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Abstract We give the basic elements of the Floquet scat-
tering matrix approach [1] to the dynamic quantum trans-
port in mesoscopic and nanoscopic conductors. We use the
scattering formalism to discuss the noise power spectrum
of a single electron source working in the adiabatic regime
and emitting particles into a chiral electron waveguide. The
noise power is found to be quadratic at low frequencies and
exponentially suppressed at high frequencies.
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1 Introduction

Recent progress achieved with high-speed single-electron
sources [2,3,4,5,6] have opened fascinating perspectives for
the development of quantum electronics. On one side, it ad-
vances essentially the field of electrical quantum metrology
[7,8,9,10] by offering a real possibility to close the quantum
metrological triangle [11,12,13,14]. On the other side, the
on-demand injection of a single-particle state makes it possi-
ble to develop an electronic analogue [15] of quantum optics
having a great potential for quantum information processing
[16]. For example, the tunable two-particle exchange was
already proposed [17] and measured [18].

The difference of a single electron source (SES) from a
biased metallic contact, which is more conventional for elec-
tronics, is that SES emits electrons well separated in space
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and time. It allows to manipulate in a controllable manner
single particles and to engineer few-particle states necessary
for storing and processing information. With this respect
the crucial question is whether the emitted state is a gen-
uine single-particle state or not. To answer this question the
high-frequency noise of currents associated with a single-
electron emission was measured [19]. It was demonstrated
that there exists a fundamental lower limit to the noise due to
a quantum uncertainty in the time of emission. [19,20] The
source, regularly emitting single particles, nevertheless gen-
erates fluctuating currents. This limiting noise is referred to
as the phase noise. If, in addition, the emission is irregular or
involves more than a single particle per time, the noise gets
enhanced over this limit. The numerical calculations based
on the Floquet scattering theory show an excellent agree-
ment with experimental data. [21]

In this contribution our aim is to develop an analytical
theory of the phase noise of a single-electron emitter work-
ing in the adiabatic regime. For this purpose we use the Flo-
quet scattering theory of a time-dependent quantum trans-
port. [22] In the adiabatic regime the source is driven by
an AC voltage, which varies slowly compared to the inter-
nal dynamics of an electron source. Therefore, the source
stays in a close to equilibrium state while emitting electrons.
In contrast, in the non-adiabatic regime of Refs. [19] the
source is driven by a pulsed potential and, therefore, it emits
electrons during a highly non-equilibrium, transient process.
Despite of this difference we find the noise spectrum to be
qualitatively similar: It shows a universal quadratic behav-
ior at low frequencies that reflects a probabilistic tunneling
dynamics of an electron leaving the source. At high frequen-
cies the phase noise is suppressed. Using analytical calcula-
tions we show that in the adiabatic emission regime this sup-
pression admits both a time-based and an energy-based in-
terpretation. From the former point of view, the phase noise
gets suppressed as a result of a current spectrum suppres-
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2 Michael Moskalets

sion at high frequencies. From the latter point of view, the
phase noise suppression is due to decrease in the number of
electrons able to emit high-frequency energy quantum.

The paper is organized as follows. The basic elements
of the Floquet scattering matrix formalism are presented in
Sec. 2. In Sec. 3 the scattering amplitude of a single-particle
emitter, the current generated, and the current correlation
function are derived. In Sec. 4 the adiabatic working regime
is discussed. The excess noise spectrum is calculated and
analyzed in Sec. 5. We conclude in Sec. 6.

2 Floquet scattering matrix formalism

Here we closely follow the notations introduced in Ref. [1].
Let us consider a mesoscopic sample (a scatterer), connected
to several, Mr, metallic contacts via one-dimensional leads,
Fig. 1. The metallic contacts play the role of electron reser-
voirs [23], which we label with greek letters, α = 1, . . . ,Mr.
We consider a sample as mesoscopic if electrons propagat-
ing through it preserve phase coherence. Electrons in each
reservoir α are assumed to be in equilibrium. An electron
from any reservoir α can come to the sample. Then it will
be either transmitted to another reservoir β or reflected back
to the same reservoir. If the reservoirs have different chemi-
cal potentials, µα 6= µβ , and/or temperatures, Tα 6= Tβ , then
electrons scattered between different reservoirs become non–
equilibrium at the destination. This results in appearance of
currents through the sample driven by the chemical poten-
tial (and/or temperature) difference. Another possibility to
drive the system out of equilibrium is to act directly onto
the sample and to change its properties in time. [24] For
instance, one can vary a magnetic flux penetrating a scat-
terer, see Fig. 1, or an electrostatic potential induced by the
nearby gate. After scattering off a dynamic sample, an elec-
tron changes its energy and becomes non–equilibrium even
if it is scattered back to the reservoir it came from.

