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Abstract

We analyze a coherent injection of single electrons on top of the Fermi sea in two situations, at finite-temperature
and in presence of pure dephasing. Both finite-temperature and pure dephasing change the property of the injected
quantum states from pure to mixed. However, we show that the temperature-induced mixedness does not alter the
coherence properties of these single-electronic states. In particular two such mixed states exhibit perfect antibunching
while colliding at an electronic wave splitter. This is in striking difference with the dephasing-induced mixedness
which suppresses antibunching. On the contrary, a single-particle shot noise is suppressed at finite temperatures
but is not affected by pure dephasing. This work therefore extends the investigation of the coherence properties of
single-electronic states to the case of mixed states and clarifies the difference between different types of mixedness.

Keywords: Floquet scattering matrix, quantum transport, single-electron source, mixed state, shot noise
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1. Introduction

Markus Büttiker was a person who pioneered the
branch of Physics presently known as Mesoscopics.
Many of his predictions were successfully confirmed
experimentally and gave birth to new exciting directions
in Mesoscopics. One of such predictions directly relates
to the topic of the present work.

In 1993 Markus Büttiker, Harry Thomas, and Anna
Prêtre predicted that the low-frequency dissipative re-
sponse of a single-channel mesoscopic capacitor is gov-
erned by the universal quantity, Rq = h/(2e2), the charge
relaxation resistance [1]. This value is for a single spin
channel corresponding to half the value of the von Kl-
itzing resistance quantum, RK = h/e2 [2]. The charge
relaxation resistance was suggested to be renamed the
Büttiker resistance [3], see also the comment in the
work by P. P. Hofer, D. Dasenbrook, and C. Flindt in
this special issue.

Email addresses: michael.moskalets@gmail.com (Michael
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Besides being robust against interactions, see for in-
stance Refs. [4, 5], one of the key characteristic of
this charge relaxation resistance is that it shows up if
and only if the electrons conserve their quantum phase
coherence while propagating through the sample [6].
When the Büttiker resistance was confirmed experimen-
tally in 2006 using a single-channel mesoscopic capac-
itor [7], it then became clear that this setup could also
serve as a coherent source of electrons. The year af-
ter, experimentalists made use of the relatively large en-
ergy level spacing in the capacitor to address a single
quantum level. This ability allowed them to operate the
mesoscopic capacitor as a single-electron source, i.e. a
source which emits one particle at a time. With this
experiment realized in 2007, Ref. [8], experimentalists
achieved the emission of a periodic stream of alternat-
ing single electrons and single holes.

This experiment has then triggered a prolific both ex-
perimental [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22] and theoretical [23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
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60, 61, 62, 63, 64] activity, which constitutes now a fas-
cinating and fast developing sub-field of Mesoscopics,
which can be called quantum coherent electronics. Here
quantum refers to the granular nature of charge and em-
phasizes the fact that the current through the conductor
is generated by a flux of well separated wave-packets.

Another step was then made theoretically by char-
acterizing the coherence properties of the emitted elec-
trons with the help of the first- and second order corre-
lation functions [34, 41, 45], first introduced by Glauber
in quantum optics. These works put forward the similar
role played by the single-electron source in electronics
compared to the already existing single-photon sources
in quantum optics. This analogy also gave rise to an al-
ternative denomination for this sub-field of Mesoscop-
ics, electron quantum optics.

The past years have seen the realization of emblem-
atic quantum optic experiments with single-electron
sources. Analogs of the Hanbury–Brown and Twiss
(HBT) experiment [65] and of the Hong-Ou-Mandel
(HOM) experiment [66] with single electrons were re-
spectively reported in Refs. [13, 17] and [15, 17].

Another important issue concerning the characteriza-
tion of these single-electron sources concerns the na-
ture of the quantum state which is emitted. This step
was tackled in an ingenious experiment reported in
Ref. [19], where the wave function of a single elec-
tron emitted at low temperatures was measured. This
result agrees well with the theoretical expectations from
Refs. [67, 68, 69].

The problem we address in the present work is the
effect of a finite temperature onto the state emitted by
a single-electron source. This problem is important at
least for two reasons. First, experimentally, the elec-
tronic temperature is finite and without a clear under-
standing of the temperature effect, it is difficult to judge
whether a given temperature can be considered as low
or high. Second, the experiment from Ref. [13] and the
theory works [13, 68] show that the shot noise caused
by the scattering of single electrons at a quantum point
contact gets suppressed with increasing electron tem-
perature. This effect was explained as a result of anti-
bunching of injected electrons with thermal excitations
of the Fermi sea [13, 68]. As we put forward in this
work, there is an alternative interpretation of the shot
noise reduction with a temperature increase.

Our interpretation exploits the fact that the type of
emitted quantum state (pure or mixed) is essential for
characterizing the suppression or not of the shot noise.
Our reasoning is based on the following arguments: On
one side, it is known that energy relaxation processes
suppress shot noise [70]. On the other side, it is also

known that when a pure state enters a region where it
is subject to relaxation, then it becomes a mixed state.
Therefore, a mixed state is expected to produce less shot
noise compared to what is produced by a pure state. Pre-
vious works have demonstrated that, in general, a pure
state at zero temperature becomes mixed at finite tem-
peratures, see for instance Ref. [71].

In the present work, we show that this statement is
also valid for a quantum state emitted by single-electron
sources. We also demonstrate that temperature-induced
mixedness is not equivalent to pure-dephasing induced
mixedness with respect to the coherence properties of
the emitted quantum state. To this end, we compare an
emitted quantum state in presence of finite-temperature
and in presence of pure dephasing and emphasize strik-
ing differences in the shot noise suppression in an HBT
and HOM experiments. Indeed, in the latter experiment,
the shot noise relies on the phase coherence property be-
tween two incident single electrons emitted by different
sources when they antibunch. As soon as these quantum
states lose their phase coherence, in presence of pure de-
phasing, we observe a suppression of the antibunching.
This has to be contrasted with the perfect antibunching
at finite-temperature. On the other hand, the phase co-
herence is irrelevant for the shot noise in HBT experi-
ment. This is why the pure dephasing does not affect it.
In contrast, the energy averaging required at finite tem-
peratures suppresses the shot noise. We formulate all
our results in terms of the first-order correlation function
of the emitted single electrons, which allows us to dif-
ferentiate the effects caused by the suppression of phase
coherence and averaging over energy.

The paper is organized as follows. In Sec. 2 we in-
troduce the excess first-order correlation function G(1),
the basic quantity we use to characterize the state emit-
ted by a single-electron source into an electronic waveg-
uide. In the subsequent Sec. 3, we relate G(1) to measur-
able quantities such as the time-dependent current and
the shot noise. The effect of a temperature of electrons
in a waveguide onto G(1) is discussed in detail in Sec. 4
and we compare these results with the pure dephasing
situation in Sec. 5. We conclude in Sec. 6.

