
α , results from

rectification of ac currents due to external ac voltages by the

oscillating scatterer. The second one, I
(int)
α , is due to inter-

ference between internal and external ac currents. On the
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FIG. 4: (color online) The transmission probabilities g̃21(t)
(black solid line) and g̃12(t) (blue dashed line) are given
as a function of time for one pumping period. The non-
adiabaticity parameter is Ωτ0 = π. Other parameters are
the same as in Fig. 2.

other hand one can think of the latter contribution as due to
external voltages which act as additional pump parameters.
Note that the interference contribution was also addressed in
Ref. 40.

In the high-temperature limit Eq. (27) can be simplified.
Using Eq. (25) and performing integration over energy in the
same way as we did to get Eq. (9), we obtain:

I(ex)
α = G0

T
Z

0

dt

T
X

β

Vβ(t)g̃αβ(t), T ≫ T ⋆ , (28a)

g̃αβ(t) =
∞
X

q=0

˛

˛

˛
S̃

(q,τ0)
αβ (t, µ)

˛

˛

˛

2

. (28b)

The pumped current Iα, Eq. (6), is conserved:
P

α Iα = 0.

Therefore, the conservation of the whole current Ĩα, Eq. (26),

implies
P

α I
(ex)
α = 0. The latter in turn leads to the fol-

lowing constraint:
P

α g̃αβ(t) = const. Quite similar to the
case with gαβ we find that this constant is the unity. Using

this condition one can split I
(ex)
α into the rectification [i.e.,

vanishing at V1(t) = V2(t)] and interference parts as follows:

I
(rect)
1 = G0

T
Z

0

dt

T
ˆ

V2(t) − V1(t)
˜ g̃12(t) + g̃21(t)

2
, (29a)

I
(int)
1 = G0

T
Z

0

dt

T
V2(t) + V1(t)

2

ˆ

g̃12(t) − g̃21(t)
˜

. (29b)

The interference contribution can be non-zero, I
(int)
1 6= 0,

if and only if the dynamical scatterer shows different time-
dependent transmissions to the left and to the right, g̃12(t) 6=
g̃21(t), see Fig. 4. In addition, the time-dependent voltages
should be present, Vα(t) 6= const. The last statement follows

0.0 0.5 1.0 1.5 2.0
Ωτ0/2π

-0.1

0.0

0.1

I

FIG. 5: (color online) The excess I
(ex)
1 (black solid line), rec-

tified I
(rect)
1 (blue dashed line), and interference, I

(int)
1 (red

dash-dotted line) currents in units of I0 = V G0 as a func-
tion of Ω. The external voltages are V2 = V cos(Ωt), V1 = 0.
Other parameters are the same as in Fig. 2.

from the fact that after averaging over time the matrix ˆ̃g
becomes symmetric in lead indices. Therefore, we conclude

that the current I
(int)
1 is due to an interplay of the external

induced dynamics and the internally induced dynamics.

The excess current I
(ex)
α , arising in the presence of exter-

nal ac voltages, comprises two contributions: a pure recti-

fication current, I
(rect)
α , and an additional pumped current,

I
(int)
α . These two contributions differ from each other. In ad-

dition they differ from the current pumped by the unbiased
dynamical scatterer. Formally, the last mentioned difference

is due to the fact that I
(ex)
α is defined by the scattering ma-

trix Ŝout while Iα is defined by the matrix Ŝin. This results

in a different frequency dependence, see Fig. 5 for I
(ex)
α and

Fig. 2 (black solid line) for the pumped current. Everything
mentioned makes it difficult to extract a pure pumped current
from an experimentally measured dc current.

If the voltages at contacts are time-independent, Vβ(t) =
const, equation (28a) transforms into Eq. (20) since the av-
erage over a pump period for quantities g̃αβ and gαβ is the
same. This follows directly from Eq. (25) (the second line).