2.1 Current operator and current correlation function

Here we outline shorty how to calculate a current flowing
through the system. We use a charge current as an exam-
ple. However the same method is appropriate to address any
kind of a flux, energy, spin, etc. First, we introduce sec-
ond quantization operators â†

α(E), âα(E) which create, an-
nihilate an electron with energy E incoming to the scatterer
from the reservoir α . As we already mentioned, the incom-
ing electrons are in equilibrium and, therefore, the quantum-
statistical average of the product of creation and annihilation
operators is given by the Fermi distribution function fα(E)
of the corresponding reservoir,〈
â†

α(E)aα(E ′)
〉
= fα(E)δ (E−E ′) . (1)

Fig. 1 (Color online) Mesoscopic scatterer connected to three contacts,
Mr = 3. An electron originated from the first contact (operator â1) is
shown to be transmitted to the second and the third contacts (operators
b̂2 and b̂3, respectively) or reflected back to the first contact (opera-
tor b̂1). The scatterer shown includes impurities (dark circles) and is
threaded by the magnetic flux Φ .

Here δ (E − E ′) is the Dirac delta function and the Fermi
distribution function is,

fα(E) =
1

1+ e
E−µα
kBTα

, (2)

where kB is the Boltzmann constant, µα is the chemical po-
tential, and Tα is the temperature of the reservoir α . We
stress the reservoirs are assumed to be macroscopic and their
states are not changed by the coupling to a small mesoscopic
system.

Second, we introduce operators b̂†
α(E), b̂α(E) for elec-

trons scattered off the sample into the lead α . Since an elec-
tron scattered to the lead α can come from any other lead,
the operator bα can be related to all the operators aβ , β =
1, . . . ,Mr. The coefficients in such a relation are the elements
Sαβ of the scattering matrix S. If the scatterer is stationary
the scattering matrix depends on only one energy argument,
S(E). In contrast the scattering matrix for a dynamic sam-
ple depends on two energy arguments, S(E2,E1). Since the
energy of incoming, E1, and scattered, E2, electron can be
different.

Here we are interested in an important case when the
scatterer is driven periodically in time with frequency Ω .
[25,26] In this case the energy, which an electron can pick
up during scattering, is quantized in units of h̄Ω . We call
the corresponding scattering matrix as the Floquet scattering
matrix, SF . Then the relation between b− and a−operators
reads, [22]

b̂α(E) =
Mr

∑
β=1

∞

∑
n=−∞

SF,αβ (E,En) âβ (En) . (3)

Here En =E+nh̄Ω . Strictly speaking the lower bound in the
sum over n is restricted by the requirement, En > 0, in order
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that incoming electrons are propagating. However if the en-
ergy quantum h̄Ω is much smaller than the bandwidth, the
Fermi energy, the lower bound can be put to minus infinity,
what we assume in equation (3). The current conservation
requires the Floquet scattering matrix to be unitary. [1,22]
For a single orbital channel case of interest here, the unitar-
ity condition reads, [27]

∞

∑
p=−∞

S∗F(Ep,Em)SF(Ep,En) = δm,n ,

(4)
∞

∑
p=−∞

S∗F(Em,Ep)SF(En,Ep) = δm,n ,

where δm,n is the Kronecker symbol.
If the relevant energy scales (such as the applied volt-

age, the temperature difference, the energy quantum h̄Ω ,
etc.) characterizing the non-equilibrium state are all small
compared to the Fermi energy µ , then the current operator
in lead α reads, [28]

Îα(t) =
e
h

∫∫
dEdE ′ei E−E′

h̄ t{b̂†
α(E)b̂α(E ′)− â†

α(E)âα(E ′)
}
,

(5)

where e < 0 is the elementary charge and h is the Planck
constant. The quantum statistical average of this operator
over the equilibrium state of electrons in the reservoirs gives
a time-dependent current, Iα(t) =