2. Definition of G(1)

The system we have in mind is a single-channel chi-
ral waveguide of non-interacting and spinless electrons
originating from a metallic contact. An electron system
of a metallic contact is in equilibrium and is character-
ized by its Fermi distribution function f with tempera-
ture θ and chemical potential µ. As electronic waveg-
uides one can use the edge states of conductors in the

2



quantum Hall effect regime [2, 72, 73] or of topological
insulators [74, 75, 76]. To inject electrons into a waveg-
uide one can use a side-attached quantum dot, as exper-
imentally realized in Refs. [7, 8] in the quantum Hall ef-
fect regime and theoretically suggested in Refs. [77, 78]
for topological insulators. Another possibility is to use
an in-line dynamic quantum dot [16, 21, 79]. A non-
trivial way of generating of single-electron excitations
was demonstrated in Ref. [17], where, following a theo-
retical suggestion of Refs. [80, 81], a periodic sequence
of Lorentzian voltage pulses was applied directly to a
metallic contact. A periodically working source emits a
stream of particles. Here we assume that particles emit-
ted during different periods do not overlap with each
other.

The first-order electronic correlation function [34,
41] in a waveguide after the source is defined in the full
analogy with how it is done in optics [82],

G(1) (1; 2) = 〈Ψ̂†(1)Ψ̂(2)〉, (1)

where Ψ̂( j) ≡ Ψ̂
(
x j, t j

)
is a single-particle electron field

operator in second quantization evaluated at point x j and
time t j ( j = 1, 2). The quantum-statistical average 〈. . . 〉
is over the equilibrium state of electrons incoming from
the metallic contact. The correlation function G(1) con-
tains information about electrons of the Fermi sea as
well as about particles injected by the source.

To access information solely about the particles emit-
ted by the source let us introduce the excess correlation
function [34, 35, 41] evaluated as the difference of elec-
tronic correlation functions with the source on and off,

G(1) (1; 2) = G(1)
on (1; 2) − G(1)

o f f (1; 2) . (2)

The next step is to express G(1) in terms of some
quantity characterizing an electronic source. To this end
we first introduce the field operator in second quanti-
zation Ψ̂

(
x j, t j

)
for electrons in an electrical conductor

[83]. For chiral electrons it reads

Ψ̂
(
x j, t j

)
=

∫
dE
√

hv(E)
eiφ j(E)b̂ (E) . (3)

Here 1/[hv(E)] is a one-dimensional density of states at
energy E, b̂(E) is an operator for electrons passed by the
source, and the phase φ j(E) = −Et j/~ + k(E)x j. Then
we use the Floquet scattering matrix Ŝ F which charac-
terizes a source driven periodically by a potential with

period T = 2π/Ω. It relates the b̂-operators introduced
in Eq. (3) to the â-operators which describe equilibrium
electrons coming from the metallic contact [84, 85],

b̂(E) =
∑

n

S F (E, En) â (En) . (4)

Here En = E + n~Ω. The Floquet scattering matrix
element S F (En, E) is a quantum mechanical amplitude
for an electron with energy E in a waveguide to absorb
(or emit) n energy quanta ~Ω while passing through the
source. If the source is off, then S F (En, E) = S (E)δn,0,
where S (E) is the stationary scattering amplitude. For
a single-channel chiral case, it has an exponential form,
S (E) = eiϕ(E).

In order to perform a quantum-statistical average in
Eq. (1) we use the following relation

〈
â†(E)â(E′)

〉
=

f (E)δ (E − E′), which is valid since electrons in a
metallic contact are at equilibrium. Finally, using the
quantities introduced above, we represent the excess
correlation function in terms of the Floquet scattering
matrix of the source,

G(1)(1; 2) =

∞∑
n,m=−∞

∫
dE

hv(E)
f (E) e−iφ1(En)

(5)
×eiφ2(Em) {S ∗F (En, E) S F (Em, E) − δm,0δn,0

}
.

In the case when the relevant energy scales of the prob-
lem (the amplitude of an applied voltage, the energy
quantum ~Ω, etc.) all are small compared to the chemi-
cal potentialµ, one can simplify the equation for G(1).

2.1. A linear dispersion approximation
We employ the wide band approximation and treat

the density of state as energy independent, v(E) = vµ.
We linearize the dispersion relation,

k (En) ≈ kµ +
ε + ~nΩ

~vµ
, (6)

and represent the phase as follows,

φ j(En) = φµ, j − t̄ j
ε + ~nΩ

~
. (7)

Here φµ, j = −µt j/~ + kµx j and kµ are respectively the
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phase factor and the wave vector for electrons at the
energy E = µ, ε = E − µ is an energy counted from
the chemical potential and t̄ j = t j − x j/vµ is an effec-
tive time. In addition it is convenient to introduce the
scattering amplitude S in(t, E) [86], such that its Fourier
coefficients define the Floquet scattering amplitudes,

S F(En, E) = S in,n(E) ≡
∫ T

0

dt
T

einΩtS in(t, E). (8)

Then Eq. (5) can be cast into the following form,

G(1)(t̄1; t̄2) =
1

hvµ

∫
dE f (E) ei(t̄1−t̄2) E

~

(9)
×

{
S ∗in(t̄1, E)S in(t̄2, E) − 1

}
.

This equation constitutes the basic equation we will use
in the rest of the paper.

The function G(1) encodes information about the state
emitted by a single-electron source. To analyze this in-
formation one needs to relate G(1) to quantities accessi-
ble experimentally. In the next section we present few
examples of such relations.

3. Applications of G(1)

3.1. A time-dependent current

A time-dependent current I(t), measured just behind
the source, see the inset to Fig. 1, is expressed in terms
of the scattering amplitude [87],

I(t) =
e
h

∫
dE f (E)

{
|S in(t, E)|2 − 1

}
. (10)

Comparing the equation above and Eq. (9) we see that
I(t) is given by the diagonal part, t̄1 = t̄2 ≡ t̄, of the
correlation function,

I(t) = evµG(1)(t; t). (11)

Here G(1) (t; t) is evaluated at the same coordinates, x1 =

x2. This is why we use t instead of t̄.
If the source emits a single particle with the wave

function Ψ(t), then G(1)(t; t) = |Ψ(t)|2 /vµ [69]. There-
fore, I(t) provides information about a single-particle

I(t)
Sin(t)

�

L

R

I ou
t
(t
)

Sin(t)

Figure 1: (Color online) A single-electron source characterized by the
scattering amplitude S in(t) injects periodically particles (electrons or
electrons and holes) into a chiral wave-guide. Inset: I(t) is a current
measured just behind the source. Main: Iout(t) is a current measured
after an interferometer formed by two chiral wave-guides coupled at
two quantum point contacts L and R. Φ is a magnetic flux through the
interferometer.

density, in particular about the lifetime of the emitted
quantum state.