Note by analogy with gαβ(t) we interpret g̃αβ(t) as equal-
departure-time probabilities for transmission/reflection of
electrons with Fermi energy: This quantity is the probabil-
ity for an electron entering the system at a given [defined by
the potential Vβ(t) in Eq. (28a)] time moment t through the
lead β to leave the system through the lead α. Accordingly
to Eq. (28b) the events with electrons leaving the system at
different time moments do contribute to g̃αβ(t). We note the
equation (28) was obtained for high temperatures. For lower
temperature we have no instant-time quantity like g̃αβ(t) with

a transparent physical meaning. The matrix Ŝout entering
Eq. (27) obeys a constraint that is non-local in time, Eq. (24).
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VI. DISCUSSION AND CONCLUSION

We have analyzed current and noise generated by a dy-
namical double-barrier structure with and without an exter-
nal bias at arbitrary temperature and at arbitrary frequency
and amplitude of a periodic harmonic drive.

To perform such an analysis we have developed a method
to calculate analytically the scattering matrices Ŝin(t, E) and

Ŝout(E, t) whose Fourier coefficients define the elements of
the Floquet scattering matrix, Eqs. (1) and (23). For the
elements of these matrices which we found for the double-
barrier structure there exists a simple interpretation. This
interpretation allows to find the corresponding matrices for
more involved systems. For instance, the matrix element

Sin,αβ(t, E) =
P

q e
2iqαβkdS(q,τ)

αβ (t, E), Eq. (3), can be calcu-
lated as a sum over all the possible paths which an electron
can follow to propagating through the system. Here the par-

tial amplitude e2iqαβkdS(q,τ)
αβ (t, E) corresponds to a particle

entering the system with energy E through the lead β and
leaving the system through the lead α at a time moment t.

The summation index q corresponds to the path L(q)
αβ having

definite length (in our case for q > 0 this length is a product
of the number 2q − δαβ of reflections inside the system and
the distance d between the two barriers). Each partial ampli-
tude is a product of amplitudes corresponding to an instanta-
neous interaction with time-dependent point-like barriers (in

our case these amplitudes are the elements of matrices L̂ and

R̂) and a number of amplitudes e
i[kd−eh̄−1 R tj

tj−τ
dt′U(t′)]

corre-
sponding to free propagation (having a duration of τ = d/v)
between the barriers. The time moments, at which the cor-
responding amplitudes are calculated, are counted backwards
along the path in a descending order starting from the time
moment t when the particle leaves the system.

We found an analogous interpretation for elements of the
matrix Ŝout(E, t). The in- and out- scattering matrices be-
come equal (and equal to the frozen scattering matrix) in the
limit of a slow drive, Ω → 0. At any finite driving frequencies
(Ω 6= 0) they are different. Nevertheless there is a simple re-
lation between these matrices. To find it we use the micro re-
versibility of the equations of motion. Let the driving parame-
ters depend on time in the following way: pi(t) ∼ cos(Ωt+ϕi),
see, Eq. (A1). Then the elements of the Floquet scattering
matrix are subject to the following symmetry:52

SF,αβ(E,En;H,ϕ) = SF,βα(En, E;−H,−ϕ) . (30)

Here ϕ is the set of all the ϕi’s. In addition we introduced a
possibly present magnetic field H . Substituting Eqs. (A9) and
(23) into Eq. (30) and performing the inverse Fourier trans-
formation we arrive at the desired relation:

Sin,αβ(t, E;H,ϕ) = Sout,βα(E,−t;−H,−ϕ) . (31)

Note that each term of the decompositions, Eq. (3) and
Eq. (25), satisfies Eq. (31) separately.

We showed that the scattering matrix Ŝin defines currents
generated by the oscillating scatterer itself, while the dual
scattering matrix Ŝout defines currents flowing through the
scatterer under an external bias. Here we calculated the
matrix Ŝin for arbitrary frequency and consequently we can

calculate the current in the adiabatic as well as in the non-
adiabatic regime.

The adiabatic regime can be defined7 by considering the en-
ergy dependence of the stationary scattering matrix . Since
both transmission and reflection times are of the order of the
dwell time, the latter is (at least in the absence of interac-
tions) the relevant time scale. The results obtained here al-
lows us to conclude that the dwell time is appropriate to de-
fine the adiabatic regime for zero-temperature pumping. In
contrast, at high temperatures another time, the propagation
time τ0 = d/v (necessary for an electron to travel between the
two barriers separated by the distance d), defines a relevant
time scale.