〈
Îα(t)

〉
, flowing into the

lead α . To perform such averaging we use Eqs. (3) and (1).
Here we are interested in fluctuations of this current,

∆ Îα = Îα −
〈
Îα

〉
. We characterize such fluctuations with the

help of a current correlations function. In the frequency do-
main it reads as follows, [29]

Pαβ (ω1,ω2) =
1
2
〈
∆ Îα(ω1)∆ Îβ (ω2)+∆ Îβ (ω2)∆ Îα(ω1)

〉
,

(6)

where

Îα(ω) = e
∞∫

0

dE
{

b̂†
α(E)b̂α(E + h̄ω)− â†

α(E)aα(E + h̄ω)
}
,

(7)

is the Fourier transform of a current operator Îα(t), Eq. (5).

3 Single electron source

Below, to be specific, we concentrate on a single-electron
source used in Ref. [19]. The cartoon illustrating the features
of the experimental set-up essential for us is shown in Fig. 2.
The source is made of a mesoscopic capacitor [30] in a two-
dimensional electron gas in the quantum Hall effect regime

Fig. 2 (Color online) Single-electron source (SES). The mesoscopic
capacitor, a circular edge state, is attached to the Hall bar. The arrows
indicate the direction of movement of electrons in the edge states (the
blue strips). In the capacitor electrons move clockwise. The capacitor
is driven by the periodic potential applied to the nearby metallic gate
(not shown). The electrons (holes) emitted by the capacitor flow to the
metallic contact 2 where the current I2 is measured.

[31]. In this regime electrons propagate along chiral states
located close to the edges of a sample [32,33] The capaci-
tor, a small cavity with a circular edge state, is side-attached
to the linear edge state playing the role of an electron waveg-
uide. The length of a circular state is small such that the elec-
tron spectrum is quantized. The periodic potential of the top
gate surrounding the capacitor (not shown in Fig. 2) drives
its energy levels up and down. When some quantum level of
the cavity rises above the Fermi level in the waveguide, an
electron is emitted. In the opposite process, when the level
in the cavity sinks below the Fermi energy, an electron en-
ters the cavity, a hole is emitted into the waveguide. Since
after completion of a period no net charge is emitted, such a
cavity is called a capacitor.

The current and its fluctuations at the contact 2 are of
interest here. To calculate them we need the b2(E) operator,
which is (see, Eq. (3)),

b̂2(E) =
∞

∑
n=−∞

SF,21 (E,En) â1(En) . (8)

The scattering element SF,22 = 0 since an electron motion is
unidirectional. The non-zero scattering element is

SF,21 (E,En) = eik(E)L2cSF (E,En)eik(En)Lc1 . (9)

Here L2c (Lc1) is a distance between the cavity and the con-
tact 2 (1); k(E) is a wave number of an electron with energy
E in the waveguide; SF(E,En) is the Floquet scattering ma-
trix of the cavity. The exponential factors in Eq. (9) describe
a free propagation of electrons from the contact 1 to the cav-
ity and from the cavity to the contact 2. They are irrelevant
for subsequent calculations. In contrast, the scattering off the
cavity is crucial. The element SF(E,En) describes a forward
scattering of electrons in the chiral waveguide the cavity is
coupled to. During such a scattering an electron energy is
changed from En = E + nh̄Ω to E due to interaction with
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a dynamic cavity. Now we show how the Floquet scattering
matrix of the cavity is calculated. We stress it is a matrix in
the energy space.