In order to access G(1)(t1; t2) at different times, t1 , t2,
it is necessary to measure an interference current, i.e. to
consider an interferometric setup.

3.1.1. An interference current
The current Iout(t) after an electronic Mach-Zehnder

interferometer [88], see the main panel of Fig. 1, is ex-
pressed in terms of G(1) [41],

Iout(t) = RLRR I (t − τu) + TLTRI (t − τd)

(12)

−2γ evµ Re
{
e−i2π Φ

Φ0 G(1)(t − τu; t − τd)
}
.

Here γ =
√

RLRRTLTR with RL/R and TL/R = 1 − RL/R

are the reflection and transmission probabilities for the
left L and the right R quantum point contacts of the in-
terferometer. The traveling time along the upper/down
arm of the interferometer is denoted τu/d, Φ is the mag-
netic flux through the interferometer and Φ0 = h/e is
the magnetic flux quantum.

The second line in Eq. (12) is an interference cur-
rent. At Φ multiple of the flux quantum, the interfer-
ence current measured as a function of t and ∆τ gives
access to the real part of G(1), while at Φ − Φ0/4 multi-
ple of Φ0, the imaginary part of G(1) can be measured.
The interference current, hence G(1)(t1; t2) at different
times, provides information about the single-particle co-
herence time [33], which depends on possibly present
decoherence processes [41].
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Information about the two-particle coherence can be
accessed via the measurement of a current correlation
function in an electronic circuit with two sources. Let
us here precise that a two-particle coherence has to be
contrasted to a single-particle coherence. Whereas the
latter one manifests itself in the interference current, the
former one is due to the interference of two two-particle
amplitudes and appears in the correlation noise in an
HOM experiment. Two-particle amplitudes can inter-
fere even when these two particles are not correlated.

3.2. Shot noise

The zero-frequency correlation function of currents
outgoing to contacts α and β of a multi-terminal elec-
tronic circuit fed by periodically working electron
sources reads,

Pαβ =
1
2

∫ T

0

dt
T

∫ ∞

−∞

dτ

(13)
×

〈
∆Îα(t)∆Îβ(t − τ) + ∆Îβ(t − τ)∆Îα(t)

〉
.

Here ∆Îα(t) = Îα(t) −
〈
Îα(t)

〉
is the operator of current

fluctuations; 〈. . . 〉 stands for the quantum statistical av-
erage over the equilibrium state of electrons incoming
from the contacts.

We are interested in circuits whose output contacts
are not directly connected to each other. In this case,
the current cross-correlation function Pαβ with α , β is
not sensitive to thermal fluctuations. It only depends on
the partitioning of incoming electron fluxes.

If there is only one source which regularly injects par-
ticles into the circuit, the low-frequency current fluctua-
tions are solely due to charge quantization and the corre-
sponding noise is referred to as the shot noise [70]. Let
us briefly remind the reader that the shot noise arises be-
cause each electron can be transmitted to only one out-
put contact. The current in this contact becomes there-
fore larger than its mean current, whereas the currents at
the other output contacts become lower than their mean
values. This effect leads to fluctuations in the current at
each output contact.

If there is more than one input source, the partition
noise can then be modified due to correlations between
different simultaneously injected electrons. These cor-
relations arise since the Pauli exclusion principle forbids
two electrons in the same state to be scattered simulta-
neously to the same output contact.

In the following we express Pαβ in terms of the ex-
cess first-order correlation function G(1) of the injected

electrons. This allows us first to show explicitly that, in
the case of a single-electron source, the shot noise does
not merely count the number of electrons emitted by the
source but also depends on whether the emitted state is
pure or mixed. Second, in the case of two sources con-
nected to different input contacts, we clarify how the
overlap of single electrons at the wave-splitter affects
the shot noise.

3.2.1. One source
Let us consider an electronic circuit, where the cur-

rent injected by a source is splitted at a quantum point
contact into two outgoing wave-guides, see Fig. 2, left
panel. Each input channel j = 1, 2 contains the Fermi
sea with distribution function f j. The zero-frequency
correlation function of outgoing currents, P ≡ P12, is
expressed in terms of the scattering amplitude S in char-
acterizing the source [89],

P

P0
= −2

∫
dE
~Ω

∞∑
q=−∞

f1 (E)
[
f1 (E) − f2

(
Eq

)]
(14)

×

∫ T

0

dt
T

∫ T

0

dt′

T
S ∗in (t, E) S in

(
t′, E

)
eiqΩ(t′−t).

Here P0 = e2RCTC/T is a zero-temperature shot noise
caused by partitioning a single electron per period T =

2π/Ω; RC and TC = 1 − RC are the reflection and the
transmission probabilities of the quantum point contact
C, see Fig. 2. To simplify the notation, we omit a sub-
script for the outgoing channels.

If two incoming channels have different tempera-
tures, f1 , f2, then the noise is not zero even if the
source is off. In order to characterize the noise caused
by a working source only, it is convenient to introduce
the notion of the excess noise, which is defined as the
difference of the shot noise with the source ”on” and
the one with the source ”off”. The excess current cross-
correlation function reads

Pex

P0
= 2

∫
dE
~Ω

∞∑
q=−∞

f1 (E) f2
(
Eq

) ∫ T

0

dt
T

(15)

×

∫ T

0

dt′

T

{
S ∗in (t, E) S in

(
t′, E

)
− 1

}
eiqΩ(t′−t).

Note that deriving the equation above from Eq. (14),
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Sin(t)
Iout,1(t)

Iout,2(t)
C

Iout,1(t)

Iout,2(t)
C

S1,in

S2,in

Figure 2: (Color online) Left panel: A wave-splitter setup. The peri-
odic flux of particles injected by the source S in is split at the quantum
point contact C. The time-dependent currents measured at the corre-
sponding outputs are denoted as Iout,1 and Iout,2, respectively. Right
panel: A collider setup. The particles injected by two sources S 1,in
and S 2,in can collide at the quantum point contact C.

we have additionally used the unitarity of the scattering
matrix,

∫ T

0

dt
T

S ∗in (t, E) S in

(
t, Ep

)
e−ipΩt = δp,0. (16)

Using this equation with p = 0, one can show that the
term with f 2

1 in Eq. (14) does not contribute to Eq. (15).
If the two incoming channels have the same temper-

atures, f1 = f2 ≡ f , then the excess current cross-
correlation function Pex can be expressed in terms of
the excess single-particle correlation function G(1). To
show this we need, first, to consider an electronic col-
lider, a circuit with two sources placed at two different
input channels.

3.2.2. Two sources
Let us consider an electron collider circuit with two

sources, see Fig. 2, right panel. Each source, j = 1, 2, is
characterized by the scattering amplitude S j,in. Now the
excess current correlation function reads [89],

Pex
two

P0
= 2

∫
dE
~Ω

∞∑
q=−∞

f1 (E) f2
(
Eq

)
(17)

×

∫∫ T

0

dt
T

dt′

T

{
S ∗1,in (t, E) S 2,in

(
t, Eq

)
×S ∗2,in

(
t′, Eq

)
S 1,in

(
t′, E

)
− 1

}
eiqΩ(t′−t).