Let us consider the scattering processes which are relevant
for pumping. Generally speaking the interplay between the
quantized energy exchange and the interference of photon-
assisted scattering amplitudes is at the origin of the pump
effect.67 As we showed, there are two types of interference
processes. The first one takes place within the same spatial
path (intra-channel interference). A second process includes
the interference between different spatial paths (inter-channel
interference). The former contributes to the generated current
at low as well as at high temperatures, while the latter con-
tributes only to the low temperature pump effect. The dwell
time (defined in the stationary case) depends essentially on
interference processes of the second type (there it nothing to
interfere within the same spatial path in the stationary case).
Therefore, we expect that the dwell time is relevant only to
low temperature pumping. In contrast for high temperatures
we expect that a time of the order of the propagation time τ0
defines the lower bound for the period of a drive separating
adiabatic and non-adiabatic dynamical regimes.

Our example suggest that distinction of inter- and intra-
channel interference processes is also important for the mag-
netic field symmetry of the current pumped by a two-terminal
scatterer. The intra-channel interference processes are not af-
fected by the magnetic field. However the inter-channel pro-
cesses are sensitive to the magnetic field. Therefore, we can
conjecture that with increasing frequency and/or tempera-
ture (when only intra-channel interference processes matter)
the pumped current has to become symmetric in magnetic
field like the stationary (two-terminal) conductance. This is
in striking contrast with the low temperature adiabatic pump
effect which has no definite symmetry under the magnetic field
reversal, see, e.g., Refs. 2,4. Our conjecture agrees with ex-
perimental results presented in Refs. 19,21 for large pumping
frequencies and powers.

The method presented in the present paper is also useful
to calculate the time-dependent current generated by the dy-
namical scatterer. Actually it was used in Ref. 80 to describe
the nonlinear response of a coherent capacitor to a large am-
plitude drive. In a recent experiment81 it was demonstrated
that such a capacitor can serve as a very fast single electron
source.

In conclusion, we developed a method to calculate ana-
lytically the Floquet scattering matrix of a dynamical meso-
scopic system consisting of a set of point-like scatterers and
uniform potentials in between them. Our approach allows to
go beyond the adiabatic approximation and to analyze the
properties of the generated current and its noise at arbitrary
frequency and amplitude of the drive.
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APPENDIX A: THE FLOQUET SCATTERING

MATRIX

Let us consider a one-dimensional structure consisting of
two oscillating δ-function barriers and an oscillating spatially
uniform potential in between the barriers. All potentials os-
cillate with the same frequency. The single-particle scattering
at a periodically driven system is described via the Floquet
scattering matrix ŜF .7,52 To find its elements one needs to
solve the Schrödinger equation for an electron wave function
ΨE(t, x) with, in our case, the following time-dependent po-
tential:

V (t, x) = VL(t)δ(x) + VR(t)δ(d− x)

+eU(t)θ(x)θ(d− x) ,

VL/R(t) = V0L/R + 2V1L/R cos(Ωt+ ϕL/R) ,

U(t) = U cos(Ωt+ ϕU ) ,

(A1)

where θ(x) is the Heaviside step function.
To calculate SF,11 and SF,21 we consider a plain wave of a

unit amplitude with energy E incident from the left. Then the
wave function ΨE(t, x) outside the scatterer can be written
as follows:

ΨE(t, x) = e−i E
h̄

t
∞
P

n=−∞

e−inΩtψn(x) ,

ψn(x) =

8

>

>

<

>

>

:

δn0e
ikx +

q

k
kn
SF,11(En, E)e−iknx , x < 0 ,

q

k
kn
SF,21(En, E)eikn(x−d) , x > d .

(A2)

Here En = E + nh̄Ω, kn =
√

2meEn/h̄, with me being the
electron mass.

Following Ref. 65 we represent the functions ψn(x) inside
the scatterer in the form:

ψn(x) =

∞
X

l=−∞

Υn−l

“

ale
iklx + ble

−iklx
”

, 0 < x < d , (A3)

where the coefficients al, bl are independent of x and t. Here
Υn is the Fourier coefficient for a function Υ(t) describing the
effect of an oscillating uniform potential U(t),

Υn =
T
R

0

dt
T
einΩtΥ(t) ,

Υ(t) = exp
ˆ

−i eU
h̄Ω

sin(Ωt+ ϕU )
˜

,

(A4)

where T = 2π/Ω is the period of the drive.