3.1 Scattering amplitude of the SES

The cavity is modeled [34,35] as a single-channel chiral
state of the length L with a uniform time-periodic poten-
tial U(t) = U(t +T ). This state is coupled with the help
of a quantum point contact (QPC) to a single-channel linear
edge state playing the role of an electron waveguide. The
QPC is characterized by the energy independent reflection
and transmission coefficients. The problem of scattering of
electrons in the linear edge state off this scatterer can be
solved exactly and the Floquet scattering matrix of the cav-
ity can be calculated. [36]

To simplify calculations, it is convenient to represent the
Floquet scattering matrix elements as the Fourier transform
of some auxiliary scattering amplitude dependent on one en-
ergy and one time arguments. Depending on which energy,
for incoming or outgoing electrons, is kept fixed, this ampli-
tude is referred to as Sin(t,E) or Sout(E, t), respectively. [37]
For the purposes of this paper it is convenient to work with
the latter amplitude, which is defined as follows,

SF (E,En) = Sout,−n(E)≡
T∫

0

dt
T

e−inΩ tSout(E, t) . (10)

For the model of interest here the amplitude Sout(E, t) has
the following representation in terms of particular ampli-
tudes S(q)(t) : [36]

Sout(E, t) =
∞

∑
q=0

S(q)(t) ,

(11)

S(0) = r ,

S(q>0)(t) = t̄2 rq−1 eiqkL e−iΦq(t) ,

Φq(t) =
e
h̄

t+qτ∫
t

dt ′U(t ′) .

Here k ≡ k(E) is a wave number of an electron with energy
E in the cavity; r and t̄ are reflection and transmission co-
efficients of the QPC connecting the cavity and an electron
waveguide. The partial amplitude S(q)(t) is an amplitude for
an electron to enter the cavity at time t and to leave the cavity
after completing q full turns (of duration τ each). The energy
of an electron leaving the cavity is E. The quantity Φq(t) is a
time-dependent phase acquired by an electron during such a
propagation. The potential energy eU is assumed to be small
compared to an electron energy E that allows to separate the
time-dependent phase Φq(t) and the orbital phase qkL. This
general solution is not restricted to any particular amplitude
and/or time–dependence of the driving potential U(t).

3.2 Current

We substitute Eq. (8) into Eq. (5) and calculate a time de-
pendent current, I2(t) =

〈
Î2(t)

〉
, measured at the contact 2

(see Fig. 2),

I2(t) =
∞

∑
`=−∞

e−i`Ω t e
h

∞∫
0

dE (12)

×
∞

∑
n=−∞

S∗F (En,E)SF (En+`,E){ f (E)− f (En)} .

Here we suppose that both contacts, α = 1,2, have the same
chemical potential, µ1 = µ2≡ µ , the same temperature, T1 =

T2 ≡ T , and thus are characterized by the same Fermi distri-
bution function, f1(E) = f2(E)≡ f (E).

3.3 Current correlation function

In the set-up shown in Fig. 2 the current auto-correlation
function is measured at the contact 2. We use Eq. (6) and
find, [38]

P22(ω1,ω2) =
∞

∑
`=−∞

2πδ (ω1 +ω2− `Ω)P`(ω) , (13a)

where

P`(ω1,ω2) =
e2

h

∞∫
0

dE
{

δl0 F (E,E + h̄ω1) (13b)

+
∞

∑
n,m,p=−∞

F (E`+n,Em + h̄ω1)SF
(
E`+p,E`+n

)
S∗F (E,E`+n)

×SF (E + h̄ω1,Em + h̄ω1)S∗F (Ep + h̄ω1,Em + h̄ω1)

}
,

and

F(E1,E2) =
f (E1) [1− f (E2)]+ f (E2) [1− f (E1)]

2
. (14)

The current correlation function is non-zero even in equi-
librium, when the driving potential is switched off. This is
due to the quantum noise. [39,40] The important feature of
the present set-up is the possibility to completely subtract
the equilibrium quantum noise and to extract the contribu-
tion due solely to the emitted particles. For this purpose the
excess noise was measured. [19] The excess refers to the dif-
ference between the current correlation functions measured
with the source on and off. We will indicate the excess noise
with the superscript (ex).

Here we discuss only the `= 0 component of the excess
auto-correlation function, which was measured in Ref. [19]:

P
(ex)
0 (ω) =

e2

h

∞∫
0

dE
∞

∑
m=−∞

F(E,Em + h̄ω) (15)

×
{
|Πm(E,ω)|2−δm,0

}
,
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where

Πm(E,ω) =
∞

∑
q=−∞

SF (Eq,E)S∗F (Eq + h̄ω,Em + h̄ω) . (16)

An equation similar to Eq. (15) was found in Ref. [21].