Here the subscript “two” shows that the two sources are
present. Note that the time argument of the scattering
amplitude takes into account the time of flight between
the source and the quantum point contact C, see Fig. 2.

If the two sources are identical and they emit particles
at the same time, S 1,in(t, E) = S 2,in(t, E) ≡ S in(t, E), the
excess noise vanishes, Pex

two = 0. This directly follows
from Eqs. (17) and (16).

As a next step, we introduce the correlation noise,
which is the difference of the excess noise caused by
two working sources and the sum of excess noises gen-
erated by each source alone. The corresponding cross-
correlation function is

δP = Pex
two − P

ex
1 − P

ex
2 . (18)

Here the subscript j = 1, 2 denotes which one of two
sources is turned ”on”. Using Eqs. (15) and (17), we
find

δP

P0
= 2

∫
dE
~Ω

∞∑
q=−∞

f1 (E) f2
(
Eq

)
(19)

×

∫∫ T

0

dt
T

dt′

T

{
S ∗1,in (t, E) S 1,in

(
t′, E

)
− 1

}
×

{
S ∗2,in

(
t′, Eq

)
S 2,in

(
t, Eq

)
− 1

}
eiqΩ(t′−t).

Let us here emphasize that the correlation noise is a
manifestation of a two-particle interference effect. As
nicely demonstrated in the experiment [90], the two-
particle destructive interference effect is the manifes-
tation of the Pauli exclusion principle which leads to
the well-known antibunching of two electrons. We will
make use of this argument below in Sec. 5 to emphasize
the difference between temperature-induced mixedness
and pure dephasing-induced mixedness.

Equation (19) can be expressed in terms of single-
electron correlation functions for electrons emitted by
the sources when the period T of each source is long
enough such that the wave packets emitted by each
source during different periods do not overlap.

3.2.3. A long period limit
If the period T = 2π/Ω is long compared to all rele-

vant time scales of the problem, that is, the dwell time
of the source, the lifetime of a wave packet, etc., then
the energy quantum ~Ω can be treated as an infinitesi-
mal quantity and the sum over q can be replaced by the
integral over Eq = q~Ω according to the following rule:
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∞∑
q=−∞

→

∫
dEq

~Ω
. (20)

Correspondingly, the integral over time effectively be-
comes running in infinite limits,

∫ T
0 dt →

∫ ∞
−∞

dt. In
the following, we will not show explicitly these limits.
Equation (19) becomes

δP

P0
=

2
h2

∫∫
dtdt′

∫
dE

∫
dEq

(21)
× f1 (E) ei(t−t′) E

~
{
S ∗1,in (t, E) S 1,in

(
t′, E

)
− 1

}
× f2

(
Eq

)
ei(t′−t) Eq

~
{
S ∗2,in

(
t′, Eq

)
S 2,in

(
t, Eq

)
− 1

}
.

Comparing the equation above and Eq. (9), we arrive at
the desired relation,

δP

P0
= 2v2

µ

∫∫
dtdt′G(1)

1
(
t; t′

)
G(1)

2
(
t′; t

)
, (22)

where G(1)
j is the excess correlation function due to the

source j = 1, 2. Since the correlation function satisfies
the relation G(1)

j (t1; t2) =
[
G(1)

j (t2; t1)
]∗

, the above equa-
tion is real as it should be for a zero-frequency current
correlation function, see Eq. (13).

3.2.4. Shot noise of a single source in terms of G(1)

As announced at the end of Sec. 3.2.1, our goal is to
relate the excess current cross-correlation function of a
single source to the corresponding excess single-particle
correlation function. To achieve it, we need both input
channels having the same temperatures, f1 = f2, and
both sources being identical, S 1,in = S 2,in, hence G(1)

1 =

G(1)
2 ≡ G(1), see Eq. (9).
In this case, as already mentioned, the excess noise

vanishes, Pex
two = 0 and each source produces the same

noise,Pex
1 = Pex

2 ≡ P
ex. Therefore, the correlation noise

is (minus) twice the noise due to a single source, hence
δP = −2Pex, see Eq. (18). Now we can make use of
Eq. (22) and express Pex due to particles generated by a
single source in terms of G(1):

Pex

P0
= −v2

µ

∫∫
dtdt′

∣∣∣G(1) (t; t′
)∣∣∣2 . (23)

Taking into account the relation between the correlation
function and the irreducible part of the two-particle dis-
tribution function [69], we conclude that Eq. (23) agrees
with the result of Ref. [91] on the noise produced by adi-
abatic quantum pumps at zero temperature.

We stress that Eq. (23) was derived under the condi-
tion that both input channels have the same electronic
temperature. Therefore, the corresponding shot noise is
solely due to injected particles. There is no effect caused
by the antibunching of injected particles with thermal
excitations of the Fermi sea coming from the other input
channel. Indeed, all thermal excitations coming from
one input channel do experience antibunching with the
thermal excitations coming from the other input chan-
nel. One particle cannot antibunch with two particles at
once [89].

3.2.5. Shot noise of two sources
If the two sources are different, G(1)

1 , G(1)
2 , but the

temperatures of both input channels are the same, we
can use Eqs. (23) and (22) in (18) and obtain,

Pex
two

P0
= −v2

µ

∫∫
dtdt′

∣∣∣G(1)
1

(
t; t′

)
−G(1)

2
(
t; t′

)∣∣∣2 . (24)

The negative sign of the fermionic cross-correlation
function is expected from a non-interacting theory in the
absence of relaxation [83, 92].

Equation (24) is manifestly zero if the states emit-
ted by the two electronic sources are identical and if
they reach the beam splitter at the same time: G(1)

1 =

G(1)
2 . This means that the two emitted states demon-

strate a perfect antibunching while scattering at the
wave-splitter, that results in vanishing the shot noise
[90, 93, 94, 95]. This is a manifestation of an electronic
analogue [15, 17, 96, 97, 98, 99, 100, 101] of the Hong-
Ou-Mandel effect [66], well known in quantum optics.

In the particular case when each source emits a pure
single-particle state, i.e. G(1)

j (t; t′) = Ψ∗j(t)Ψ j (t′) /vµ
with Ψ j being the wave function of a single-electron
excitation emitted by the source j = 1, 2, the excess
current cross-correlation function can be expressed in
terms of the overlap integral J =

∫
dtΨ∗1(t)Ψ2(t). We

use a normalization
∫

dt
∣∣∣Ψ j(t)

∣∣∣2 = 1 and obtain from
Eq. (24) the desired relation,

Pex
two

P0
= −2

(
1 − |J|2

)
, (25)
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see for example Refs. [45, 68, 102]. In general, we do
not expect such a relation in the case of a mixed state, in
particular, at finite temperatures. However, in the case
of colliding levitons the temperature effect is decoupled
from the overlap effect [68].

