Quantum-size electrostatic potential in two-dimensional
ballistic point contacts
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It is shown that in the strong-screening limit an electrostatic potential,
which appears due to the quantization of the transverse motion of elec-
trons, exists in a microscopic constriction. This effect increases the
number of conducting one-dimensional subbands in the contact.
© 1995 American Institute of Physics.

The experimental'? observation of the conductance quantization in two-dimensional

ballistic point contacts is a striking demonstration of the wave behavior of current carri-
ers. Theoretical analysis showed that conductance quantization, in the units
G0=2e2/ h, as a function of the contact diameter is universal and occurs in contacts with
a sharp geometry>* and in contacts with a smooth geometry (Refs. 5 and 6 ). The reason
for the conductance quantization in a microscopic constriction is that the transverse (with
respect to the X axis of the contact) motion of the electrons is quantized. This accounts
for the existence of one-dimensional conducting subbands with an energy

€n(P) = €n(0)+pH2m*,  €,(0)=mh’m*/d?,

where m* is the electron effective mass, p, is the electron momentum, m is the subband
number, and d is the width of the microconstriction at its narrowest point. The conduc-
tance of each subband is G;. Subbands for which the condition €,,(0)<ep is satisfied
are conducting subbonds (€y is the Fermi energy of the electrons at the edges of the
contact). The conductance of the contact in this case is G=M G, where M is the number
of conducting subbands. Since €,,(0) depends on d, it is easy to see that as the contact
diameter increases with d=mX /2, where A is the wavelength of a Fermi electron,
m=1,2..., the next (mth) subband becomes conducting and the conductance of the
contact increases abruptly by Gy .

The condition €,,(0) <€ is a consequence of applying the equality of the chemical
potentials of the electrons at the edges and in the microsopic constriction. A detailed
analysis shows, however, that the equality of the electrochemical potentials must be used,
since at thermodynamic equilibrium a quantum electrostatic potential ®(d) >0, relative
to the edges of the contact, appears in the constriction.

We shall now prove this point. We write the expression for the electron density in a
two-dimensional ballistic channel of width d at zero temperature as

+

2 *©
n(d)=5=2 | dpblep—en(p)=e®(d)). (1)
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FIG. 1. Potential versus the diameter of the microconstriction,

Here 0(x) is the Heavside function. The potential ®(d) is determined from the condition
of self-consistency, which in the strong-screening limit

i 2

where 7, is the screening radius, reduces to the condition of electrical neutrality. Assum-
ing that the background formed by the positive charge is identical in the channel and at
the edges (breakdown of this condition is discussed below), we have from the condition
of electrical neutrality

”(d):’lo, (3)

where no=2m/ )\% is the electron density at the edges. From Egs. (1) and (3) we thus
obtain the self-consistency condition which determines the magnitude of the potential:

d>r
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Here ¢ = —e®/ep, and §=2d/\f.

The function ¢(§&) is shown in Fig 1. In order of magnitude, the value of the
potential @ is equal to the splitting between the transverse-quantization levels
(€~ €y+1)/e near the Fermi energy, and as the width of the channel increases
(§— ), it approaches zero (¢—0).

Taking into account the quantum electrostatic potential, we can write the condition
determining the number of conducting one-dimensional subbands in the form

€,(0) ted(d)<ep. )

The channel width d,,, for which the next (mth) conducting subband appears, is
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d’” =5 T/ (6)
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The potential (in units of €,), in this case is
m— 1 7\ — 1
T k
=] = — | - — . 7
Pm 4 m( kgl an) ( )

The local maxima in the function @(&) (see Fig. 1), which lie approximately at half-
integer values of the parameter £, correspond to an increase in the number of conducting
subbands. The jumps in the function G(d) therefore occur at &,~m —0.5.

The self-consistency equation (3) was obtained under the assumption of strong
screening (2). For the systems employed in Refs. 1 and 2, the screening radius is of the
order of the Fermi wavelength. The resuits presented here are therefore valid in the region
of the steps [in the function G(d)] with large numbers, m 1. For d~\ a charged
layer, which prevents the potential in the channel from increasing, is formed near the
channel edges at distances of the order of r,. As the channel width decreases further
(d<\p), the potential ® no longer compensates for the increase in energy
e51(0)~1/d2 and the channel becomes nonconducting (G=0). (In the limit of strong
screening the channel would remain conducting even when d—0.)

We note that this effect, i.e., the appearance of a potential difference between the
constriction and the contact edges, should occur in three-dimensional ballistic contacts
under conditions where quantization of the transverse motion of electrons near the mi-
croscopic constriction is important.

We now return to the condition (3). In Ref. 7 it is predicted that the electron density
is a nonmonotonic function of the width of a two-dimensional channel. However, the
measurements performed in Ref. 8 showed that the function ny(d) is monotonic. Such a
monotonic dependence could be due to the characteristic features of the formation of a
two-dimensional electron lalyer9 and should be taken into account as follows: First, the
decrease in the Fermi energy of the electrons in the constriction €x(d)=e€zng(d)/ng
leads to the appearance of a potential difference e® = e (1 —ny(d)/ny) between the
constriction and the contact edges (analog of the contact potential difference). This will
result in a replacement in Eq. (1) and in the condition (5) of the Fermi energy e, at the
edges by the Fermi energy ez(d) in the constriction. Second, on the right-hand side of the
electrical neutrality condition (3) the electron density n, at the edges should be replaced
by the quantity no(d).

In conclusion, we note that we have predicted here a new effect, which can be
described as the appearance of a nonmonotonic (depending on the width of the micro-
scopic constriction) potential difference between the constriction and the contact edges.
This potential difference is not assoctated with the electrostatic potential that forms the
microscopic constriction in a two-dimensional electron layer. This is an equilibrium po-
tential difference, in terms of thermodynamics, which arises exclusively as a result of the
quantum nature of the electron motion in the microscopic constriction.
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