4 Adiabatic emission

We suppose that the potential U(t) changes slowly com-
pared to the average time an electron spends in the cavity,
the dwell time,

τD =
τ

T
. (17)

Here T= |t̄|2 is the transmission probability of the QPC con-
necting the cavity and an electron waveguide; τ is a time of
a single turn around the cavity. In such a case we can keep
U(t) constant while calculating the time-dependent phase,

Φq(t) =
e
h̄

qτU(t) . (18)

Then we can easily sum up over q in Eq. (11) and find
Sout(E, t) = S(E,U(t)), where

S(E,U(t)) =−ei(φ(E,t)+θr)
1−
√

Re−iφ(E,t)

1−
√

Reiφ(E,t)
. (19)

Here we write the reflection coefficient as r =
√

Rexp(iθr)

and introduce the phase φ(E, t) acquired by an electron dur-
ing one turn,

φ(E, t) = θr + kµ L+2π
E−µ− eU(t)

∆
, (20)

where ∆ = h/τ is the level spacing in the cavity and kµ =

k(µ) is the wave number of an electron with the Fermi en-
ergy µ . In above equation we expand the orbital phase, kL =

kµ L+ 2π (E−µ)/∆ close to the Fermi energy µ . This ex-
pansion is exact for a linear electron dispersion, E(k). For
a nonlinear dispersion it is a good approximation if the rel-
evant energies are close to the Fermi energy, |E− µ| � µ .
Note within this approximation the time of one turn around
the cavity τ is energy independent. Respectively, the level
spacing ∆ is also energy independent, hence the spectrum
of electrons in the cavity is equidistant.

The amplitude S(E,U), Eq. (19), is nothing but the scat-
tering amplitude of a cavity with a fixed potential U . Since
now the potential is time-dependent, the amplitude S(E,U(t))
is referred to as the frozen scattering amplitude, meaning a
scattering amplitude with a potential frozen at time t. This
amplitude is manifestly unitary, |S(E,U(t))|2 = 1, as the
current conservation requires.

4.1 Quantized emission regime

If the transmission of the QPC is small, T� 1, the quan-
tum levels in the cavity are well defined, i.e., their width δ

is small compared to the level spacing ∆ . One can model
such levels as the Breit-Wigner resonances. [41] With vary-
ing potential U(t) the position of the levels in the cavity are
changed. We suppose the only one level in the cavity crosses
the Fermi level. Close to the time of an electron emission
(when the level in the cavity rises above the Fermi level in
an electron waveguide) the scattering amplitude can be rep-
resented as follows (up to the irrelevant phase factor), [17]

S(E, t) =
t− t−(E)+ iΓτ(E)
t− t−(E)− iΓτ(E)

, (21)

where t−(E) is a time when the middle of an energy level
is equal to E; the parameter Γτ(E) is a time interval, during
which the level having a width 2δ crosses the energy E. For
an equidistant spectrum with level spacing ∆ the level half-
width is δ = T∆/(4π) and Γτ = δ/|e∂tU (t−) | with ∂t indi-
cating a time derivative. Close to the time of a hole emission,
t+, the complex conjugate to Eq. (21) should be considered.

4.2 Current in the adiabatic regime

The adiabatic regime implies that the Floquet scattering ma-
trix changes only a little with energy on the scale put by
the frequency, i.e., on the scale h̄Ω . [22] To the leading or-
der in Ω its matrix elements are the Fourier coefficients of
the frozen scattering amplitude, see Eqs. (10) and (19). Thus
we can use S∗F (En,E)≈ S∗n(E) and SF (En+`,E)≈ Sn+`(E).
Moreover, expanding the Fermi function difference, f (E)−
f (En)≈ (−∂ f/∂E)nh̄Ω , we rewrite Eq. (12) as follows,

I2(t) =
−ie
2π

∞∫
0

dE
(
− ∂ f

∂E

)
S(E, t)

∂S∗(E, t)
∂ t

. (22)

At low temperatures, kBT ≤ h̄Ω , we can keep the scattering
amplitude as energy independent, S(E, t)≈ S(µ, t), while in-
tegrating over energy in Eq. (22). Using Eq. (21) we find a
time-dependent current generated by a single-particle emit-
ter in the adiabatic regime: [17]