3.3. Shot noise of a single source and the number of
particles

Equation (23) relates the shot noise to the correlation
function. In the case of a pure state the shot noise can
be related to the rate at which the particles are emitted.

3.3.1. Pure state
If the state emitted by the source is pure, then Eq. (23)

can be further simplified. For this, we note that the
single-particle correlation function for a pure state sat-
isfies the following identity

vµ

∫
dtG(1) (t1; t) G(1) (t; t2) = ±G(1) (t1; t2) , (26)

where the sign + stays for an electronic state and the
sign − is for a hole state. Inserting the above equation
into Eq. (23), we obtain

Pex

(−P0)
= N . (27)

Here we introduce the (statistical mean) number of par-
ticles N emitted during one period:

N = ±vµ

∫ T

0
dtG(1) (t; t) = ±

1
e

∫ T

0
dtI(t), (28)

and we have restored the proper limits of the time in-
tegral for clarity. The symbol e stays for an electron
charge and the sign +/− is for an electron/ a hole state.
If a pure emitted state contains both electrons and holes,
then N is the sum of the number of electrons and holes
emitted during one period.

On the contrary, if the emitted state is mixed, Eq. (26)
does not hold anymore and the original equation (23)
should be used instead of Eq. (27). In this case, there
is no a direct relation between the number of emitted
particles and the shot noise.

3.3.2. Mixed state
To clarify how the shot noise is related to the parti-

cle number in the case of a mixed state, we discuss few
examples. Let us start from a simple circuit, where a
mixed state can be created: a wave splitter with trans-
mission probability T . A single-particle state is in one
input channel of the wave splitter and the vacuum state
is in the other one. Each of the output states is a mix-
ture of a single-particle state and the vacuum state. Let
us take an output channel, where a single-particle state
appears with probability T . If such a mixed state is di-
rected to the second wave splitter, then the current cross-
correlation function is reduced by the factor T 2 com-
pared to the case where a single particle state is directly
partitioned at the second wave splitter [95, 92, 89]. In
this case, the rate at which the particles impinge on the
second wave splitter is reduced by a factor T while the
shot noise is reduced by a factor T 2.

If the mixed state is created without changing the ar-
rival rate of the electrons at the wave splitter, the shot
noise is changed or not (compared to the case of a
pure state) depending on the nature of decoherence pro-
cesses. A pure dephasing does not affect the shot noise
while inelastic scattering suppresses the shot noise [70].

A finite temperature in itself is not considered as a
decoherence factor but it also turns a pure state into a
mixed state [71]. As we will show in the next section,
a temperature-induced mixedness suppresses the shot
noise (without any suppression in the particle number).
To emphasize the difference between a temperature ef-
fect and decoherence we also present calculations for a
pure dephasing model.

4. G(1) at finite temperatures

To highlight the effect of a non-zero temperature,
we focus from now on a particular model for a single-
electron source. Namely, we consider the source of levi-
tons from Refs. [17, 19], where the stream of single
electrons is excited out of a metallic contact with the
help of a periodically repeated Lorentzian voltage pulse
[80, 81]. If the half-width of a leviton Γτ is much shorter
compared to the period, Γτ � T , electrons excited dur-
ing different periods do not overlap and they are statisti-
cally independent of each other. In this case we can use
an approximation introduced in Sec. 3.2.3 and restrict
ourselves to only one period, which is formally treated
as an infinite interval.

Explicitly, the Lorentzian voltage pulse applied to the
metallic contact to create a single-electron excitation
has the form: eVVL (t) = 2~Γτ/

(
t2 + Γ2

τ

)
. We denote the
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corresponding energy-independent scattering amplitude
and the excess correlation function as S in ≡ S VL and
G(1)

VL
respectively. Up to some irrelevant phase factor,

the scattering amplitude reads

S VL (t) = e−i e
~

∫ t
dt′VL(t′) =

t + iΓτ
t − iΓτ

. (29)

The maximum of a single-particle density is at t = 0.
To cast Eq. (9) into a form convenient to the sub-

sequent discussion, we use a substitution xexE →

d
(
exE

)
/dE (with x = i (τ1 − τ2) /~) and integrate by

parts over E. Then we obtain,

G(1)
VL

(t1; t2) =

∫
dE

(
−
∂ f
∂E

)
G(1)

VL,E
(t1; t2),

(30)

G(1)
VL,E

(t1; t2) =
1
vµ

Ψ∗VL,E (t1) ΨVL,E (t2) ,

where ΨVL,E(t) = e−it E
~
√

Γτ/π/ (t − iΓτ) is the wave
function of a leviton [67]. Since G(1)

VL,E
satisfies Eq. (26),

it can be interpreted as a correlation function of a levi-
ton being in a pure state with the filling frequency E/~
and the envelop function

√
Γτ/π/ (t − iΓτ).

4.1. Temperature-induced mixedness

At zero temperature ∂ f /∂E = −δ (E − µ), where δ(x)
is the Dirac delta function. Therefore G(1)

VL
= G(1)

VL,µ
and

the state emitted by the source is a pure state with the
filling frequency µ/~.

On the contrary, at non-zero temperatures, the corre-
lation function G(1)

VL
, Eq. (30), does not satisfy Eq. (26).

Therefore, the emitted state is a mixed state with the
probability density of appearance of a pure state ΨL,E

being

pθ(E) = −∂ f (E)/∂E. (31)

Notice that the different components of this mixed state
are not orthogonal to each other,

∫
dtΨ∗VL,EΨVL,E′ = e−

|E−E′ |
2EL . (32)

where EL = ~/(2Γτ) is the mean energy of a leviton

[67]. However, if the difference of the filling frequen-
cies of two states exceeds 1/Γτ, then these states are
effectively orthogonal to each other.

To differentiate pure and mixed states of a leviton, let
us introduce a time-dependent purity coefficient which
we define as follows:

PVL (t1, t2) =
vµ

∫
dtG(1)

VL
(t1; t) G(1)

VL
(t; t2)

G(1)
VL

(t1; t2)

(33)

=

∫
dt Γτ/π

t2+Γ2
τ
η
(

t1−t
τθ

)
η
(

t−t2
τθ

)
η
(

t1−t2
τθ

) .

Here η(x) = x/ sinh(x) ≡
∫

dE(−∂ f /∂E) exp
(
ixτθ E

~

)
and the thermal time τθ = ~/(πkBθ), where kB is the
Boltzmann constant.

The purity coefficient is shown in Fig. 3. For a pure
sate, the coefficient PVL (t1, t2) = 1 for any times t1 and
t2, while for a mixed state, it differs from 1 for some
t1 and t2. Figure 3 shows that the state of a leviton is
pure if the thermal time exceeds its duration, τθ � 2Γτ
(see the blue transparent surface for τθ = 10Γτ). On
the contrary, at higher temperatures when τθ ≤ 2Γτ, the
state of a leviton becomes mixed (see the green opaque
surface for τθ = Γτ).