To match the wave function coefficients at different spatial
regions we use the boundary conditions formulated in terms
of the scattering matrices L̂F and R̂F for point-like scatterers
located at x = 0 and x = d, respectively. These conditions
are:

q

k
kn
SF,11(En, E) =

q

k
kn
LF,11(En, E)

+
∞
P

m=−∞

q

km

kn
LF,12(En, Em)

∞
P

l=−∞

Υm−lbl ,

∞
P

p=−∞

Υn−pap =
q

k
kn
LF,21(En, E)

+
∞
P

m=−∞

q

km

kn
LF,22(En, Em)

∞
P

l=−∞

Υm−lbl ,

∞
P

p=−∞

Υn−pbpe
−ikpd =

∞
P

m=−∞

q

km

kn
RF,11(En, Em)

∞
P

l=−∞

Υm−lale
ikld ,

q

k
kn
SF,21(En, E) =
∞
P

m=−∞

q

km

kn
RF,21(En, Em)

∞
P

l=−∞

Υm−lale
ikld .

(A5)

We suppose that the frequency Ω of the drive is small com-
pared with the relevant electron energy E,

h̄Ω ≪ E . (A6)

We solve Eq. (A5) to zeroth order in h̄Ω/E. Within this accu-
racy we can simplify Eq. (A5). First, the Floquet scattering

matrix X̂F (En, E) for a point-like scatterer (i.e., for a scat-
terer with a spatial extend much smaller than the de Broglie
wave length for an electron with energy E) can be expressed in

terms of the Fourier coefficients X̂n(E) for a frozen scattering

matrix X̂(t, E) = X̂(t+ T , E) (i.e., the stationary scattering
matrix with a strength being dependent on time):52

X̂F (En, Em) = X̂n−m(E) , X̂ = L̂ , R̂ . (A7)

For a single δ-function barrier V (t, x) = V (t)δ(x) the frozen
scattering matrix is well known. Its elements are Xαβ(t,E) =
k/[k + iV (t)me/h̄

2] − δαβ .
Second, we can put

km

kn
≈ 1 , eikld ≈ eikdeilΩτ , (A8)

where τ = d/v is the time necessary for an electron with
energy E to propagate from one barrier to the other barrier.

Next we use that the quantities al’s and bl’s are Fourier
coefficients for some functions a(t) = a(t + T ) and b(t) =
b(t+ T ), periodic in time. In addition we introduce a matrix

Ŝin(t, E) periodic in time whose Fourier coefficients Ŝin,n(E)

define the Floquet scattering matrix ŜF (En, E) for the whole
structure as follows:

Ŝin,n(E) = ŜF (En, E) . (A9)

The lower index ”in” indicates that this matrix is a function
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of an incoming energy. With these definitions one can easily
perform the inverse Fourier transformation of Eqs. (A5) and
arrive at

Sin,11(t, E) = L11(t, E) + L12(t, E)Υ(t)b(t) , (A10a)

Υ(t)a(t) = L21(t,E) + L22(t, E)Υ(t)b(t) , (A10b)

e−ikdΥ(t)b(t+ τ ) = eikdR11(t,E)Υ(t)a(t− τ ) , (A10c)

Sin,21(t,E) = eikdR21(t, E)Υ(t)a(t− τ ) , (A10d)

Substituting Eq. (A10c) into Eq. (A10b) we find the non-
local in time equation for the function a(t) (for brevity we
suppress the argument E):

a(t) = Υ⋆(t)L21(t) + ei2kdL22(t)R11(t− τ )a(t− 2τ ) , (A11)

where the star denotes complex conjugation. Since the coef-
ficients entering the above equation with amplitudes smaller
than unity, we can formally write down the solution in the
form of an infinite series,

a(t) =
∞
P

q=0

ei2qkdλ(q)(t)Υ⋆(t− 2qτ )L21(t− 2qτ ) ,

λ(q>0)(t) =
q−1
Q

j=0

L22(t2j)R11(t2j − τ ) .