I2(t) =
e
π

{
Γτ

(t− t−)
2 +Γ 2

τ

− Γτ

(t− t+)
2 +Γ 2

τ

}
. (23)

Here all quantities are calculated at the Fermi energy: t∓ =

t∓(µ) and Γτ = Γτ(µ). In above equation the current I2(t) is
given for a single period, 0 < t < T and should be periodi-
cally extended to other times. Note for the adiabatic regime
to be held the following inequality should be satisfied, [42]

Γτ � τD , (24)

i.e., the current pulse duration should be much larger than
the dwell time.
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The current I2(t) consists of two pulses of a Lorentzian
shape: The first, positive pulse corresponds to an emitted
electron (it carries a charge e), while the second, negative
pulse corresponds to an emitted hole (it carries a charge−e).
Consequently the current spectrum is bounded. The discrete
Fourier transform of the current reads,

I2,n =
e
T

e−|n|ΩΓτ

{
einΩ t− + einΩ t+

}
. (25)

Here we took into account that Γτ � T . As we will see
below the exponential decay of a current spectrum results in
an exponential decay of an excess noise spectrum.

5 Excess noise in the adiabatic regime

As we will show, the excess noise in the adiabatic regime
exists at relatively low (but still finite) frequencies There-
fore, we can expand Πm(E,ω), Eq. (16), and keep only the
leading terms,

|Πm (E,ω)|2 ≈ δm,0

(
1+ω

2Re
∂ 2Πm (E,ω)

∂ω2

∣∣∣
ω=0

)
(26)

+ω
2
∣∣∣∣∂Πm (E,ω)

∂ω

∣∣∣
ω=0

∣∣∣∣2 .
Note, due to unitarity of the scattering matrix, Eq. (4), the
linear in ω term vanishes in above equation. As it follows
quite generally from Eqs. (15) and (26), the low frequency
noise is quadratic in ω , that is quite expected for a capacitor.
[30]

In the adiabatic regime we use SF (Eq,E) ≈ Sq(E) and
S∗F (Eq + h̄ω,Em + h̄ω) ≈ S∗q−m(E + h̄ω) in equation (16).
With these simplifications and expansion (26) we find from
Eq. (15) the following,

P
(ex)
0 (ω) =

e2h̄ω2

2π

∞∫
0

dE
∞

∑
m=−∞

∣∣∣∣(S
∂S∗

∂E

)
m

∣∣∣∣2 (27)

×{F(E,Em + h̄ω)−F(E,E + h̄ω)} .

If the temperature is of the order of the frequency, kBT ∼
h̄ω ∼ h̄Ω , then in the adiabatic regime the scattering am-
plitude can be kept constant over the entire energy interval
relevant for the integration in above equation. That allow us
to integrate over energy. With the scattering amplitude given
in Eq. (21) we calculate,

P
(ex)
0 (ω) =

2e2

π
(ωτD)

2 (ΩΓτ)
2

∞

∑
m=−∞

e−2|m|ΩΓτ (28)

×
{
(mΩ +ω)coth

(
mΩ +ω

2kBT/h̄

)
−ω coth

(
ω

2kBT/h̄

)}
,

where the dwell time τD = h/(T∆). Note, for the particular
case, when the Fermi level aligns with a quantum level in the
cavity at U = 0 and the time-dependent potential is eU(t) =
(∆/2)cos(Ω t), we find the parameter ΩΓτ = T/(2π).

At zero temperature we sum up over m in Eq. (28) and
find,

P
(ex)
0 (ω) = 2

e2

T
(ωτD)

2 e−2|ω|Γτ . (29)

This dependence is shown in Fig. 3. At small frequencies,
ωΓτ� 1, the noise power is quadratic in ω . Such a quadratic
dependence, found also for the cavity driven by a pulsed
potential, is attributed to the probabilistic nature of tunneling
of an electron leaving the cavity. [19,20,21] The factor 2 in
front of Eq. (29) refers to two particles, one electron and one
hole, emitted during one period.