With this, we could answer the first main question we
formulated in the introduction: how to consider an elec-
tronic temperature as high or low? The answer lies in
the comparison between the thermal time τθ and the life
time of the single-particle state Γτ as discussed above.

4.2. Temperature suppression of the shot noise
Inserting Eq. (30) into Eq. (23), the excess cur-

rent cross-correlation function in the case of a periodic
stream of levitons reads:

Pex
L

(−P0)
=

∫∫
dEdE′pθ(E)pθ(E′)e

−
|E−E′ |
EL . (34)

Note that the factor exp (− |E − E′| /EL) arises due to
the non-orthogonality of the different components of a
mixed state, see Eq. (32).

The function Pex
L is shown in Fig. 4. At low temper-

atures, when τθ � Γτ, as we already mentioned, the
leviton is emitted in a pure state and Pex

L / (−P0) = 1.
While with increasing temperature the current cross-
correlation function decreases. At relatively high tem-
peratures, when τθ ≤ Γτ, it can be represented as fol-
lows,
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Figure 3: (Color online) The purity coefficient PVL for levitons emit-
ted into the Fermi sea with a finite temperature is shown as a function
of two times t1 and t2 normalized to the leviton’s half-width Γτ, see
Eq. (32). The blue transparent surface calculated for a small tempera-
ture, τθ/Γτ = 10, demonstrates that the state of a leviton is pure since
the purity coefficient is close to one. While the green opaque surface
calculated for a relatively large temperature, τθ/Γτ = 1, demonstrates
that the state is mixed since the purity coefficient deviates strongly
from one. The maximum of leviton’s density is at t1 = t2 = 0.

Pex
L

(−P0)

∣∣∣∣∣∣
kBθ�~/Γτ

≈ 2EVL

∫
dEp2

θ(E) =
π

6
τθ
Γτ
. (35)

The corresponding dependence is shown in Fig. 4 by
the dashed line. Clearly it is a good approximation to
the exact result, Eq. (34), already at Γτ/τθ ≥ 3.

Equation (35) can be interpreted in the following way.
At high temperatures the states with energy from a wide
interval (of the order of few kBθ near the chemical po-
tential µ) do contribute to the state of an emitted particle,
see Eq. (30). The two states are correlated if their ener-
gies do not differ by more than 2EL, see Eq. (32). This
property allows us to replace the double-energy integral
in Eq. (34) by a single-energy integral in Eq. (35) with
the extra factor 2EVL being the correlation energy for
the states ΨL,Es. Therefore, at high temperatures, the
state of a leviton can be viewed as a mixture of effec-
tively uncorrelated pure states arising with probability
p̄θ(E) = 2EVL (−∂ f (E)/∂E). Each of these states occu-
pies an effective volume 2EVL in the energy space.

This picture, which emerges as a result of energy av-
eraging, allows us to express measurable quantities for a
leviton in a mixed state via the corresponding quantities
calculated for a pure state. For example, Eq. (30) be-
comes G(1)

VL
=

∫
dE/(2EVL ) p̄θ(E)G(1)

L,E , where G(1)
L,E is for

a pure state with energy E. While Eq. (35) can be rewrit-
ten as Pex

L =
∫

dE/(2EVL ) p̄2
θ(E) (−P0), with (−P0) be-

ing the excess current correlation function calculated for
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Figure 4: (Color online) The excess current cross-correlation func-
tion, Pex

L /(−P0), Eq. (34), is shown (a solid red line) as a function
of the ratio of the half-width of a leviton Γτ and the thermal time
τθ = ~/(πkBθ). The asymptotics given in Eq. (35) is shown as a dashed
black line.

a leviton in a pure state. Therefore, the component of a
mixed state appearing with probability p̄θ contributes to
noise with an amount proportional to p̄2

θ . Though at a
finite temperature the number of emitted particles is not
changed,

∫
dE/(2EVL ) p̄θ(E) = 1, the noise is reduced

since
∫

dE/(2EVL ) p̄2
θ(E) < 1.

4.3. Antibunching of electrons emitted at finite temper-
atures

The two identical single-electron states
(
G(1)

1 = G(1)
2

)
demonstrate perfect antibunching even if they are emit-
ted at finite temperatures, that is, even if they are mixed
states. As a result of antibunching the shot noise is
completely suppressed, Pex

two = 0, see Eq. (24). This
was observed experimentally in Ref. [17] in HOM-type
measurements of levitons. The corresponding predic-
tion was made in Ref. [68], where it was also shown
theoretically that the HOM noise at zero-time delay van-
ishes at all temperatures for sine wave voltage pulses.
Our equation (24) generalizes this result to arbitrary
voltage pulses and to different types of coherent single-
electron sources.

The vanishing of the shot noise means that a positive
correlation noise, see Eq. (22), completely compensates
negative single-particle contributions, see Eq. (23). As
we showed above, with increasing temperature, the
single-particle contributions get suppressed. Therefore,
the correlation noise also gets suppressed in order to
maintain a zero total shot noise. As we already men-
tioned, the correlation noise originates from a two-
particle interference. Therefore, one can suppose that
a two-particle interference is suppressed at finite tem-
peratures, i.e., that a finite temperature is a decoherence
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factor. However this is not the case, since a two-particle
interference contribution to noise (the correlation noise)
is suppressed in a similar way as a single-particle con-
tribution, which does not rely on any interference effect.
This fact indicates that a temperature-induced mixed-
ness does not destroy the coherence properties of the
single-electron state. What is suppressed is not an inter-
ference ability but the correlation noise, which is given
by the sum over the components of a mixed state.

Note that the exact compensation of both a correla-
tion contribution and a single-particle contribution to
the shot noise is not specific to the source of levitons:
it is valid for any coherent electron source at zero as
well as finite temperatures.

4.4. Second-order correlation function G(2) for elec-
trons emitted at finite temperatures

The second-order correlation function is a conve-
nient tool to verify whether an electronic source emits a
single-particle or a multi-particle state [69]. This func-
tion calculated for emitted particles is zero in the case
of a single-particle state, while it differs from zero in the
case of a multi-particle state.

The total second-order correlation function,
G(2) (1, 1′; 2′, 2) = 〈Ψ̂†(1)Ψ†(1′)Ψ̂(2′)Ψ̂(2)〉, is not
additive. This means that it contains not only the
Fermi sea contribution, G(2)

o f f , and the contribution of
the particles emitted by the source, G(2), but also the
contributions due to the joint effect of emitted electrons
and electrons of the Fermi sea. Therefore, the isolation
of G(2) is not a trivial problem anymore.