(A12)

Here t2j = t− 2jτ . At q = 0 we put λ(0)(t) = 1.
Substituting Eq. (A12) into Eqs. (A10) we obtain the ma-

trix elements Sin,α1, α = 1, 2. To find the matrix elements
Sin,α2 a problem with a plane wave of a unit amplitude com-
ing from the right has to be considered. The solution to these
two problems is written in Eq. (3) with

S(q,τ)
αβ (t, E) = e−iΦ

(q,τ)
αβ σ

(q,τ)
αβ (t, E) , (A13a)

where Φ
(q,τ)
αβ = eh̄−1

R t

t−τ2qαβ
dt′U(t′) and

σ
(0,τ)
11 (t) = L11(t) ,

σ
(q>0,τ)
11 (t)=L12(t)R11(t− τ )L21(t2q)λ

(q−1)(t− 2τ ),

(A13b)

σ
(q,τ)
21 (t) = R21(t)L21(t2q+1)λ

(q)(t− τ ) , (A13c)

σ
(q,τ)
12 (t) = L12(t)R12(t2q+1)ρ

(q)(t− τ ) , (A13d)

σ
(0,τ)
22 (t) = R22(t) ,

σ
(q>0,τ)
22 (t)=R21(t)L22(t− τ )R12(t2q)ρ

(q−1)(t− 2τ ).

(A13e)

Here the function ρ(q)(t) is

ρ(q>0)(t) =
q−1
Q

j=0

R11(t2j)L22(t2j − τ ) ,

ρ(0) = 1 .

(A14)

In the next section we consider in detail adiabatic (to first
order in Ω) asymptotics for the scattering matrix derived
above.

APPENDIX B: ADIABATIC DRIVE: Ωτ ≪ 1

In this Appendix we verify that for a slowly driven scatterer

the matrix Ŝin = Ŝ
(1)
in +O(Ω2) can be represented through the

frozen scattering matrix Ŝ as it was proposed in Refs. 52,66:

Ŝ
(1)
in (t, E) = Ŝ(t, E) +

ih̄

2

∂2Ŝ

∂t∂E
+ h̄ΩÂ(t, E) . (B1)

We calculate the matrix Â which is responsible for generat-
ing a directional asymmetry in scattering on an adiabatically
driven scatterer. In turn, this asymmetry leads to an adia-
batic quantum pump effect. The matrix Â satisfies66,

h̄Ω
“

Ŝ†Â+ Â†Ŝ
”

=
1

2
P{Ŝ†; Ŝ} , (B2a)

P{Ŝ†; Ŝ} = ih̄

 

∂Ŝ†

∂t

∂Ŝ

∂E
− ∂Ŝ†

∂E

∂Ŝ

∂t

!

. (B2b)

This equation results from the current conservation law up to
linear in Ω terms.

To find the matrix Â we use the anzats Eq. (B1) and con-
sider the solution Eq. (3) in the limit of low driving frequency
Ω → 0. In this limit the delay time τ is small compared with
a driving period T = 2π/ω. We use the ratio ǫ = τ/T as a
small parameter.

1. Zeroth order

In zeroth order in ǫ the matrix Ŝ
(0)
in coincides with the

frozen scattering matrix Ŝ. The frozen scattering matrix is
the stationary matrix with parameters being dependent on
time. To calculate the frozen scattering matrix one can use
Eqs. (3) (A13) and neglect changes in all the quantities during
the delay time τ . Therefore, we have to put t2q ≈ t in all the
terms in Eqs. (A13) and use:

Φ
(q,τ)
αβ ≈ eU(t)τ h̄−1(2q + 1 − δαβ).

As a result we find Ŝ
(0)
in (t, E) = Ŝ(t, E) with matrix elements:

Sαβ(t, E) =
∞
P

q=0

S
(q)
αβ (t, E) ,

S
(q)
αβ (t,E) = ei(kd−eU(t)τ/h̄)(2q+1−δαβ)σ

(q,0)
αβ (t, E) ,

(B3)

where the matrix σ̂(q,τ)(t,E) is defined in Eq. (A13).
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2. First order

To calculate the matrix Ŝ
(1)
in we expand Eq. (A13) in pow-

ers of τ and keep only the terms linear in τ . Our aim is to

calculate the irreducible part of Ŝ
(1)
in , i.e. the matrix Â. To

this end we use Eq. (B1) with the matrix Ŝ given by Eq. (B3).