At higher frequencies, ωΓτ � 1, the excess noise gets
suppressed. As we already mentioned, this suppression is
a consequence of boundedness of a current spectrum, see
Eq.(25). A complementary, energy-based interpretation of
the excess noise suppression is also possible. It relies on a
supposition [43] that an emitted electron does contribute to
an excess noise power at frequency ω if it is able to emit an
energy quantum h̄ω . Taking into account that the energy of
particles emitted by a single-electron source fluctuates, [45]
we relate the factor exp(−2ωΓτ) in Eq. (29) to the number
of electrons emitted with energy larger than h̄ω . We denote
this number as N (ω). Provided the energy probability dis-
tribution p(E) for emitted electrons is known, this number
can be calculated as follows,

N (ω) =

∞∫
µ+h̄ω

dE p(E) . (30)

To calculate p(E) we note that in the quantized emission
regime only a single particle can be emitted at a time. There-
fore, the probability p(E) can be calculated using the dis-
tribution function f (E) =

〈
b̂†(E)b̂(E)

〉
for electrons scat-

tered off the cavity. The difference between p(E) and f (E)

2 4 6 8 10
x

0.1
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0.3

0.4

0.5

Χ

Fig. 3 (Color online) Excess noise in the adiabatic regime as a
function of frequency, Pex,ad(ω) = Cχ(2ωΓτ ), Eq. (29), with C =

2(e2/T ) [τD/(2Γτ )]
2 and χ(x) = x2e−x. The parameter Γτ is the half-

width of an emitted current pulse. τD is the dwell time.
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is twofold. First, they are differently normalized. And, sec-
ond, for E < µ the hole distribution function, f h = 1− f has
to be considered. Thus for E > µ we have,

p(E) =
f (E)

∞∫
0

dE f (E)
. (31)

To calculate f (E) we use Eq. (8) and find for the adiabatic
regime and at zero temperature,

f (E) =
∞

∑
q=[(E−µ)/(h̄Ω)]

∣∣Sq (E)
∣∣2 . (32)

Here [. . . ] stands for the integer part. For the Breit-Wigner
scattering amplitude, Eq. (21), the Fourier coefficients are,
Sq = −2ΩΓτ e−|q|ΩΓτ eiqΩ t∓θ(±q). Using these coefficients
we get f (E) = 2ΩΓτ e−2ΩΓτ (n+1) for nh̄Ω < E − µ < (n+
1)h̄Ω with integer n. And, correspondingly, we calculate the
energy probability distribution,

p(E) =
2Γτ

h̄
e−

2Γτ
h̄ |E−µ| , (33)

and the average number of electrons contributing to the ex-
cess noise,

N (ω) = e−2Γτ |ω| . (34)

This factor is exactly what enters Eq. (29).

6 Conclusion

We presented here the scattering matrix approach to the non-
stationary transport in coherent nanostructures. The essen-
tial feature of a non-stationary transport is an energy ex-
change between the carriers and the external driving force,
that is naturally taken into account by the Floquet scatter-
ing matrix amplitudes dependent on two energies. Another
advantage of the scattering formalism is that the results are
presented in the form that admits an intuitive and transparent
interpretation. For instance, the collective dynamics of elec-
trons in a waveguide coupled to a driven cavity is naturally
described in terms of extra particles, electrons and holes,
emitted by the cavity.

We use the scattering formalism to analyze the intrinsic
noise, the phase noise, of a single-particle emitter recently
investigated experimentally. The existence of this noise is
rooted in the fundamental quantum-mechanical principle,
the Heisenberg uncertainty principle. In the adiabatic emis-
sion regime analyzed here this relation manifests itself the
most bright and the entire phase noise spectrum can be eas-
ily understood. The quadratic low frequency asymptotics is
governed by the tunneling dynamics of an electron leaving
the emitter: Before emission an electron occupies a quan-
tum level in the cavity. Due to coupling between the cavity
and an electron waveguide the quantum level acquires some

width. Therefore, the initial energy of an electron has some
uncertainty 2δ , which ultimately results in the uncertainty
of the emission time, τD ∼ h̄/(2δ ). The latter in turn results
in a quadratic phase noise spectrum at ωτD � 1. [19,20,
21] With increasing frequency another energy, the energy
absorbed by an emitted electron (hole) from the external
driving force [46], comes into play. This energy E defines a
time-extend, 2Γτ = h̄/E , of an emitted single-particle state.
[17,47] The finite duration of a current pulse bounds the fre-
quency spectrum of a current and, therefore, the one of the
phase noise.
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