When the state of emitted particles is pure this prob-
lem has a simple solution. Namely, as suggested in
Ref. [103], G(2) is calculated as the Slater determinant of
excess correlation functions G(1) taken at different time
arguments:

G(2) (1, 1′; 2′, 2
)

= det
(

G(1)(1, 2) G(1)(1, 2′)
G(1)(1′, 2) G(1)(1′, 2′)

)
. (36)

This suggestion works well at zero temperature [69],
whereas it fails at finite temperatures. Indeed, if we use
G(1)

VL
, Eq. (30), for a leviton emitted at a finite tempera-

ture, then Eq. (36) gives a non-zero result. This result
disagrees with the expectation that G(2)

VL
= 0, since the

state in question is a single-particle state.
The resolution of this seeming paradox lies in the fact

that with increasing temperature the state of a leviton
evolves from pure to mixed. In the case of a pure state,
Eq. (36) is correct. On the contrary, for a mixed state,

G(2) cannot be directly expressed in terms of G(1) any-
more. Different components of a mixed state should be
considered separately while calculating a higher-order
correlation function in terms of the Slater determinant
composed of the first-order correlation functions.

At finite temperatures, the correct expression for levi-
ton’s G(2)

VL
is the following:

G(2)
VL

(
1, 1′; 2′, 2

)
=

∫
dE

(
−
∂ f
∂E

)
G(2)

VL,E
(
1, 1′; 2′, 2

)
. (37)

Here G(2)
VL,E

is expressed in terms of G(1)
VL,E

, Eq. (30),
according to Eq. (36). The equation above leads to
G(2)

VL
= 0 as expected for a single-particle state.

Note that in the general case, when an arbitrary pe-
riodic voltage V(t) is applied to a metallic contact at a
finite temperature, Eqs. (30) and (37) define the first-
order correlation function G(1)

V and the second-order cor-
relation function G(2)

V for emitted particles respectively.
In this case, the quantity G(1)

V,E appearing in Eq. (30)
reads:

G(1)
V,E(t1; t2) =

ei(t1−t2) E
~

vµ

ei e
~

∫ t1
t2

dt′V(t′)
− 1

2πi (t1 − t2)
. (38)

In general, this quantity can not be factorized into the
product of two terms dependent on one time only as
done for G(1)

VL,E
(t1; t2). Therefore G(2)

V , 0. This tells
us that at finite temperatures a time-dependent voltage
V(t) excites a mixed multi-particle state on top of the
Fermi sea.

5. G(1) in presence of pure dephasing

We take the opportunity of this work to empha-
size differences in the coherence properties of single-
electron states at finite temperatures or in presence of
pure dephasing. In particular, investigating the pu-
rity and shot noise suppression in presence of pure de-
phasing will strengthen our previous interpretation of
temperature-induced mixedness that it can not be con-
sidered equivalent to a decoherence effect.

The model we consider here for pure dephasing is the
following. At zero temperature, we assume a finite re-
gion over which the single-electron state acquires an ad-
ditional phase ϕ(t) due to the presence of a classical po-
tential V(t). The time of flight for this region is defined
as tV and the corresponding phase factor reads:
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eiϕ(t) = e−i e
~

∫ t
t−tV

dt′V(t′)
. (39)

The potential V(t) is assumed to satisfy random Gaus-
sian noise, i.e

〈V(t)〉 = 0 and 〈V(t′)V(t′′)〉 = 2 (~/e)2 δ(t − t′)/τϕ .
(40)

Here τϕ is the dephasing time characterizing the fluctu-
ations of the potential V .

Our choice of modeling pure dephasing is in accor-
dance with previous works in quantum optics investi-
gating the effect of pure dephasing on single-photon
sources [104, 105, 106, 107] and works investigating
pure dephasing in mesoscopic physics, using a de-
phasing probe model introduced first by M. Büttiker
[108, 109, 110] or comparing different approaches for
pure dephasing [111, 112, 113, 114, 115, 116]. This list
of references is highly non exhaustive, it rather aims at
highlighting the important contributions of M. Büttiker
for a better understanding of quantum coherence and
dephasing processes. Our model takes into account in
an explicit way the fluctuations spectra of the environ-
ment, here the classical potential V . We have assumed
a random Gaussian noise for simplicity, but the results
presented below are generalizable to other spectra.

The classical potential V(t) affects the zero-
temperature correlation function of a leviton, Eq. (30),
in the following way,

G(1)(t1; t2) = e−iϕ(t1)eiϕ(t2)G(1)
VL,µ

(t1; t2) . (41)

If the time of flight is much longer compared to the levi-
ton’s lifetime, tV � Γτ, then for all relevant times t1 and
t2 the phase factor can be simplified as following:

e−i(ϕ(t1)−ϕ(t2)) = ei e
~ (

∫ t1
t1−tV

dt′V(t′)−
∫ t2

t2−tV
dt′V(t′))

≈ e−i e
~

∫ t2
t1

dt′V(t′)
. (42)

When averaging over the fluctuating phase ϕ, denoted
〈. . .〉ϕ, we assume Gaussian fluctuations such that:

〈e−i(ϕ(t1)−ϕ(t2)〉ϕ = e−
1
2 〈(ϕ(t1)−ϕ(t2)2〉ϕ

≈ e−
1
2

e2

~2

∫∫ t2
t1

dt′dt′′〈V(t′)V(t′′)〉ϕ

= e−|t2−t1 |/τϕ . (43)

The last equality follows from the definition of the fluc-
tuation potential V , see Eq. (40). Inserting the expres-
sion of the scattering amplitude, Eq. (29), the final ex-
pression for the first-order correlation function of a levi-
ton in presence of pure dephasing takes the form:

〈
G(1)(t1, t2)

〉
ϕ

= e−|t2−t1 |/τϕG(1)
VL,µ

(t1; t2)

(44)

=

∫
dE

~/(πτϕ)

(E − µ)2 +
(
~/τϕ

)2 G(1)
VL,E

(t1; t2).

As expected, the fluctuating phase factor affects the
phase coherence properties of the quantum state, which
can be probed via an interference current through the in-
terferometer, Eq. (12). This is reflected in the exponen-
tially decaying factor in the first-order correlation func-
tion G(1). Let us remark that the measurement of G(1)

should allow us to distinguish finite-temperature effect
from pure dephasing, at least at sufficiently low temper-
atures, i.e. when the thermal time τθ exceeds the pulse
duration Γτ. Indeed, G(1) (t1; t2) will decay as a func-
tion of the time difference |t1 − t2| following the func-
tion η ([t1 − t2]/τθ) introduced after Eq. (33), whereas it
will decay exponentially in presence of pure dephasing
(see Eq. (44)). In the following, we make use of the
possibility to measure G(1) in an experiment to investi-
gate the purity of the single-electron state in presence of
dephasing.