We take into account that the frozen scattering matrix Ŝ de-
pends on time t through U(t) and the matrices L̂ and R̂ of the
point-like scatterers. The energy dependence of this matrix
is due to the phase factor e2iqkd only. We neglect the energy
dependence of the matrices L̂ and R̂ and take them at E = µ.
We can do so since L̂ and R̂ change on the energy scale of
the order of µ while in our problem the much smaller scales
of order h̄Ω and kBT are relevant, see, Eqs. (A6) and (7).

After a straightforward calculation we find

h̄ΩAαβ(t, E) =

∞
X

q=0

S
(q)
αβ (t, E)A(q)

αβ(t, µ) , (B4a)

where

A(q)
11 = τ0q

∂

∂t
ln

„

L12

L21

«

, (B4b)

A(q)
21 = − τ0(2q + 1)

2

∂

∂t
ln

„

L21

R21

«

− τ0q

2

∂

∂t
ln

„

R11

L22

«

, (B4c)

A(q)
12 = − τ0(2q + 1)

2

∂

∂t
ln

„

R12

L12

«

− τ0q
2

∂

∂t
ln

„

L22

R11

«

, (B4d)

A(q)
22 = τ0q

∂

∂t
ln

„

R21

R12

«

. (B4e)

At U(t) = 0, the above expressions coincide with those ob-
tained in Ref. 52.

Equation (B4) shows that the matrix Â possesses symmetry
properties with respect to interachange of lead indices which
are different from those of the frozen scattering matrix:52 The
symmetry of the Â matrix depends on differences of the ma-
trix elements of the L and R matrices [see Eqs. (B4c) and

(B4d)]. The main point is that the symmetry of the Â-matrix
is fundamentally different from the (frozen) scattering matrix
symmetry.

APPENDIX C: ALTERNATIVE UNITARITY

CONDITIONS

We can obtain another (alternative) formulation of the uni-

tarity condition for the matrix Ŝin. In the main part of the pa-

per we use the resulting conditions to simplify the expressions
for the pumped current. Substituting Eq. (3) into Eq. (4b)
and performing the inverse Fourier transformation we deduce
(as before we treat Ŝ(q,τ) as energy independent over the scale
of order h̄Ω),

∞
P

q=0

Ŝ(q,τ)(t,E)Ŝ(q,τ)†(t,E)

+
∞
P

p=0

∞
P

s=1

e−2iskdŜ(p,τ)(t, E)Ŝ(p+s,τ)†(t+ 2τs,E)

+
∞
P

q=0

∞
P

s=1

e2iskdŜ(q+s,τ)(t, E)Ŝ(q,τ)†(t− 2sτ, E) = Î .

(C1)

These identities have to hold for any wave number k. Taking
into account that in our case the matrix Ŝ(q,τ) can be kept en-
ergy independent over the interval corresponding to a change
of kd by 2π, we derive next three equations from Eq. (C1):

∞
X

q=0

Ŝ(q,τ)(t,E)Ŝ(q,τ)†(t,E) = Î , (C2a)

∞
X

p=0

Ŝ(p,τ)(t, E)Ŝ(p+s,τ)†(t+ 2τs,E) = 0̂ , (C2b)

∞
X

q=0

Ŝ(q+s,τ)(t, E)Ŝ(q,τ)†(t− 2τs,E) = 0̂ , (C2c)

where 0̂ is a null matrix. Notice that while the unitarity
condition Eq. (5) is quite general, the untitartity conditions
obtained above are valid only within the approximations we
made to get the matrix Ŝin, Eq. (3).

Taking a time derivative of Eq. (C2a) we immediately
prove that Eq. (9b) is real. In addition using Eqs. (C2b) and
(C2c) we can show that the product of scattering amplitudes

Ŝ(q,τ0)(t, µ)Ŝ(q′,τ0)†(t − 2τ0[q − q′], µ) (corresponding to par-
ticles leaving the scatterer at different time moments, t and
t−2τ0[q− q′]) in fact does not contribute into an interference

current I
(i)
α , Eq. (9d).
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49 M. Moskalets and M. Büttiker, Phys. Rev. B 73, 125315

(2006).
50 C. Liu, Q. Niu, Phys. Rev. B 47, 13031 (1993).
51 D. Shin, J. Hong, Phys. Rev. B. 70, 073301 (2004).
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