5.1. Purity in presence of pure dephasing
We start again from the definition of the purity coef-

ficient as defined in Eq. (33), with one important dif-
ference : as we are interested in the quantum state of a
leviton subject to a fluctuating potential, the purity co-
efficient has to be calculated from the measured G(1) in
presence of pure dephasing. This means that we have to
consider

〈
G(1)(t1, t2)

〉
ϕ

instead of G(1)(t1, t2). This leads
to:

PϕVL
(t1, t2) =

vµ
∫

dt
〈
G(1)

VL
(t1; t)

〉
ϕ

〈
G(1)

VL
(t; t2)

〉
ϕ〈

G(1)
VL

(t1; t2)
〉
ϕ

(45)

=

∫
dt

e−|t−t1 |/τϕe−|t2−t|/τϕ

e−|t2−t1 |/τϕ

Γτ/π

(t2 + Γ2
τ)
.

This purity coefficient is displayed in Fig. 5: it shows
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Figure 5: (Color online) The purity coefficient PϕVL
for levitons emit-

ted in presence of pure dephasing is shown as a function of two times
t1 and t2 normalized to the leviton’s half-width Γτ, see Eq. (45). The
blue transparent surface calculated for a weak dephasing, τϕ = 50Γτ,
demonstrates that the state of a leviton is almost pure since the purity
coefficient is close to one. While the green opaque surface calculated
for a relatively strong dephasing, τϕ = 5Γτ, demonstrates that the state
is mixed since the purity coefficient deviates strongly from one. The
maximum of leviton’s density is at t1 = t2 = 0.

that pure dephasing induces mixedness as expected for a
finite dephasing time τϕ. Note that the effect of dephas-
ing on a single-particle state is much stronger than the
effect of finite temperature at close corresponding times
τϕ and τθ. This can be observed by comparing the blue
transparent surfaces in Fig. 3 calculated for τθ = 10Γτ
and in Fig. 5 calculated for five times larger τϕ = 50Γτ.

Although the first-order correlation functions at finite
temperatures and in presence of pure dephasing look
similar, see respectively Eqs. (30) and (44), the differ-
ence in the underlying physical mechanisms which are
responsible for mixedness results in completely differ-
ent properties of the shot noise as we show below.

5.2. Shot noise suppression in presence of pure dephas-
ing

Let us start with the situation where only one source
emits single levitons as depicted on the left panel of
Fig.2. The excess current cross-correlation function av-
eraged over the fluctuating phase ϕ is then given by (see
Eq. (23)):

〈
Pex

P0

〉
ϕ

= −v2
µ

∫∫
dtdt′

〈∣∣∣G(1)
VL

(
t; t′

)∣∣∣2〉
ϕ

(46)

= −v2
µ

∫∫
dtdt′

∣∣∣G(1)
VL

(
t; t′

)∣∣∣2 .
The second equality follows from the cancellation of

the phase factor e−i(ϕ(t)−ϕ(t′))ei(ϕ(t)−ϕ(t′)) for any t and t′.
Therefore, as we already mentioned, the shot noise is
not affected by pure dephasing.

The situation is radically different when consider-
ing shot noise arising from the antibunching of levitons
emitted by two separated sources as shown on the right
panel of Fig. 2. Indeed, in this situation, Eq. (24) be-
comes:

〈
Pex

two

P0

〉
ϕ

= −v2
µ

∫∫
dtdt′

〈∣∣∣∣G(1)
1,VL

(t, t′) −G(1)
2,VL

(t, t′)
∣∣∣∣2〉

ϕ
.

(47)

The modulus squared of the difference between the two
G(1)-functions is composed of four terms. Assuming
that the fluctuating potentials of two sources are not cor-
related and that they are characterized by the dephasing
times τ1,ϕ and τ2,ϕ, we finally obtain:

〈
Pex

two

P0

〉
ϕ

= −2
1 − 1

2

〈
δP

P0

〉
ϕ

 ,
(48)〈

δP

P0

〉
ϕ

= 2v2
µ

∫∫
dtdt′e

−|t′−t|
(

1
τ1,ϕ

+ 1
τ2,ϕ

)

×G(1)
1,VL

(t, t′)G(1)
2,VL

(t′, t) .

Equation (48) shows that pure dephasing induces a
suppression of the antibunching between two single-
electron states at zero temperature in full agreement
with Ref. [99]. This result can also be understood
in view of what was already mentioned earlier in this
work: the correlation noise, δP originates from a two-
particle interference effect. When averaging over the
fluctuating phase ϕ, the phase coherence is lost, which
leads to the suppression of the correlation noise as
shown in Fig. 6.

This result has to be contrasted with the perfect an-
tibunching of temperature-induced mixed states as pre-
sented in the previous section. The suppression of the
correlation contribution to noise constitutes therefore a
key measurement to distinguish a finite-temperature ef-
fect from pure dephasing.

6. Conclusion

We analyzed the first-order correlation function of
electrons adiabatically injected on top of the Fermi sea
by a single-electron source. At finite temperatures of
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Figure 6: The maximum correlation noise in presence of dephasing,
〈δP/P0〉ϕ, see Eq. (48), due to collisions of two identical levitons,
G(1)

1,VL
= G(1)

2,VL
, is shown as a function of the ratio of the half-width

of a leviton Γτ and the dephasing time the same for both sources,
τϕ ≡ τ1,ϕ = τ2,ϕ.

the Fermi sea, θ > 0, the state of an injected particle in
mixed, while at zero temperature it is pure. The con-
dition for the cross-over temperature is set by the ther-
mal time τθ = ~/(πkBθ) being of the order of the life-
time of a single-particle wave-packet 2Γτ, see Fig. 3.
We showed that despite its mixed nature, the single-
particle states remain phase coherent at finite temper-
atures. This is demonstrated by the fact that two such
states (with identical characteristics) show perfect anti-
bunching while overlapping at an electronic wave split-
ter. As a result of antibunching, the shot noise vanishes
if the two states approach the wave splitter from dif-
ferent sides at the same time. This effect is an elec-
tronic analogue of the famous Hong-Ou-Mandel effect,
where bunching of two photons nullifies the correla-
tion function for outgoing streams of particles. Impor-
tantly, here we demonstrated that even fermions in a
temperature-induced mixed states demonstrate perfect
antibunching. This result was emphasized by consider-
ing single-particle states at zero temperature but subject
to pure dephasing. In this case, their phase coherence
properties are altered and we have shown that this leads
to a suppression of the antibunching.

However the mixed nature of a state injected at fi-
nite temperature has an observable effect. In particular,
a mixed single-particle state produces less shot noise
caused by partitioning at the wave splitter, compared
to what is produced by a pure single-particle state. As
a result, the shot noise gets suppressed with increasing
temperature in agreement with the experimental obser-
vation of Ref. [13].

Acknowledgments

We dedicate this work to Markus Büttiker, who has
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Plaçais, C. Wahl, J. Rech, T. Jonckheere, T. Martin, C. Grenier,
D. Ferraro, P. Degiovanni, G. Fève, Electron quantum optics
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